
HAL Id: hal-02867587
https://hal.science/hal-02867587v1

Submitted on 14 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some complete ω-powers of a one-counter language, for
any Borel class of finite rank

Olivier Finkel, Dominique Lecomte

To cite this version:
Olivier Finkel, Dominique Lecomte. Some complete ω-powers of a one-counter language, for any Borel
class of finite rank. Archive for Mathematical Logic, 2021, 60 (1-2), pp.161 - 187. �10.1007/s00153-
020-00737-4�. �hal-02867587�

https://hal.science/hal-02867587v1
https://hal.archives-ouvertes.fr

Some complete ω-powers of a one-counter language,
for any Borel class of finite rank

Olivier FINKEL and Dominique LECOMTE1

January 16, 2020

• CNRS, Université Paris Diderot, Sorbonne Université,
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Equipe de Logique Mathématique

Campus des Grands Moulins, bâtiment Sophie-Germain, case 7012, 75205 Paris cedex 13, France
finkel@math.univ-paris-diderot.fr

•1 Sorbonne Université, Université Paris Diderot, CNRS,
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Equipe d’Analyse Fonctionnelle

Campus Pierre et Marie Curie, case 247, 4, place Jussieu, 75 252 Paris cedex 5, France
dominique.lecomte@upmc.fr

•1 Université de Picardie, I.U.T. de l’Oise, site de Creil,
13, allée de la faı̈encerie, 60 107 Creil, France

Abstract. We prove that, for any natural number n≥1, we can find a finite alphabet Σ and a finitary
language L over Σ accepted by a one-counter automaton, such that the ω-power

L∞ :={w0w1 . . .∈Σω | ∀i∈ω wi∈L}

is Π0
n-complete. We prove a similar result for the class Σ0

n.

2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 54H05, 68R15
Keywords and phrases. Borel class, complete, context-free, one-counter automaton; ω-power
Acknowledgements. We thank very much the anonymous referees for their very useful comments about a preliminary

version of our article.

1

1 Introduction

We pursue in this paper the study of the topological complexity of ω-powers of languages of finite
words over a finite alphabet Σ. A finitary language over a finite alphabet Σ is a subsetA of the set Σ<ω

of finite words with letters in Σ. The set of infinite words over the alphabet Σ, i.e., of sequences of
length ω of letters of Σ, is denoted Σω. The ω-power associated with A ⊆ Σ<ω is the set A∞ of the
infinite words constructible with A by concatenation, i.e., A∞ :={ a0a1 . . .∈Σω | ∀i∈ω ai∈A }.
Notice that we denote here A∞ the ω-power associated with A, as in [Lec05, FL09], while it is often
denoted Aω in Theoretical Computer Science papers, as in [Sta97, Fin01, Fin03, FL07]. Here we
reserved the notation Aω to denote the Cartesian product of countably many copies of A since this
will be often used in this paper.

In the theory of formal languages of infinite words, accepted by various kinds of automata, the
ω-powers appear very naturally in the characterization of the class REGω of ω-regular languages
(respectively, of the class CFω of context free ω-languages) as the ω-Kleene closure of the family
REG of regular finitary languages (respectively, of the family CF of context free finitary languages)
[Sta97]. Since the set Σω of infinite words over a finite alphabet Σ can be equipped with the usual
Cantor topology, the question of the topological complexity of ω-powers of finitary languages natu-
rally arose and was posed in particular by Niwinski [Niw90], Simonnet [Sim92], and Staiger [Sta97].
Moreover the ω-powers have also been studied from the perspective of Descriptive Set Theory in
[Lec05, FL09].

As the concatenation map, from Aω onto A∞, which associates to a given sequence (ai)i∈ω of
finite words the concatened word a0a1 . . ., is continuous, an ω-power is always an analytic set.

It was proved in [Fin03] that there exists a (context-free) language L such that L∞ is analytic
but not Borel. Amazingly, the language L is very simple to describe and it is accepted by a simple
1-counter automaton. Louveau has proved independently that analytic-complete ω-powers exist, but
the existence was proved in a non effective way (this is non-published work). We refer the reader to
[ABB96] for basic notions about context-free languages.

Concerning Borel ω-powers, it was proved that, for each integer n ≥ 1, there exist some ω-powers
of (context-free) languages which are Π0

n-complete Borel sets, [Fin01]. It was proved in [Fin04] that
there exists a finitary language V such that V∞ is a Borel set of infinite rank, and in [DF07] that there
is a (context-free) language W such that W∞ is Borel above ∆0

ω.

We proved in [FL07, FL09] a result which showed that ω-powers exhibit a great topological com-
plexity: for each nonzero countable ordinal ξ, there exist Π0

ξ-complete ω-powers, and Σ0
ξ -complete

ω-powers. This result has an effective aspect: for each recursive ordinal ξ < ωCK
1 , where ωCK

1 is
the first non-recursive ordinal, there exists recursive finitary languages P and S such that P∞ is
Π0
ξ-complete and S∞ is Σ0

ξ -complete.

Many questions are still open about the topological complexity of ω-powers of languages in a
given class like the class of context-free languages, 1-counter languages, recursive languages, or
more generally languages accepted by some kind of automata over finite words.

In this paper we obtain the following new results about ω-powers of languages accepted by 1-
counter automata.

2

Theorem 1 Let n≥1 be a natural number.
(a) There is a finitary language Pn which is accepted by a one-counter automaton and such that

the ω-power P∞n is Π0
n-complete.

(b) There is a finitary language Sn which is accepted by a one-counter automaton and such that
the ω-power S∞n is Σ0

n-complete.
Moreover, for any given integer n≥ 1, one can effectively construct some one-counter automata

accepting such finitary languages Pn and Sn.

This article is organized as follows. Notions of automata and formal language theory are recalled
in Section 2. Some basic notions of topology are recalled in Section 3. The definition and some
properties of the operation of exponentiation of sets are given in Section 4. Our results related to the
classes Π0

n are proved in Section 5 and our results related to the classes Σ0
n are proved in Section 6.

We give in this article a construction of complete ω-powers of a one-counter language, for any
Borel class of finite rank. It remains open to determine completely the topological complexity of
ω-powers of one-counter languages. Recall that it has been proved in [Fin06] that for each recursive
ordinal ξ < ωCK

1 , there exist some ω-languages Pξ and Sξ accepted by Büchi one-counter automata
such that Pξ is Π0

ξ-complete and Sξ is Σ0
ξ -complete.

Moreover each ω-language L ⊆ Σω accepted by a Büchi one-counter automaton is of the form
L =

⋃
1≤j≤n Uj · V∞j , for some one-counter finitary languages Uj and Vj , 1 ≤ j ≤ n. Therefore it

seems plausible that there exist complete ω-powers of a one-counter language, for each Borel class
of recursive rank.

2 Automata

We assume the reader to be familiar with formal languages, see for example [HMU01, Tho90].
We first recall some of the definitions and results concerning pushdown automata and context free
languages, as presented in [ABB96, CG77, Sta97].

When Σ is a finite alphabet, a nonempty finite word over Σ is a sequence w = a0 . . . al−1,
where ai ∈ Σ for each i < l, and l ≥ 1 is a natural number. The length of w is l, denoted by |w|.
If |w| = 0, then w is the empty word, denoted by λ. When w is a finite word over Σ, we write
w=w(0)w(1) . . . w(l−1), and the prefix w(0)w(1) . . . w(i−1) of w of length i is denoted by w|i, for
any i≤ l. We also write u⊆v when the word u is a prefix of the finite word v. The set of finite words
over Σ is denoted by Σ<ω, and Σ+ is the set of nonempty finite words over Σ. A language over Σ is
a subset of Σ<ω. For L⊆Σ<ω, the complement Σ<ω\L of L (in Σ<ω) is denoted by L−.

The first infinite ordinal is ω. An ω-word over Σ is an ω-sequence a0a1 . . ., where ai ∈ Σ for
each natural number i. When σ is an ω-word over Σ, we write σ = σ(0)σ(1) . . ., and the prefix
σ(0)σ(1) . . . σ(i−1) of σ of length i is denoted by σ|i, for any natural number i. We also write u⊆σ
when the finite word u is a prefix of the ω-word σ. The set of ω-words over Σ is denoted by Σω. An
ω-language over Σ is a subset of Σω. For A ⊆ Σω, the complement Σω\A of A is denoted by A−.

The usual concatenation product of two finite words u and v is denoted u_v (and sometimes
just uv). This product is extended to the product of a finite word u and an ω-word σ: the infinite word
u_σ is then the ω-word such that (u_σ)(k)=u(k) if k< |u|, and (u_σ)(k)=σ(k−|u|) if k≥|u|.

3

If E is a set, l ∈ ω and (ei)i<l ∈ El, then _
i<l ei is the concatenation e0 . . . el−1. Similarly,

_
i∈ω ei is the concatenation e0e1 . . . For L ⊆ Σ<ω, L∞ :={σ = w0w1 . . .∈Σω | ∀i∈ω wi∈L} is

the ω-power of L.

Definition 2 A pushdown automaton is a 7-tuple A = (Q,Σ,Γ, q0, Z0, δ, F), where Q is a finite
set of states, Σ is a finite input alphabet, Γ is a finite pushdown alphabet, q0 ∈Q is the initial state,
Z0 ∈ Γ is the start symbol which is the bottom symbol and always remains at the bottom of the
pushdown stack, δ is a map from Q×(Σ∪{λ})×Γ into the set of finite subsets of Q×Γ<ω, and F ⊆Q
is the set of final states. The automatonA is said to be real-time if there is no λ-transition, i.e., if δ is
a map from Q×Σ×Γ into the set of finite subsets of Q×Γ<ω.

If γ ∈ Γ+ describes the pushdown stack content, then the leftmost symbol will be assumed to
be on the “top” of the stack. A configuration of the pushdown automaton A is a pair (q, γ), where
q∈Q and γ ∈ Γ<ω. For a∈Σ ∪ {λ}, γ, β ∈Γ<ω and Z ∈Γ, if (p, β) is in δ(q, a, Z), then we write
a : (q, Zγ) 7→A (p, βγ).

Let w=a0 . . . al−1 be a finite word over Σ. A sequence of configurations r=(qi, γi)i<N is called
a run of A on w starting in the configuration (p, γ) if

(1) (q0, γ0)=(p, γ),

(2) for each i <N−1, there exists bi ∈ Σ ∪ {λ} satisfying bi : (qi, γi) 7→A (qi+1, γi+1) such that
a0 . . . al−1 =b0 . . . bN−2.

A run r of A on w starting in configuration (q0, Z0) will be simply called a run of A on w. The
run is accepting if it ends in a final state.

The languageL(A) accepted byA is the set of words admitting an accepting run byA. A context-
free language is a finitary language which is accepted by a pushdown automaton. We denote byCFL
the class of context-free languages.

A one-counter automaton is a pushdown automaton with a pushdown alphabet of the form
Γ={Z0, z}, where Z0 is the bottom symbol and always remains at the bottom of the pushdown stack.
A one-counter language is a (finitary) language which is accepted by a one-counter automaton.

Remarks. (1) The pushdown automaton defined above is in general non-deterministic. In the sequel,
we often indicate when the considered automata can be deterministic or when the non-determinism is
essential in the behaviour of the automata.

(2) The accepting condition here is by final states. Some other accepting conditions have been consid-
ered. For instance a language is context-free if and only if it is accepted by a pushdown automaton by
final states and empty stack [ABB96]. In particular, in the last sections of the paper, we will consider
acceptance by final states and empty stack.

Definition 3 Let Σ,Γ be finite alphabets.

(a) A (Σ,Γ)-substitution is a map f :Σ→2Γ<ω .

(b) We extend this map to Σ<ω be setting f(_i<l ai) := {_i<l wi | ∀i < l wi ∈ f(ai)}, where
l∈ω and a0, · · · , al−1∈Σ.

(c) We further extend this map to 2Σ<ω by setting f(L) :=
⋃
w∈L f(w).

4

(d) Let f be a (Σ,Γ)-substitution, and F be a family of languages. If the language f(a) belongs
to F for each a∈Σ, then the substitution f is called a F-substitution.

(e) We then define the operation � on families of languages. Let E , F be families of (finitary)
languages. Then E � F :={f(L) | L∈E and f is a F-substitution}.

The operation of substitution gives rise to an infinite hierarchy of context free finitary languages
defined as follows.

Definition 4 Let OCL(0) = REG be the class of regular languages, OCL(1) = OCL be the class
of one-counter languages, and OCL(k+1)=OCL(k) � OCL, for k≥1.

It is well known that the hierarchy given by the families of languages OCL(k) is strictly increas-
ing. And there is a characterization of these languages by means of automata.

Proposition 5 ([ABB96]) A language L is in OCL(k) if and only if L is recognized by a pushdown
automaton such that, during any computation, the words in the pushdown stack remain in a bounded
language of the form (zk−1)<ω . . . (z0)<ωZ0, where {Z0, z0, . . . , zk−1} is the pushdown alphabet.
Such an automaton is called a k-iterated counter automaton. The union ICL :=

⋃
k≥1 OCL(k) is

called the family of iterated counter languages, which is the closure under substitution of the family
OCL.

Note that we can consider that a k-iterated counter automaton is a k-counter automaton in the
following way. If the content of the pushdown stack of a k-iterated counter automaton is equal to
(zk−1)nk−1 . . . (z0)n0Z0 for some natural numbers n0, . . . , nk−1, then the numbers n0, . . . , nk−1 are
the contents of the counters 1,. . . , k of the k-counter automaton. Moreover, it is then clear that the
content of the ith counter can only be changed when the contents of counters numbered i+1, i+2,
. . . , k−1 are equal to zero. We now recall the formal definition of a k-counter automaton.

Definition 6 Let k ≥ 1 be an integer. A k-counter automaton is a 5-tuple A = (Q,Σ, q0,∆, F),
where Q is a finite set of states, Σ is a finite input alphabet, q0∈Q is the initial state,

∆⊆Q×(Σ ∪ {λ})×{0, 1}k×Q×{0, 1,−1}k

is the transition relation, and F ⊆Q is the set of final states. The k-counter automaton A is said to
be real-time if there is no λ-transition, i.e., if ∆⊆Q×Σ×{0, 1}k×Q×{0, 1,−1}k.

If the machine A is in the state q and ci∈ω is the content of the ith counter Ci, then the configu-
ration (or global state) of A is the (k+1)-tuple (q, c0, . . . , ck−1).

Let a ∈ Σ ∪ {λ}, q, q′∈Q, (c0, . . . , ck−1)∈ωk. We write

a : (q, c0, . . . , ck−1) 7→A (q′, c0+l0, . . . , ck−1+lk−1)

when (q, a, i0, . . . , ik−1, q
′, l0, . . . , lk−1)∈∆, where ij =0 if cj =0 and ij =1 if cj > 0. This implies

that the transition relation has the property that if (q, a, i0, . . . , ik−1, q
′, l0, . . . , lk−1)∈∆ and im=0

for some m<k, then lm=0 or lm=1 (but lm cannot be equal to −1).
Let w = a0 . . . al−1 be a finite word over Σ. A sequence r = (qi, c

i
0, . . . , c

i
k−1)i<N of config-

urations, where N > l, is called a run of A on w starting in the configuration (p, c0, . . . , ck−1)
if

5

(1) (q0, c
0
0, . . . , c

0
k−1)=(p, c0, . . . , ck−1),

(2) for each i<N−1, there exists bi ∈ Σ ∪ {λ} such that

bi : (qi, c
i
0, . . . , c

i
k−1) 7→A (qi+1, c

i+1
0 , . . . , ci+1

k−1),

and a0 . . . al−1 =b0 . . . bN−2.

A run of A on w starting in the configuration (q0, 0, . . . , 0) will be simply called a run of A on
w. The run is accepting if it ends in a final state. The language L(A) accepted by A is the set of
finite words admitting an accepting run by A.

Let σ=a0a1 . . . be an ω-word over Σ. An ω-sequence of configurations r=(qi, c
i
0, . . . , c

i
k−1)i∈ω

is called a run of A on σ starting in the configuration (p, c0, . . . , ck−1) if

(1) (q0, c
0
0, . . . , c

0
k−1) = (p, c0, . . . , ck−1),

(2) for each i∈ω, there is bi∈Σ ∪ {λ} such that bi : (qi, ci0, . . . , c
i
k−1) 7→A (qi+1, c

i+1
0 , . . . , ci+1

k−1),
and either b0b1 . . .=a0a1 . . ., or b0b1 . . . is a finite prefix of a0a1 . . .

The run r is said to be complete when a0a1 . . .=b0b1 . . . For every such run, In(r) is the set of all
states entered infinitely often during the run r. A complete run ofA on σ starting in the configuration
(q0, 0, . . . , 0) will be simply called a run of A on σ. The ω-language accepted by A is

L(A) :={σ ∈ Σω | there exists a run r of A on σ such that In(r) ∩ F 6=∅}.

Remark. The acceptance condition for finite words here is by final states. Some other acceptance
conditions have been considered. In particular, in the last sections of the paper, we will consider
acceptance of finite words by final states and counters having the value zero.

3 Topology

We now recall some notions of topology, assuming the reader to be familiar with the basic notions,
that can be found in [Mos80, Kec95, Sta97, PP04]. The topological spaces in which we will work
in this paper will be subspaces of Σω, where Σ is either finite having at least two elements (like
2 := {0,1}), or countably infinite. The topology on Σω is the product topology of the discrete
topology on Σ. For w∈Σ<ω, the set Nw :={α∈Σω | w⊆α} is a basic clopen (i.e., closed and open)
set of Σω. The open subsets of Σω are of the form W_Σω := {wσ | w ∈W and σ ∈ Σω}, where
W ⊆Σ<ω. When Σ is finite, this topology is called the Cantor topology and Σω is compact. When
Σ =ω, Σω is the Baire space, which is homeomorphic to P∞ := {α∈ 2ω | ∀i∈ω ∃j≥ i α(j) = 1},
via the map defined on ωω by h(β) := 0β(0)10β(1)1 . . . There is a natural metric on Σω, the prefix
metric defined as follows. For σ 6= τ ∈Σω, d(σ, τ) := 2−lpref(σ,τ) , where lpref(σ,τ) is the first natural
number n such that σ(n) 6=τ(n). The topology induced on Σω by this metric is our topology.

We now define the Borel hierarchy.

6

Definition 7 Let X be a topological space, and n≥1 be a natural number. The classes Σ0
n(X) and

Π0
n(X) of the Borel hierarchy are inductively defined as follows:

Σ0
1(X) is the class of open subsets of X .

Π0
1(X) is the class of closed subsets of X .

Σ0
n+1(X) is the class of countable unions of Π0

n-subsets of X .

Π0
n+1(X) is the class of countable intersections of Σ0

n-subsets of X .
The Borel hierarchy is also defined for the transfinite levels. Let ξ≥2 be a countable ordinal.

Σ0
ξ(X) is the class of countable unions of subsets of X in

⋃
γ<ξ Π0

γ .

Π0
ξ(X) is the class of countable intersections of subsets of X in

⋃
γ<ξ Σ0

γ .

Suppose now that ξ≥1 is a countable ordinal and X⊆Y , where X is equipped with the induced
topology. Then Σ0

ξ(X) = {A ∩X | A∈Σ0
ξ(Y)}, and similarly for Π0

ξ , see [Kec95, Section 22.A].
Note that we defined the Borel classes Σ0

ξ(X) and Π0
ξ(X) mentioning the space X . However, when

the context is clear, we will sometimes omit X and denote Σ0
ξ(X) by Σ0

ξ and similarly for the dual
class. The Borel classes are closed under finite intersections and unions, and continuous preimages.
Moreover, Σ0

ξ is closed under countable unions, and Π0
ξ under countable intersections. As usual,

the ambiguous class ∆0
ξ is the class Σ0

ξ ∩ Π0
ξ . The class of Borel sets is ∆1

1 :=
⋃

1≤ξ<ω1
Σ0
ξ =⋃

1≤ξ<ω1
Π0
ξ , where ω1 is the first uncountable ordinal. The Borel hierarchy is as follows:

Σ0
1 =open Σ0

2 . . . Σ0
ω . . .

∆0
1 =clopen ∆0

2 ∆0
ω ∆1

1

Π0
1 =closed Π0

2 . . . Π0
ω . . .

This picture means that any class is contained in every class to the right of it, and the inclusion is
strict in any of the spaces Σω. A subset of Σω is a Borel set of rank ξ if it is in Σ0

ξ ∪Π0
ξ but not in⋃

1≤γ<ξ (Σ0
γ ∪Π0

γ).

We now define completeness with respect to reducibility by continuous functions. Let Γ be a
class of sets of the form Σ0

ξ or Π0
ξ . A subset C of Σω is said to be Γ-complete if C is in Γ(Σω) and,

for any finite alphabet Y and any A ⊆ Y ω, A ∈ Γ if and only if there exists a continuous function
f :Y ω→Σω such that A=f−1(C). The Σ0

n-complete sets and the Π0
n-complete sets are thoroughly

characterized in [Sta86]. Recall that a subset of Σω is Σ0
ξ (respectively Π0

ξ)-complete if it is in Σ0
ξ

but not in Π0
ξ (respectively in Π0

ξ but not in Σ0
ξ), [Kec95]. For example, the singletons of 2ω are

Π0
1-complete. The set P∞ defined at the beginning of the present section is a well known example of

a Π0
2-complete set.

The class Γ̌ := {¬A | A ∈ Γ} is the class of the complements of the sets in Γ. In particular,
Σ̌0
ξ =Π0

ξ and Π̌0
ξ =Σ0

ξ .

There are some subsets of the topological space Σω which are not Borel sets. In particular, there
is another hierarchy beyond the Borel hierarchy, called the projective hierarchy. The first class of the
projective hierarchy is the class Σ1

1 of analytic sets. A subset A of Σω is analytic if we can find a
finite alphabet Y and a Borel subset B of (Σ×Y)ω such that x∈A ⇔ ∃y ∈ Y ω (x, y)∈B, where
(x, y)∈(Σ×Y)ω means that (x, y)(i)=

(
x(i), y(i)

)
for each natural number i.

7

A subset of Σω is analytic if it is empty, or the image of the Baire space by a continuous map.
The class Σ1

1 of analytic sets contains the class of Borel sets in any of the spaces Σω. Note that
∆1

1 =Σ1
1 ∩Π1

1, where Π1
1 :=Σ̌1

1 is the class of co-analytic sets, i.e., of complements of analytic sets.

The ω-power of a finitary language L is always an analytic set. Indeed, if L is finite and has n
elements, then Lω is the continuous image of the compact set {0,1, . . . ,n−1}ω. If L is infinite, then
there is a bijection between L and ω, and Lω is the continuous image of the Baire space ωω, [Sim92].

4 The operation “exponentiation of sets”

The Wadge hierarchy of Borel sets is a great refinement of the Borel hierarchy. Wadge gave
first a description of this hierarchy, see [Wad83]. Duparc got in [Dup01] a new proof of Wadge’s
results for the case of Borel sets of finite rank, and he gave a normal form of Borel sets of finite rank,
i.e., an inductive construction of a Borel set of every given degree. His proof relies on set theoretic
operations which are the counterpart of arithmetical operations over ordinals needed to compute the
Wadge degrees.

In fact J. Duparc studied the Wadge hierarchy via the study of the conciliating hierarchy. He
introduced in [Dup01] the conciliating sets, which are sets of finite or infinite words over an alphabet
Σ, i.e. subsets of Σ<ω ∪ Σω = Σ≤ω. Among the set theoretic operations which are defined over
concilating sets, we shall only need in this paper the operation of exponentiation. We first recall the
following.

Definition 8 Let ΣA be a finite alphabet, � be a letter out of ΣA, Σ:=ΣA ∪ {�}, and x be a finite
or infinite word over the alphabet Σ. Then x� is inductively defined as follows.

- λ� :=λ.

- For a finite word u∈Σ<ω,

(ua)� :=u�a if a∈ΣA,
(u�)� :=u� with its last letter removed if |u�|>0,
(u�)� :=λ if |u�|=0.

- For an infinite word σ, σ� := limn∈ω (σ|n)�, where, given (wn)∈(Σ<ω
A)ω and w∈Σ<ω

A ,

w⊆ limn∈ω wn ⇔ ∃p∈ω ∀n≥p wn||w|=w.

Remark. For x∈Σ≤ω, x� denotes the string x, once every � occuring in x has been “evaluated” as
the back space operation (the one familiar to your computer!), proceeding from left to right inside x.
In other words, x�=x from which every interval of the form “a� ” (a∈ΣA) is removed.

For example, if x = (a �)n for some n ≥ 1, x = (a �)ω or x = (a ��)ω then x� = λ. If
x=(ab�)ω, then x�=aω. If x=bb(� a)ω, then x�=b.

We now can define the operation A 7→A∼ of exponentiation of conciliating sets.

Definition 9 Let ΣA be a finite alphabet, � be a letter out of ΣA, Σ := ΣA ∪ {�}, and A⊆Σ≤ωA .
Then we set A∼ :={x∈Σ≤ω | x�∈A}.

8

The operation∼ is monotone with regard to the Wadge ordering and produces some sets of higher
complexity. Duparc considered the following correspondence. If ΣA is a finite alphabet, A⊆ Σ≤ωA
and d is a letter out of ΣA, then we define

Ad :={σ∈(ΣA ∪ {d})ω | σ(/d)∈A},

where σ(/d) is the sequence obtained from σ by removing every occurrence of the letter d.

We recall the results useful in this paper.

Theorem 10 (Duparc [Dup01]) Let ΣA be a finite alphabet.

(a) LetA⊆Σ≤ωA , and n≥1 be a natural number. IfAd⊆(ΣA∪{d})ω is Σ0
n-complete (respectively,

Π0
n-complete), then (A∼)d is Σ0

n+1-complete (respectively, Π0
n+1-complete).

(b) Let A⊆Σω
A, and n≥2 be a natural number. If A is Π0

n-complete, then A∼ is Π0
n+1-complete.

Remark. Item (b) of the preceding theorem follows from (a) because

- whenever A ⊆ Σω
A, n ≥ 2 is a natural number and A is Π0

n-complete, then Ad is also Π0
n-

complete,

- whenever A⊆Σω
A, n≥3 is a natural number and Ad⊆ (ΣA ∪ {d})ω is Π0

n-complete, then A is
also a Π0

n-complete set.

This property was useful in [Fin01] to study the ω-powers of finitary languages. The first author
proved in [Fin01] that the class CFLω of context-free ω-languages, (i.e., those which are accepted
by Büchi pushdown automata), is closed under this operation ∼.

We now recall a slightly modified variant of the operation ∼, introduced in [Fin01], and which is
particularly suitable to infer properties of ω-powers.

Definition 11 Let ΣA be a finite alphabet, � be a letter out of ΣA, Σ := ΣA ∪ {�}, and A⊆Σ≤ωA .
Then we set A≈ :={x∈Σ≤ω | x�∈A}, where x� is inductively defined as follows.

- λ� :=λ.

- For a finite word u∈Σ<ω,

(ua)� :=u�a if a∈ΣA,
(u�)� :=u� with its last letter removed if |u�|>0,
(u�)� is undefined if |u�|=0.

- For an infinite word σ, σ� := limn∈ω (σ|n)�.

The only difference is that here (u �)� is undefined if |u�|=0. It is easy to see that if A⊆Σω
A

is a Borel set such that A 6= Σω
A, i.e., A− 6= ∅, then A≈ is Wadge equivalent to A∼ (see [Fin01]) and

thus one can get the following version of Theorem 10.(b).

Theorem 12 Let ΣA be a finite alphabet, and n≥2 be a natural number. If A⊆Σω
A is Π0

n-complete,
then A≈ is Π0

n+1-complete.

9

5 Π0
n-complete ω-powers

Notation. Let ΣA be a finite alphabet, � be a letter out of ΣA, and Σ := ΣA ∪ {�}. The language
L3 over Σ is the context-free language generated by the context free grammar with the following
production rules:

S→aS � S with a∈ΣA,
S→a� S with a∈ΣA,
S→λ

(see [H-U] for the basic notions about grammars). This language L3 corresponds to the words where
every letter of ΣA has been removed after using the backspace operation. It is easy to see that L3 is
a deterministic one-counter language, i.e., L3 is accepted by a deterministic one-counter automaton.
Moreover, for a∈ΣA, the language L3a is also accepted by a deterministic one-counter automaton.

We can now state the following result.

Lemma 13 (see [Fin01]) Whenever A⊆Σω
A, the ω-language A≈⊆Σω is obtained by substituting

in A the language L3a for each letter a∈ΣA.

An ω-word σ ∈A≈ may be considered as an ω-word σ� ∈A to which we possibly add, before
the first letter σ�(0) of σ� (respectively, between two consecutive letters σ�(n) and σ�(n+1) of
σ�), a finite word belonging to the context free (finitary) language L3.

Corollary 14 Whenever A⊆Σω
A is an ω-power of a languageLA, i.e., A=L∞A , then A≈ is also an

ω-power, i.e., there exists a (finitary) language EA such that A≈ =E∞A . Moreover, if the language
LA is in the class OCL(k) for some natural number k, then the language EA can be found in the
class OCL(k+1).

Proof. Let h : ΣA → 2Σ<ω be the substitution defined by a 7→ L3a, where L3 is the context free
language defined above. Then it is easy to see that now A≈ is obtained by substituting in A the
language L3a for each letter a∈ΣA. Thus EA=h(LA) satisfies the statement of the theorem. �

We now recall the following result, proved in [Fin01].

Theorem 15 For each natural number n≥ 1, there is a context free language Pn in the subclass of
iterated counter languages such that P∞n is Π0

n-complete.

Proof. Let B1 = {σ ∈ {0,1}ω | ∀i ∈ ω σ(i) = 0}= {0}∞. B1 is a Π0
1-complete set of the form

P∞1 where P1 is the singleton containing only the word 0. Note that that P1 = {0}=: 1 is a regular
language, hence in the class OCL(0).

Let thenB2 =P∞ be the well known Π0
2-complete regular ω-language. Note thatB2 =(1<ω1)∞.

Let P2 :=1<ω1. Then P2 is a regular language, hence in the class OCL(0).

We now consider the substitution h : {0,1} → 2({0,1}∪{�})<ω from the proof of Corollary 14,
and set P3 := h(P2), which is a context-free language in the class OCL(1). Note that the set
P∞3 =h(P2)∞=(P∞2)≈ is Π0

3-complete, by Theorem 10.

Iterating this method n≥1 times, we easily obtain a context free language Pn+2∈OCL(n) such
that P∞n+2 is Π0

n+2-complete. �

10

Note that P1 and P2 are regular, hence accepted by some (real-time deterministic) finite automata
(without any counter). On the other hand, the languages L3a, for a∈ΣA, are one-counter languages.
Moreover we can easily see that, for each a ∈ ΣA, the language L3a is accepted by a real-time
one-counter automaton A, such that A accepts a finite word w iff there is a run on w ending in an
accepting state and with empty stack. This implies that the language P3 is also accepted by a real-time
one-counter automaton, by final states and empty stack. We can now state the following proposition.

Proposition 16 Let A⊆Σ<ω
A be a finitary language accepted by a real-time one-counter automaton

A accepting words by final states and empty stack, and let h :ΣA→2Σ<ω be the substitution defined
by a 7→ L3a, where L3 is the one-counter language defined above. Then the language h(A) is in
OCL(2), and it is accepted by a real-time two-iterated counter automaton B accepting words by
final states and empty stack.

We explain in an informal way the idea of the construction of the real-time two-iterated counter
automaton B from the automaton A. The stack alphabet of A is of the form {Z0, z0}, and the stack
alphabet of B is of the form {Z0, z0, z1}. The automaton B starts the reading of a word over the
alphabet Σ as the one-counter automaton A accepting the language A. Then at any moment of the
computation it may guess (using the non-determinism) that it reads a finite segment w of L3 that
will be erased (using the eraser �). It reads w using the additional stack letter z1 which permits
to simulate a one-counter automaton at the top of the stack while keeping the memory of the stack
of A (which is actually a counter). Then, after the reading of w, B simulates again the one-counter
automatonA, and so on. The automaton B accepts words by final states (corresponding to final states
of A) and empty stack. We now state one of our main technical results.

Proposition 17 Let A ⊆ Σ<ω be a finitary language accepted by a real-time two-iterated counter
automaton A accepting words by final states and empty stack, and such that the ω-power A∞ is
Σ0
n-complete (respectively, Π0

n-complete) for some natural number n≥ 3. Then we can find a finite
alphabet Y and a finitary language B ⊆ Y <ω such that B is accepted by a real-time one-counter
automaton B accepting words by final states and empty stack, and B∞ is Σ0

n-complete (respectively,
Π0
n-complete). Moreover one can take a two-letter alphabet Y = {0, 1} with the same property.

Proof. Note first that we have already seen in Section 2 that a (real-time) two-iterated counter au-
tomaton (accepting words by final states and empty stack) may be seen as a (real-time) two-counter
automaton (accepting words by final states and counters having the value zero). The idea is to code
the content of two counters. We shall need the following notion. Let m≥1 be a natural number, and
n, p, q be natural numbers such that neither 2 nor 3 divides n ≥ 1, and m = n.2p.3q. Then we set
M2(m) := p and M3(m) = q. So 2M2(m) is the greatest power of 2 which divides m, and 2M3(m) is
the greatest power of 3 which divides m.

Let then A := (Q,Σ, q0,∆, F) be a (real-time) two-iterated counter automaton accepting the
language A=L(A)⊆Σ<ω, by final states and empty stack. We define the finitary language L as the
set of finite words over the alphabet Σ ∪ {0,1,2}, where 0,1,2 are new letters not in Σ, of the form
_
i<n vi ai 1 wi zi 2 ui+1, where |v0|=1, n≥1, vi, wi∈1+, zi, ui∈1<ω, ai∈Σ, |ui+1|= |zi| and we

can find a sequence (qi)i≤n of states of Q and integers li, l′i∈{−1, 0, 1} such that, for each i<n,

ai :
(
qi,M2(|vi|),M3(|vi|)

)
7→A

(
qi+1,M2(|vi|)+li,M3(|vi|)+l′i

)
and |wi|= |vi|.2li .3l

′
i .

11

Moreover, the state qn is a final state of A, i.e., qn ∈ F , and M2(|wn−1|) = 0, M3(|wn−1|) = 0.
Note that the state q0 of the sequence (qi)i≤n is also the initial state of A.

Claim 1 The language L is accepted by a one-counter automaton C.

Indeed, we shall explain informally the behaviour of a one-counter automaton C accepting the
finitary language L. We first consider the reading of a word w∈(Σ ∪ {0,1,2})<ω of the form

(_i<n 0pi ai 1 0mi 2) 0pn ,

where the pi,mi,’s are positive integers, and the ai’s are in Σ.

Using the finite control, (i.e., a finite set of states and a set of transitions involving only these
states, and the input letters that are read; this corresponds to the behaviour of a finite state automaton)
the automaton C first checks that the first three letters of w form an initial segment 0 a0 1, for some
letter a0∈Σ. Moreover, when reading the p0 =1 letter 0 before a0, the automaton C, using the finite
control, checks that p0 > 0 and determines whether M2(p0) = 0, and whether M3(p0) = 0. Here we
actually have M2(p0)=0 and M3(p0)=0. Moreover the counter content of C is increased by one for
each letter 0 read.

The automaton C now reads the letter a0 and it guesses a transition of A leading to

a0 :
(
q0,M2(p0),M3(p0)

)
7→A

(
q1,M2(p0)+l0,M3(p0)+l′0

)
We set v0 :=0p0 and w0 :=0p0.2

l0 .3l
′
0 .

The counter value is now equal to p0 and, when reading the letters 0 following a0, the automaton
C checks that m0≥p0.2

l0 .3l
′
0 in such a way that the counter value becomes zero after having read the

p0.2
l0 .3l

′
0 letters 0 following the first letter 1. For instance, if l0 = l′0 =1, then |w0|= |v0|.6 so this can

be done by decreasing the counter content by one each time six letters 0 are read. The other cases are
treated similarly. The details are here left to the reader.

Note also that the automaton C has kept in its finite control the value of the state q1.

We now set 0m0 := w0.z0. We have seen that, after having read w0, the counter value of the
automaton C is equal to zero. Now when reading z0 the counter content is increased by one for each
letter read so that it becomes |z0| after having read z0. The automaton C now reads a letter A and next
decreases its counter by one for each letter 0 read until the counter content is equal to zero. We set
0p1 := u1.v1 with u1 = z0. The automaton C now reads the segment v1. Using the finite control, it
checks that |v1|> 0 and determines whether M2(|v1|) = 0, and whether M3(|v1|) = 0. Moreover the
counter content is increased by one for each letter 0 read. The automaton C now reads the letter a1

and it guesses a transition of A leading to

a1 :
(
q1,M2(|v1|),M3(|v1|)

)
7→A

(
q2,M2(|v1|)+l1,M3(|v1|)+l′1

)
We set w1 := 0|v1|.2

l1 .3l
′
1 . The counter value is now equal to |v1|. The automaton C now reads the

second letter 1 and, when reading them1 letters 0 following this letter 1, the automaton C checks that
m1≥|v1|.2l1 .3l

′
1 in such a way that the counter value becomes zero after having read the |v1|.2l1 .3l

′
1

letters 0 following the second letter 1.

12

For instance, if l1 = 0 and l′1 = −1, then |w1| = |v1|.3−1, so this can be done by decreasing
the counter content by three each time one letter 0 is read. And if l1 = −1 and l′1 = −1, then
|w1|= |v1|.2−1.3−1 = |v1|.6−1 so this can be done by decreasing the counter content by six each time
one letter 0 is read. The other cases are treated similarly. The details are here left to the reader.

Note that these different cases can be treated using λ-transitions, in such a way that there will be
at most 5 consecutive λ-transitions during a run of C on w. This will be an important useful fact in
the sequel.

Note also that the automaton C has kept in its finite control the value of the state q2.

The reading of w by C continues similarly. An acceptance condition by final states and empty
stack can be used to ensure that qn∈F , M2(|wn−1|)=0, M3(|wn−1|)=0, and |zn−1|=pn.

In order to complete the proof, we can remark that R = (0<ω.Σ.1.0<ω.2.0<ω)<ω is a regular
language, so we have only considered the reading by C of words w ∈ R. Indeed, if the language
L(C) was not included into R, then we could replace it with L(C) ∩ R because the class OCL is
closed under intersection with regular languages (by a classical construction of product of automata,
the languageR being accepted by a deterministic finite-state automaton). �

We will now use a coding of ω-words over Σ given by the map gN,l : Σω → (Σ ∪ {0,1,2})ω,
where (N, l)∈P :={(N, l)∈(ω\{0})×ω | 6 does not divide N}, and

gN,l(σ) :=0 (_i∈ω σ(i) 1 0N.6
l+i

2 0N.6
l+i

).

Claim 2 The equality
(
L(A)

)∞
=g−1

N,l(L
∞) holds, i.e., ∀σ∈Σω, gN,l(σ)∈L∞ ⇔ σ∈

(
L(A)

)∞.

Indeed, let A be a real-time two-iterated counter automaton accepting finite words over Σ, by
final states and empty stack, and L⊆(Σ ∪ {0,1,2})<ω be defined as above.

Let σ∈Σω be an ω-word such that gN,l(σ)∈L∞. Recall that gN,l(σ) can be written

0 (_i∈ω σ(i) 1 0N.6
l+i

2 0N.6
l+i

)

As gN,l(σ)∈L∞, we can also write gN,l(σ)=_
j∈ω (_i<nj vi,j ai,j 1 wi,j zi,j 2 ui+1,j), where, for

each natural number j, |v0,j | = 1, nj ≥ 1, vi,j , wi,j ∈ 1+, zi,j , ui,j ∈ 1<ω, ai,j ∈ Σ, |ui+1,j | = |zi,j |
and we can find a sequence (qi,j)i≤nj of states of Q such that q0,j = q0 is the initial state of A, and
integers li,j , l′i,j∈{−1, 0, 1} such that, for each i<nj ,

ai,j :
(
qi,j ,M2(|vi,j |),M3(|vi,j |)

)
7→A

(
qi+1,j ,M2(|vi,j |)+li,j ,M3(|vi,j |)+l′i,j

)
and |wi,j | = |vi,j |.2li,j .3l

′
i,j . Moreover, the state qnj ,j is a final state, M2(|wnj−1,j |) = 0, and

M3(|wnj−1,j |)=0.

In particular, |v0,0|=1=20.30. We will prove, by induction on i<n0, that

|wi,0|=2M2(|wi,0|).3M3(|wi,0|),

and |wi,0|= |vi+1,0| if i<n0−1. Moreover, setting ci0 =M2(|vi,0|) and ci1 =M3(|vi,0|), we will prove
that, for each i<n0−1, ai,0 : (qi,0, c

i
0, c

i
1) 7→A (qi+1,0, c

i+1
0 , ci+1

1).

13

We have already seen that |v0,0| = 1 = 20.30. By hypothesis we can find a state q1,0 ∈ Q and
integers l0,0, l′0,0∈{−1, 0, 1} such that

a0,0 :
(
q0,M2(|v0,0|),M3(|v0,0|)

)
7→A

(
q1,0,M2(|v0,0|)+l0,0,M3(|v0,0|)+l′0,0

)
,

i.e., a0,0 : (q0, 0, 0) 7→A (q1,0, l0,0, l
′
0,0). Then |w0,0| = |v0,0|.2l0,0 .3l

′
0,0 = 2l0,0 .3l

′
0,0 . Now note that

|w0,0.z0,0|= |u1,0.v1,0|= 0N.6
l

and |u1,0|= |z0,0|. Thus |v1,0|= |w0,0|= 2l0,0 .3l
′
0,0 . Setting c0

0 := 0,
c0

1 :=0, c1
0 := l0,0 :=M2(|v1,0|) and c1

1 := l′0,0 :=M3(|v1,0|), it holds that

a0,0 : (q0, c
0
0, c

0
1) 7→A (q1,0, c

1
0, c

1
1).

Assume now that, for each i < n0−1, it holds that |wi,0| = |vi+1,0| = 2M2(|wi,0|).3M3(|wi,0|) and
ai,0 : (qi,0, c

i
0, c

i
1) 7→A (qi+1,0, c

i+1
0 , ci+1

1). We know that we can find a state qn0,0 ∈Q and integers
ln0−1,0, l

′
n0−1,0∈{−1, 0, 1} such that

an0−1,0 :
(
qn0−1,0,M2(|vn0−1,0|),M3(|vn0−1,0|)

)
7→A(

qn0,0,M2(|vn0−1,0|)+ln0−1,0,M3(|vn0−1,0|)+l′n0−1,0

)
,

i.e., an0−1,0 : (qn0−1,0, c
n0−1
0 , cn0−1

1) 7→A (qn0 , c
n0−1
0 +ln0−1,0, c

n0−1
1 +l′n0−1,0).

Then |wn0−1,0|= |vn0−1,0|.2ln0−1,0 .3l
′
n0−1,0 =2c

n0−1
0 +ln0−1,0 .3c

n0−1
1 +l′n0−1,0 =1 since moreover, by

hypothesis, M2(|wn0−1,0|)=M3(|wn0−1,0|)=0.

Finally we inductively proved the announced claim, and this shows that a0,0a1,0 . . . an0−1,0 is
accepted by A, by final states and empty stack. On the other hand, |wn0−1,0.zn0−1,0|=N.6l+n0−1,
|wn0−1,0|=1 and |un0 |= |zn0−1,0|, thus |un0 |=N.6l+n0−1−1. As above, we can prove, by induction
on j, that, for every j∈ω, the finite word a0,ja1,j . . . anj−1,j is in L(A), and thus σ is in L(A)∞.

Conversely it is easy to see that if σ∈L(A)∞, then gN,l(σ)∈L∞. �

We now come back to the proof of Proposition 17. By Claim 1, L is accepted by a one-counter
automaton C, and there are at most 5 consecutive λ-transitions during a run of C on a finite word w.

The alphabet Y will be Σ ∪ {0,1,2}. We first define the language B′ which will be of the
form µ ∪ L, where µ is a finitary language over Y . We will moreover ensure that µ is accepted by a
one-counter automaton, (for which there are also at most 5 consecutive λ-transitions during a run on a
finite word) by finite states and empty stack, so that it will also be the case ofB′, by non-determinism.
The set L∞ will look likeA∞ on some compact setK1,0. We actually define, for any natural numbers
N, l such that 6 does not divide N ≥ 1, some compact sets KN,l. On the KN,l’s, we will be able to
control the complexity of B′∞, which will essentially be that of L∞, and L∞ will be complex. Out
of the KN,l’s, we do not know the complexity of L∞. This is the reason why we introduce µ. The set
µ∞ will be simple, will hide the possible complexity of L∞ out of the union of the KN,l’s, and will
not hide the complexity of L∞ on the KN,l’s. We set KN,l :=gN,l[Σ

ω]. As gN,l is a homeomorphism
onto its range, KN,l is compact. By Claim 2, g−1

N,l(L
∞ ∩KN,l)=A∞ for each l∈ω.

We are ready to define µ. We set

µ :={ w∈Y <ω | ∃n≥2 ∃(ai)i<n∈Σn ∃(Pi)i<n∈(ω\{0})n ∃(Qi)i<n∈ωn

w=0 (_i<n ai 1 0Pi 2 0Qi) ∧ (Pn−2 6=Qn−2 ∨ Pn−1 6=6.Pn−2) }.

14

Note that all the words in B′ have the same form 0 (_i<n ai 1 0Pi 2 0Qi). Note also that any
finite concatenation of words of this form still has this form. We set

S :={ 0 (_i∈ω ai 1 0Pi 2 0Qi) | (ai)i∈ω∈Σω ∧ (Pi)i∈ω∈(ω\{0})ω ∧ (Qi)i∈ω∈ωω }.

We now show that µ∞ is “simple”. Note that

µ∞={ γ∈Y ω | ∀l∈ω ∃t∈µl ∧ _
i<l t(i)⊆γ }.

This shows that µ∞∈Π0
2(Y ω).

We first prove the result for B′ and the class Σ0
n. Note that B′∞ ∩K1,0 =L∞ ∩K1,0 is not a Π0

n

subset of K1,0 since g−1
1,0(L∞ ∩K1,0)=A∞, and A∞ is Σ0

n-complete and hence not in the class Π0
n,

so that B′∞ is not a Π0
n subset of Y ω. By 22.10 in [Kec95], it remains to see that B′∞ is a Σ0

n-subset
of Y ω.

We define F : S \µ∞→ ({λ} ∪ µ)×P as follows. Let γ :=0 (_i∈ω ai 1 0Pi 2 0Qi)∈S\µ∞,
and (N, l)∈P with P0 =N.6l. If γ∈KN,l, then we put F (γ) := (λ,N, l). If γ /∈KN,l, then there is
i0 ∈ω maximal for which Pi0 6=Qi0 or Pi0+1 6= 6.Pi0 . Let (N ′, l′)∈P with Pi0+1 =N ′.6l

′
. We put

F (γ) :=
(
0 (_i≤i0 ai 1 0Pi 2 0Qi) ai0+1 1 0Pi0+1 2 0Qi0+1−1, N ′, l′+1

)
. We then setR :=F [S\µ∞].

Assume that γ ∈ B′∞ \µ∞. Note that γ ∈ S \µ∞, so that (t,N, l) := F (γ) is defined, t ⊆ γ
and γ− t ∈ KN,l. We define, for (t,N, l) ∈ R, Pt,N,l := {γ ∈ Y ω | t ⊆ γ ∧ γ− t ∈ KN,l} and
At,N,l := {γ ∈ Pt,N,l | γ−t ∈ L∞ ∩ KN,l}. Note that Pt,N,l is compact, contained in S \µ∞, and
F (γ)=(t,N, l) if γ∈Pt,N,l. This shows that the Pt,N,l’s are pairwise disjoint and disjoint from µ∞.
Note also that At,N,l is Σ0

n. The previous discussion shows that B′∞ = µ∞ ∪
⋃

(t,N,l)∈R At,N,l, so
that B′∞ is also in Σ0

n.

For the class Π0
n, we note that B′∞=µ∞\(

⋃
(t,N,l)∈R Pt,N,l)∪

⋃
(t,N,l)∈R At,N,l ∩ Pt,N,l. Thus

¬B′∞=¬(µ∞ ∪
⋃

(t,N,l)∈R Pt,N,l) ∪
⋃

(t,N,l)∈R Pt,N,l\At,N,l. As n≥ 3, the first part is in Σ0
n, as

well as the second, so that B′∞ is in Π0
n.

To finish the proof, we first notice that it is easy to see that the finitary language µ, as the finitary
language L, is accepted by a non-deterministic one-counter automaton, for which there are also at
most 5 consecutive λ-transitions during a run on a finite word, by final states and empty counter. De-
tails are here left to the reader. Then the language B′=L ∪ µ is also accepted by a non-deterministic
one-counter automaton, by final states and empty counter, for which there are also at most 5 consec-
utive λ-transitions during a run on a finite word. In order to get the language B from the language
B′ we use a simple morphism which is a very particular case of a substitution. If the alphabet of B′

is Y := {a1, a2, . . . , ak} for some integer k≥ 1, then we add a letter c to Y , set Z := Y ∪ {c}, and
consider the morphism h :Y →Z<ω defined by h(ai)=aic

6 for each integer i∈ [1, k]. This morphism
is naturally extended to words and then to languages. Then we set B=h(B′). A word of B is simply
obtained from a word w of B′ by adding 6 letters c after each letter of w. It is then easy to see that the
language B is accepted by a non-deterministic real-time one-counter automatonA by final states and
empty counter. This automaton is simply obtained from a non-deterministic one-counter automaton
B, for which there are also at most 5 consecutive λ-transitions during a run on a finite word, accepting
B′ by final states and empty counter. The simple idea is that the λ-transitions of B now occur during
the reading by A of the letters c in a word of B.

15

Moreover it is easy to see that if B′∞ is Σ0
n-complete, (respectively, Π0

n-complete), for some
natural number n ≥ 3, then B∞ is also Σ0

n-complete, (respectively, Π0
n-complete).

Finally it is easy to use the morphism f : Z→{0,1}<ω defined by f(aj) = 0j1 for every j in
{1, . . . , k} and f(c)=0k+11. Then the language f(B)⊆{0,1}<ω is accepted by a non-deterministic
real-time one-counter automaton by final states and empty counter, and it is easy to see that if B∞

is Σ0
n-complete, (respectively, Π0

n-complete), for some natural number n ≥ 3, then f(B)∞ is also
Σ0
n-complete, (respectively, Π0

n-complete). �

We now finish the proof of the main result of this section.

Proof of Theorem 1.(a).

Theorem 15 and the discussion after it provide, for n= 1, 2, a regular finitary language Pn such
that P∞n is Π0

n-complete. So we are done if n≤2.

This discussion also provides a finite alphabet ΣP3 and a finitary language P3⊆Σ<ω
P3

, accepted by
a real-time one-counter automaton, by final states and empty stack, such that P∞3 is Π0

3-complete. By
an argument similar to the one used in the last paragraph of the proof of Proposition 17, it is possible
to get ΣP3 = {0,1} with the same property.

By Proposition 16, if h : ΣP3 → 2(ΣP3∪{�})
<ω

is the substitution defined by a 7→ L3a, then the
language h(P3) is in OCL(2), and h(P3) is accepted by a real-time two-iterated counter automaton
accepting words by final states and empty stack. The proof of Theorem 15 shows that h(P3)∞ is Π0

4-
complete. Proposition 17 provides a finite alphabet ΣP4 = {0,1} and a finitary language P4⊆Σ<ω

P4
,

accepted by a real-time one-counter automaton, by final states and empty stack, such that P∞4 is
Π0

4-complete. It remains to repeat this argument with n≥4 instead of 3. �

We obtained an inductive construction of languages Pn accepted by one counter automata such
that P∞n is Π0

n-complete. We can argue slightly differently, as follows. First we can show that
Proposition 17 is valid if we replace in the hypothesis “a real-time two-iterated counter automatonA”
by “a real-time k-iterated counter automaton A, for some integer k ≥ 2”; the proof of this extension
of Proposition 17 is very similar to the proof of Proposition 17, the idea being that we have in this
case to code the content of k counters, but the ideas and the constructions of the proof are very similar,
details are here left to the reader. Then Theorem 1.(a) now follows from Theorem 15 and from this
extension of Proposition 17. Notice that we only gave a detailed proof of Proposition 17 in the case
of k = 2 because it is easier to exposit and this case contains all the fundamental ideas of the proof
of the extended case of an integer k ≥ 2.

6 Σ0
n-complete ω-powers

We want to find an alphabet Γ and a context free languageA⊆Γ<ω such thatA∞ is Σ0
n-complete.

Notation. We will consider the bijection P : ω → ω2 obtained by taking the diagonals with con-
stant sum (0, 0), then (1, 0), (0, 1), then (0, 2), (1, 1), (2, 0), then (3, 0), (2, 1), (1, 2), (0, 3), and so
on alternatively down and up in the second coordinate. Formally, we defineM :ω→ω by

M(n) :=max{q∈ω | q(q + 1)

2
≤n}.

16

We will consider the bijection < ., . >:ω2→ ω defined by

< N, p >:=

(N+p)(N+p+1)

2 +N if N+p is even,

(N+p)(N+p+1)
2 +p if N+p is odd.

Its inverse bijection P :ω→ ω2 is given by

P(q) :=

(
q−M(q)(M(q)+1)

2 ,M(q)−q+M(q)(M(q)+1)
2

)
ifM(q) is even,

(
M(q)−q+M(q)(M(q)+1)

2 , q−M(q)(M(q)+1)
2

)
ifM(q) is odd.

If α∈2ω and M ∈ω, then we define the M ’th vertical (α)M ∈2ω of α by setting

(α)M (p) :=α(< M, p >)

if p∈ω. We also define the odd part (α)1∈2ω of α by setting (α)1(q) :=α(2q+1) if q∈ω.

Example. By 23.A in [Kec95], the set S3 := { x ∈ 2ω
2 | ∃m ∈ ω ∃∞n ∈ ω x(m,n) = 0 } of

double binary sequences having a vertical with infinitely many zeros is Σ0
3-complete. Note that the

set S :={ α∈2ω | ∃N ∈ω ∃∞q∈ω
(
(α)2N

)1
(q) = 1 } is also Σ0

3-complete. Indeed, its definition
shows that it is Σ0

3, and the map c :2ω
2→2ω defined by

c(x)(q) :=

0 if P(q)(0) is odd or P(q)(1) is even,

1−x
(P(q)(0)

2 , P(q)(1)−1
2

)
if P(q)(0) is even and P(q)(1) is odd,

is continuous and satisfies S3 =c−1(S).

Note that we also have S= { α∈ 2ω | ∃N ∈ω
(
(α)2N

)1∈ (1<ω1)∞ }. More generally we will
consider in the sequel the ω-language S :={ α∈2ω | ∃N ∈ω

(
(α)2N

)1∈L∞ }, where L is a finitary
language over the alphabet 2 := {0,1}, such that the ω-power L∞ is in the class ∆0

ξ+1\Σ0
ξ , where

ξ≥2 is a countable ordinal.

We will be able to take Γ=4:={0,1,2,3}. The language A will be made of two pieces: we will
have A :=µ ∪ π. Informally, the set π∞ will look like S on some nice compact set K0. We actually
define, for any natural number l, some compact set Kl. On the Kl’s, we will be able to control the
complexity of A∞, which will essentially be that of π∞, and π∞ will be non-Π0

ξ+1. Out of the Kl’s,
we do not know the complexity of π∞. This is the reason why we introduce µ. The set µ∞ will be
simple, will hide the possible complexity of π∞ out of the union of the Kl’s, and will not hide the
complexity of π∞ on the Kl’s.

Notation. We will sometimes view 2 or 3 as alphabets, and sometimes view them as letters. To make
this distinction clear, we will use the boldface notation 0, 1, 2, 3 for the letters, and the lightface
notation 2, 3 otherwise. So we have 2={0,1}, 3={0,1,2}, and 4={0,1,2,3}. We set

K0 :={ (_j∈ω 2 s2j 3 s2j+1)∈4ω | ∀m∈ω sm∈2m }.

17

The idea is to view an element α of the Cantor space 2ω as the concatenation of the diagonal
finite binary sequences sm, with sm∈2m, using the bijection P . InK0, we introduce some separators
of the sm’s, 2 and 3 alternatively, so that α is now seen as an element of 4ω. Similarly, we set
Kl+1 := { (_j∈ω 3 s2j+1 2 s2j+2)∈ 4ω | ∀m≥ 1 sm ∈ 22l+2+m }, for each l ∈ω, erasing the first
2l+3 diagonal finite binary sequences appearing in the elements of K0. As the map ϕl :Kl→ 2ω,
defined by ϕl(γ) :=_

j∈ω s
(−1)ε

2j+ε s
(−1)ε+1

2j+ε+1 , where ε∈2 is 0 exactly when l= 0, is a homeomorphism,
Kl is compact.

We define f :2→24<ω by

f(a) :={ a t 3 u v 2 w∈4<ω | t, u, v, w∈2<ω ∧ |t|= |u| is even ∧ |v|= |w|≥3 is odd }.

The language π will be of the form π0 ∪π1, the latter language π1 depending on some fixed language
L⊆2<ω. We first set

π0 :={ (_j≤N 2 s2j 3 s2j+1) 2 a∈4<ω | N ∈ω ∧ (∀q≤2N+1 sq∈2<ω) ∧ s0 =λ ∧ a∈2 }.

Fix then L⊆2<ω. We set π1 :=f(L), extending f as in Definition 3. We then set π :=π0 ∪ π1.

In order to simplify further notation, we set, for N ∈ ω and (km)m∈ω ∈ ωω fixed and p, q ∈ ω,
Mq :=2N+2q+2 and Sqp :=Σp≤m≤q (km+1).

The next lemma expresses the fact that π∞ looks like S on K0.

Lemma 18 ϕ0[π∞ ∩K0]={ α∈2ω | ∃N ∈ω
(
(α)2N

)1∈L∞ }.
Proof. Let γ∈π∞ ∩K0, and α :=ϕ0(γ). We can write γ=_

m∈ω wm=_
j∈ω 2 s2j 3 s2j+1, where

wm∈π\{λ} and sk∈2k. As the first coordinate of γ is 2,w0 is of the form (_j≤N 2 s2j 3 s2j+1) 2 a,
and a=s2N+2(0), which exists since |s2N+2|=2N+2.

As the first coordinate of γ not in 2 after w0 is 3, w1 is not in π0. Thus w1 ∈ π1 = f(L)
is of the form _

j≤k1 a
1
j t

1
j 3 u1

jv
1
j 2 w1

j . Inductively on j ≤ k1,we see that |t1j | = 2N = |u1
j |,

u1
jv

1
j = sMj+1, |v1

j |=Mj+1−2N = |w1
j |, and w1

j ⊆ sMj+2. Indeed, for j = 0, this comes from the
facts that a a1

0 t
1
0 = sM0 , |t10| = |u1

0| and |v1
0| = |w1

0|. If j < k1, then this comes from the facts that
w1
j a

1
j+1 t

1
j+1 =sMj+2, |t1j+1|= |u1

j+1| and |v1
j+1|= |w1

j+1|.

As the first coordinate of γ not in 2 after w1 is 3, w2 is not in π0. Thus w2 is of the form
_
j≤k2 a

2
j t

2
j 3 u2

j v
2
j 2 w2

j . Inductively on j≤ k2, we see that |t2j |= 2N = |u2
j |, u2

jv
2
j = sMk1+1+j+1,

|v2
j |=Mk1+1+j+1−2N = |w2

j |, and w2
j ⊆ sMk1+1+j+2. Indeed, for j= 0, this comes from the facts

that w1
k1
a2

0 t
2
0 = sMk1+1

, |t20|= |u2
0| and |v2

0|= |w2
0|. If j < k2, then this comes from the facts that

w2
j a

2
j+1 t

2
j+1 =sMk1+1+j+2, |t2j+1|= |u2

j+1| and |v2
j+1|= |w2

j+1|.

If we continue like this, we find (km)m∈ω such that

wm+1 =_
j≤km+1 a

m+1
j tm+1

j 3 um+1
j vm+1

j 2 wm+1
j ,

|tm+1
j |= 2N , |um+1

j |= 2N , |vm+1
j |= 2(j+1 +Sm1)+1 = |wm+1

j |, um+1
j vm+1

j = s(
Mj+1+Sm1

)
−1

for

each m, wm+1
j am+1

j+1 tm+1
j+1 =sMj+1+Sm1

for each j<km+1, and wm+1
km+1

am+2
0 tm+2

0 =sM
Sm+1
1

.

18

Moreover, for each m, _j≤km+1 a
m+1
j ∈L. Note that

am+1
j =sMj+Sm1

(Mj+Sm1
−2N−1)=s−1

Mj+Sm1

(2N)

and α(< 2N, 2q+η >)=s
(−1)η

2N+2q+η+1(2N) if q∈ω and η∈2. Thus
(
(α)2N

)1∈L∞, as desired.

Conversely, assume that
(
(α)2N

)1∈L∞ for some N ∈ω. We set s0 :=λ and, for j=2q+η∈ω,

sj+1 :=(< α(
j(j + 1)

2
), · · · , α(

(j + 1)(j + 2)

2
−1) >)(−1)η+1

,

so that γ :=_
j∈ω 2 s2j 3 s2j+1 satisfies γ∈K0 and ϕ0(γ)=α. We set

w0 :=(_j≤N 2 s2j 3 s2j+1) 2 s2N+2(0),

so that w0∈π0 and w0⊆γ. Let (vm)m∈ω∈Lω with
(
(α)2N

)1
=_

m∈ω vm.

We set wm+1 :=_
Σi<m|vi|≤q<Σi≤m|vi|

((
sMq−sMq |(2q+1)

)
3 sMq+1 2 sMq+2|(2q+3)

)
. Note

that wm+1∈f(vm)⊆f(L)=π1 since, with j< |vm| and q :=Σi<m |vi|+j,

sMq(2q+1)=s−1
Mq

(2N)=α(< 2N, 2q+1 >)=
(
(α)2N

)1
(q)=vm(j)

and γ=_
m∈ω wm∈π∞ ∩K0, so that α∈ϕ0[π∞ ∩K0] as desired. �

Notation. We are ready to define µ. The idea is that an infinite sequence containing a word in µ
cannot be in K0. We set µ :=

⋃
i≤2 µi, where µ0 :={ w∈4<ω | ∃v∈4<ω\{λ} v 2 3⊆w },

µ1 :={ w∈4<ω | ∃v∈4<ω ∃v′, v′′∈2<ω v 3 v′ 2 v′′ 3⊆w ∧ |v′′| 6= |v′|+1 },

and µ2 :={ w∈4<ω | ∃v∈4<ω ∃v′, v′′∈2<ω v 2 v′ 3 v′′ 2⊆w ∧ |v′′| 6= |v′|+1 }. We now show
that µ∞ is “simple”. Note that µ∞= { γ ∈ 4ω | ∀l∈ω ∃t∈µ<ω |t| ≥ l ∧ _

i<|t| t(i)⊆ γ }. This
shows that µ∞∈Π0

2(4ω).

Theorem 19 Let ξ≥2 be a countable ordinal. If L∞∈∆0
ξ+1\Σ0

ξ , then A∞ is Σ0
ξ+1-complete.

Proof. It is straightforward to prove that if T ⊆ 2ω is ∆0
ξ+1\Σ0

ξ , then {α∈ 2ω | ∃N ∈ω (α)N ∈T}
is Σ0

ξ+1-complete. This, 22.10 in [Kec95] and Lemma 18 imply that A∞ ∩K0 = π∞ ∩K0 is not a
Π0
ξ+1 subset of K0. Thus A∞ is not a Π0

ξ+1 subset of 4ω. By 22.10 in [Kec95] again, it remains to
see that A∞ is a Σ0

ξ+1 subset of 4ω. We set, for i,N ∈ω and v∈22N+1,

Pv,i :=
{
α∈2ω | 0

(Mi−1)Mi
2

+2i+1v⊆α ∧
(
(α)2N

)1−(((α)2N

)1|i)∈L∞ },

Kv,i :={ γ∈4ω | v⊆γ ∧ γ−v∈KN+i+1 }.

In other words, Pv,i is the set of elements of the Cantor space starting with Mi−1 diagonal finite
binary sequences with only zeros, whose next diagonal starts with 2i+1 zeros, and such that the odd
part of the (2N)th vertical, minus its initial segment of length i, is in L∞.

19

The next claim, in the style of Lemma 18, essentially says that π∞ looks like Pv,i on the compact
set Kv,i.

Claim 1. Let i,N ∈ω and v∈22N+1. Then

π∞ ∩Kv,i=
{
γ∈4ω | δ :=(_j≤N+i 2 02j 3 02j+1) 2 02i+1γ∈K0 ∧ ϕ0(δ)∈Pv,i

}
.

Indeed, let γ∈π∞ ∩Kv,i, and δ :=(_j≤N+i 2 02j 3 02j+1) 2 02i+1γ. Note that δ∈K0, so that

α :=ϕ0(δ) is defined and starts with 0
(Mi−1)Mi

2
+2i+1v. We can write

γ=v _j∈ω 3 sMi+j+1 2 sMi+j+2 =_
m∈ω wm,

where sk∈2k and wm∈π. As the first coordinate of γ not in 2 is 3, w0 is of the form

_
j≤k0 a

0
j t

0
j 3 u0

j v
0
j 2 w0

j .

Inductively on j ≤ k0,we see that |t0j |= 2N = |u0
j |, u0

jv
0
j = sMi+j+1, |v0

j |=Mi+j+1−2N = |w0
j |,

and w0
j ⊆ sMi+j+2. Indeed, for j = 0, this comes from the facts that a0

0 t
0
0 = v, |t00| = |u0

0| and
|v0

0|= |w0
0|. If j<k0, then this comes from the facts that w0

j a
0
j+1 t

0
j+1 =sMi+j+2, |t0j+1|= |u0

j+1| and
|v0
j+1|= |w0

j+1|.

We then argue as in the proof of Lemma 18 to get (km)m∈ω with

wm=_
j≤km amj tmj 3 umj vmj 2 wmj ,

|tmj |=2N , |umj |=2N , |vmj |=2(i+j+1+Sm−1
0)+1= |wmj |, umj vmj =s(

M
i+j+1+Sm−1

0

)
−1

for eachm,

wmj amj+1 t
m
j+1 =sM

i+j+1+Sm−1
0

for each j <km, and wmkm am+1
0 tm+1

0 =sMi+Sm0
. Moreover, for each

m, _j≤km amj ∈L. Note that amj =sM
i+j+Sm−1

0

(Mi+j+Sm−1
0
−2N−1)=s−1

M
i+j+Sm−1

0

(2N). Thus

(
(α)2N

)1−(((α)2N

)1|i) =
((

(α)2N

)1
(i),
(
(α)2N

)1
(i+1), · · ·

)
=
(
α(< 2N, 2i+1 >), α(< 2N, 2i+3 >), · · ·

)
=(s−1

Mi
(2N), s−1

Mi+2(2N), · · ·)
=(a0

0, a
0
1, · · · , a0

k0
, a1

0, · · · , a1
k1
, · · ·)

is in L∞, as desired.

Conversely, assume that γ ∈4ω, δ := (_j≤N+i 2 02j 3 02j+1) 2 02i+1γ ∈K0, and α :=ϕ0(δ) is
in Pv,i. Then γ∈Kv,i. We set, for j=2q+η≥Mi,

sj+1 :=(< α(
j(j + 1)

2
), · · · , α(

(j + 1)(j + 2)

2
−1) >)(−1)η+1

,

so that γ=v _j∈ω 3 sMi+j+1 2 sMi+j+2. Let (vm)m∈ω∈Lω with(
(α)2N

)1−(((α)2N

)1|i)=_
m∈ω vm.

20

We set

w0 :=v
(
3 sMi+1 2 sMi+2|(2i+3)

)(
_
i<q<i+|v0|

((
sMq−sMq |(2q+1)

)
3 sMq+1 2 sMq+2|(2q+3)

))
,

so that w0∈π1 and w0⊆γ. We then set

wm+1 :=_
i+Σk≤m|vk|≤q<i+Σk≤m+1|vk|

((
sMq−sMq |(2q+1)

)
3 sMq+1 2 sMq+2|(2q+3)

)
.

Note that wm+1∈f(vm+1)⊆f(L)=π1 since, with j< |vm+1| and q := i+Σk≤m |vk|+j,

sMq(2q+1)=s−1
Mq

(2N)=α(< 2N, 2q+1 >)=
(
(α)2N

)1
(q)=vm+1(j)

and γ=_
m∈ω wm∈π∞, as desired. �

The next claim provides a characterization of A∞ giving an upper bound on its topological com-
plexity.

Claim 2. Let γ∈4ω. Then

γ∈A∞ ⇔ γ∈µ∞ ∨ γ∈π∞∩K0∨ ∃t∈{λ}∪µ (t⊆γ ∧ ∃i,N ∈ω ∃v∈22N+1 γ−t∈π∞∩Kv,i).

Indeed, the right to left implication is clear. So assume that γ ∈A∞\µ∞. Note that we can find
(vj)j∈ω ∈ (2<ω)ω, (aj)j∈ω ∈ {2,3}ω and (wm)m∈ω ∈ Aω with γ = _

j∈ω vj aj = _
m∈ω wm. As

γ /∈ µ∞, there is m0 ∈ ω such that wm is of the form _
j≤km amj tmj 3 umj vmj 2 wmj if m ≥ m0.

Moreover, we may assume that |tmj |= |t
m0
0 | is even and |wmj |= |w

m0
0 |+2

(
Sm−1
m0

+j
)
≥ 3 is odd if

m≥m0, and that m0 is minimal with these properties.

Case 1. m0 =0.

We set t :=λ, i :=
|w0

0 |−3
2 , N :=

|t00|
2 , v := a0

0 t
0
0 and δ :=_

m≥m0 wm, so that δ ∈π∞ ∩Kv,i and
γ=δ is as desired.

Case 2. ∃m<m0 such that wm∈µ.

We set t := _
m<m0 wm, i :=

|wm0
0 |−3

2 , N :=
|tm0
0 |
2 , v := am0

0 tm0
0 and δ := _

m≥m0 wm, so that
t∈µ, t⊆γ, δ∈π∞ ∩Kv,i and γ−t=δ is as desired.

Case 3. ∃m<m0 such that wm is of the form (_j≤Nm 2 s2j 3 s2j+1) 2 a.

If m≥1, then t :=_
m<m0 wm is in µ, and we argue as in Case 2. So we may assume that m=0.

If γ∈K0, then γ∈π∞. So we may assume that γ /∈K0, which gives j0∈ω such that |vj0+1| 6= |vj0 |+1.
If J > j0, then _

j≤J vj aj ∈µ. We choose J big enough to ensure that _m<m0 wm⊆_
j≤J vj aj .

We then choose m1≥m0 such that _j≤J vj aj⊆_
m<m1 wm. We set t :=_

m<m1 wm, i := |w
m1
0 |−3

2 ,

N :=
|tm1
0 |
2 , v :=am1

0 tm1
0 and δ :=_

m≥m1 wm, so that t∈µ, t⊆γ, δ∈π∞ ∩Kv,i and γ−t= δ is as
desired.

21

Case 4. m0≥1 and wm is of the form _
j≤km amj tmj 3 umj vmj 2 wmj if m<m0.

The minimality of m0 gives j≤km0 such that |tm0−1
0 | 6= |tm0

j | or

|wm0
j | 6= |w

m0−1
0 |+2(km0−1+1+j).

We set t :=_
m≤m0 wm, i := |w

m0+1
0 |−3

2 , N :=
|tm0+1
0 |

2 , v :=am0+1
0 tm0+1

0 and δ :=_
m>m0 wm, so

that t∈µ, t⊆γ, δ∈π∞ ∩Kv,i and γ−t=δ is as desired. �
Note that Pv,i is a ∆0

ξ+1 subset of 2ω. By Claim 1, π∞ ∩Kv,i is a ∆0
ξ+1 subset of 4ω. By Claim

2, A∞ is a Σ0
ξ+1 subset of 4ω. �

It remains to see thatA is accepted by a one-counter automaton. We first check that µ0, µ1, µ2, π0,
π1 are accepted by a one-counter automaton. The language µ0 is not only accepted by a one-counter
automaton, it is in fact regular.

Lemma 20 The language µ0 :={ w∈4<ω | ∃v∈4<ω\{λ} v 2 3⊆w } is regular.

Proof. It is easy to construct a finite automaton accepting µ0. �

Lemma 21 The language

π0 :={ (_j≤N 2 s2j 3 s2j+1) 2 a∈4<ω | N ∈ω ∧ (∀q≤2N+1 sq∈2<ω) ∧ s0 =λ ∧ a∈2 }

is regular.

Proof. It is again easy to construct a finite automaton accepting the language π0. The details are here
left to the reader. �

Lemma 22 The languages

µ1 :={ w∈4<ω | ∃v∈4<ω ∃v′, v′′∈2<ω v 3 v′ 2 v′′ 3⊆w ∧ |v′′| 6= |v′|+1 },

µ2 :={ w∈4<ω | ∃v∈4<ω ∃v′, v′′∈2<ω v 2 v′ 3 v′′ 2⊆w ∧ |v′′| 6= |v′|+1 }

are accepted by real-time one-counter automata accepting words by final states and empty stack.

Proof. We indicate informally the idea of the construction of a real-time one-counter automaton A
accepting the language µ1 by final states and empty stack. The automaton can use its finite control
to check that the input word has an initial segment of the form 3 v′ 2 v′′ 3 for some finite words
v′, v′′ ∈ 2<ω. Moreover the automaton A can use its counter and the non-determinism to check that
|v′′| 6= |v′|+1.

If the automaton guesses that |v′′|> |v′|+1, then it increases its counter by 1 for each letter of
v′ and for the next letter 2 which is read; next, while reading the segment v′′, it decreases its counter
by 1 for each letter of v′′ which is read, checking that the counter value becomes zero before ending
the reading of v′′. On the other hand, if the automaton guesses that |v′′|< |v′|+1, then the automaton
A begins to read a non null number k of letters of v′ without increasing the counter, guessing that
|v′′|= |v′|+1−k; then it decreases the counter by 1 for each letter of v′ and for the next letter 2 which
is read; and the automaton checks that |v′′|= |v′|+1−k by decreasing the counter by 1 for each letter
of v′′ which is read.

22

Similar ideas are used in the case of the language µ2. The details are here left to the reader. �

Lemma 23 Let L be a finitary language over 2 accepted by a real-time one-counter automaton, by
final states and empty stack. Then the language

π1 :={ (_j≤k tj 3 uj vj 2 wj)∈4<ω | k∈ω ∧ |tj |= |uj |+1 is odd ∧ |vj |= |wj | ≥3 is odd ∧
_
j≤k tj(0)∈L }

is in OCL(2), and π1 is accepted by a real-time two-iterated counter automaton, by final states and
empty stack. If moreover L is rational, hence accepted by a real-time finite automaton (without any
counter) by final states, then π1 is in OCL(1) and is accepted by a real-time one counter automaton,
by final states and empty stack.

Proof. Let L be a finitary language over 2 accepted by a real-time one-counter automaton A, by
final states and empty stack. We assume that the stack alphabet of A is equal to Γ := {Z0, z0},
and we informally explain the behaviour of a real-time two-iterated counter automaton B which
will accept the language π1 by final states and empty stack. The stack alphabet of B is equal to
Γ′ :={Z0, z0, z1} and the content of its stack is always of the form (z1)n1(z0)n0Z0 for some natural
numbers n0, n1. The automaton B can use its finite control to check that the input word is of the form
(_j≤k tj 3 uj vj 2 wj)∈4<ω, for some tj , uj , vj , wj∈2<ω.

We now explain the behaviour of the automaton B using its stack when reading a word of the form
_
j≤k tj 3 uj vj 2 wj . At the beginning the automaton reads t0(0) and it simulates the automaton
A with stack alphabet Γ. Then when reading the remaining part of t0 it uses the stack letter z1 and
pushes a letter z1 for each letter of t0 read. When reading u0 the automaton B pops a letter z1 for each
letter read until all letters z1 have been popped from the stack. Again when reading v0 the automaton
pushes a letter z1 for each letter of v0 read and it pops a letter z1 for each letter of w0 read until all
letters z1 have been popped from the stack. The next letter to be read is t1(0) and the automaton B
simulates again the automaton A while reading this letter. Moreover it uses the “second counter” at
the top of its stack with letters z1 to check that |t1|= |u1|+1∧ |v1|= |w1|. The reading continues like
that and the finite control can be used to check that |tj | is odd and |wj | ≥3 is odd for every j. Finally
after having read the letter tk(0) the automaton B has simulated the automaton A on _

j≤k tj(0)and
it can check by final states and empty stack that _j≤k tj(0)∈L; the automaton has only now to check
the form of tk 3 uk vk 2 wk, ending the reading in an accepting state and with an empty stack. This
finishes the proof in the case of a language L accepted by a real-time one-counter automaton A, by
final states and empty stack.

The proof is very similar and just simpler in the case of a language L which is rational and
accepted by a real-time finite automaton by final states. �

Proof of Theorem 1.(b). The proof of Theorem 1.2 in [FL09] shows that if

S1 ={w∈2<ω | 0⊆w ∨ ∃k∈ω 10k1⊆w},

then S∞1 is Σ0
1-complete. Note that S1 is regular, and thus accepted by a one-counter automaton.

Theorem 2 in [FL09] provides a finitary language S2 which is accepted by a one-counter automa-
ton and such that S∞2 is Σ0

2-complete. So we are done if n≤2.

23

Note that the language L := {w ∈ 2<ω | ∃j < |w| w(j) = 1}, the set of finite binary sequences
having at least one coordinate equal to 1, is rational and hence is accepted by a real-time finite
automaton, by final states. By Lemma 23, the language π1 associated with L is in OCL(1), and π1 is
accepted by a real-time one counter automaton, by final states and empty stack. By Lemmas 20, 22,
21 and the non-determinism, this is also the case of µ∪π. By Theorem 19, (µ∪π)∞ is Σ0

3-complete
since L∞=P∞∈Π0

2\Σ0
2⊆∆0

3\Σ0
2.

The proof of Theorem 1 (a) provides a finite alphabet Σ and a finitary language P3 ⊆ Σ<ω,
accepted by a real-time one counter automaton, by final states and empty stack, such that P∞3 is
Π0

3-complete. Coding letters of Σ with finite words over 2 if necessary, we may assume that Σ = 2.
By Lemma 23, the language π1 associated with P3 is in OCL(2), and π1 is accepted by a real-time
two-iterated counter automaton, by final states and empty stack. By Lemmas 20, 22, 21 and the
non-determinism, this is also the case of µ ∪ π. By Theorem 19, (µ ∪ π)∞ is Σ0

4-complete since
(P3)∞∈Π0

3\Σ0
3 ⊆∆0

4\Σ0
3. Proposition 17 provides a finite alphabet ΣS4 and a finitary language

S4⊆Σ<ω
S4

, accepted by a real-time one-counter automaton, by final states and empty stack, such that
S∞4 is Σ0

4-complete.

It remains to repeat this argument with n≥4 instead of 3. �

References

[ABB96] J.-M. Autebert, J. Berstel, and L. Boasson. Context free languages and pushdown au-
tomata. In Handbook of formal languages, Vol. 1. Springer-Verlag, 1996.

[CG77] R.S. Cohen and A.Y. Gold. Theory of ω-languages, parts one and two. Journal of Com-
puter and System Science, 15:169–208, 1977.

[DF07] J. Duparc and O. Finkel. An ω-power of a context free language which is Borel above
∆0
ω. In Proceedings of the International Conference Foundations of the Formal Sciences

V : Infinite Games, November 26th to 29th, 2004, Bonn, Germany, volume 11 of College
Publications at King’s College (Studies in Logic), pages 109–122., London, 2007.

[Dup01] J. Duparc. Wadge hierarchy and Veblen hierarchy: Part 1: Borel sets of finite rank. Journal
of Symbolic Logic, 66(1):56–86, 2001.

[Fin01] O. Finkel. Topological properties of omega context free languages. Theoretical Computer
Science, 262(1–2):669–697, 2001.

[Fin03] O. Finkel. Borel hierarchy and omega context free languages. Theoretical Computer
Science, 290(3):1385–1405, 2003.

[Fin04] O. Finkel. An omega-power of a finitary language which is a Borel set of infinite rank.
Fundamenta Informaticae, 62(3–4):333–342, 2004.

[Fin06] O. Finkel. Borel ranks and Wadge degrees of omega context free languages. Mathematical
Structures in Computer Science, 16(5):813–840, 2006.

24

[FL07] O. Finkel and D. Lecomte. There exist some ω-powers of any Borel rank. In Proceedings
of the 16th EACSL Annual International Conference on Computer Science and Logic, CSL
2007, Lausanne, Switzerland, September 11-15, 2007, volume 4646 of Lecture Notes in
Computer Science, pages 115–129. Springer, 2007.

[FL09] O. Finkel and D. Lecomte. Classical and effective descriptive complexities of omega-
powers. Annals of Pure and Applied Logic, 160(2):163–191, 2009. preprint available
from http://fr.arxiv.org/abs/0708.4176.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory, languages,
and computation. Addison-Wesley Publishing Co., Reading, Mass., 2001. Addison-
Wesley Series in Computer Science.

[Kec95] A. S. Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.

[Lec05] D. Lecomte. Omega-powers and descriptive set theory. Journal of Symbolic Logic,
70(4):1210–1232, 2005.

[Mos80] Y. N. Moschovakis. Descriptive set theory. North-Holland Publishing Co., Amsterdam,
1980.

[Niw90] D. Niwinski. A problem on ω-powers. In 1990 Workshop on Logics and Recognizable
Sets, University of Kiel, 1990.

[PP04] D. Perrin and J.-E. Pin. Infinite words, automata, semigroups, logic and games, volume
141 of Pure and Applied Mathematics. Elsevier, 2004.

[Sim92] P. Simonnet. Automates et théorie descriptive. PhD thesis, Université Paris VII, 1992.

[Sta86] L. Staiger. Hierarchies of recursive ω-languages. Elektronische Informationsverarbeitung
und Kybernetik, 22(5-6):219–241, 1986.

[Sta97] L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages 339–387.
Springer, Berlin, 1997.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, volume B, Formal models and semantics, pages 135–191. Elsevier,
1990.

[Wad83] W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis, University
of California, Berkeley, 1983.

25

