Cardiac motion estimation in ultrasound images using spatial and sparse regularizations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Cardiac motion estimation in ultrasound images using spatial and sparse regularizations

Résumé

This paper investigates a new method for cardiac motion estimation in 2D ultrasound images. The motion estimation problem is formulated as an energy minimization with spatial and sparse regularizations. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. The proposed method is evaluated in terms of motion estimation and strain accuracy and compared with state-of-the-art algorithms using a dataset of realistic simulations. These simulation results show that the proposed method provides very promising results for myocardial motion estimation.
Fichier principal
Vignette du fichier
ouzir_22071.pdf (704.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02863743 , version 1 (10-06-2020)

Identifiants

Citer

Nora Leïla Ouzir, Jean-Yves Tourneret, Adrian Basarab. Cardiac motion estimation in ultrasound images using spatial and sparse regularizations. ICIP 2017: IEEE International Conference on Image Processing, Sep 2017, Beijing, China. pp.780-784, ⟨10.1109/ICIP.2017.8296387⟩. ⟨hal-02863743⟩
42 Consultations
60 Téléchargements

Altmetric

Partager

More