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ABSTRACT

This paper investigates a new method for cardiac motion es-

timation in 2D ultrasound images. The motion estimation

problem is formulated as an energy minimization with spa-

tial and sparse regularizations. In addition to a classical spa-

tial smoothness constraint, the proposed method exploits the

sparse properties of the cardiac motion to regularize the so-

lution via an appropriate dictionary learning step. The pro-

posed method is evaluated in terms of motion estimation and

strain accuracy and compared with state-of-the-art algorithms

using a dataset of realistic simulations. These simulation re-

sults show that the proposed method provides very promising

results for myocardial motion estimation.

Index Terms— Ultrasound imaging, dictionary learning,

motion estimation, sparse representations, cardiac imaging.

1. INTRODUCTION

Cardiovascular diseases are one of the main causes of death

around the world. In this context, it is important to improve

the techniques used for the diagnosis of cardiac malfunction.

Ultrasound imaging (UI) is one of the most widely used medi-

cal imaging modalities in cardiology. This modality has many

advantages such as patient confort, low budget requirements

and high temporal resolution. More specifically, automatic

cardiac motion and strain estimation from ultrasound (US)

images have been proved to be efficient tools for the diagnosis

of cardiovascular diseases [1].

Cardiac motion estimation techniques can be classified

into three main categories. First, optical flow (OF) algorithms

are based on differential methods and use the pixel intensity

constancy assumption [2]. The second category includes the

so-called speckle tracking methods, which consist in match-

ing blocks of two consecutive images using a similarity mea-

sure. Finally, in elastic registration, motion is introduced as a

global parametric or discrete deformation map [3]. In order to

overcome the ill-posed nature of motion estimation (charac-

terized by the absence of a unique solution), many estimation

methods introduce additional constraints to regularize the es-

timation problem. These constraints can be based on spatial

or temporal smoothness [4] or use specific parametric motion

models. In particular, B-spline regularization has shown in-

teresting results for cardiac motion estimation [5].

In recent works, sparse representations have been suc-

cessfully considered to regularize a wide variety of problems

[6, 7]. In particular, sparsity can be introduced by expressing

an unknown signal u ∈ R
N as a weighted linear combination

of a few elements of an overcomplete dictionary D ∈ R
n×q .

In the context of 2D signals, e.g., for motion fields or images,

the so-called sparse coding problem is generally formulated

patch-wise as

min
αp

‖αp‖0 subject to ‖Ppu−Dαp‖22 < ε (1)

where ‖.‖0 is the l0 pseudo-norm, which counts the number

of non-zero elements of a vector, Pp ∈ R
n×N is a binary

operator that extracts the pth patch from u, αp ∈ R
q is the

corresponding sparse vector and ε is a constant that needs to

be fixed a priori. Although the problem (1) is NP-hard, it

can be solved using algorithms that provide good solutions

in polynomial time, such as the orthogonal matching pursuit

(OMP) [8] or the least absolute shrinkage and selection oper-

ator (LASSO), which relaxes the l0-minimization problem to

an l1-minimization [9].

The choice of an appropriate dictionary D is important.

The dictionary can be predefined, e.g., based on wavelets,

discrete cosine transforms (DCT) or Fourier decompositions.

However, data-driven dictionaries have been shown to outper-

form the predefined ones in specific applications [10]. Dictio-

nary learning (DL) methods are based on a joint optimization

problem with respect to the dictionary D and the sparse co-

efficient vectors αp. In the context of a global motion field

u ∈ R
N , the DL problem can be formulated as follows

min
D,αp

∑
p
‖Ppu−Dαp‖22 subject to ∀p, ‖αp‖0 ≤ K (2)
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where K is the maximum number of non-zero coefficients of

αp. Typical algorithms designed for solving (2) include the

K-SVD [11] and online DL (ODL) algorithms [10].

At this point, it is interesting to mention that a few recent

attempts to use sparse representations and DL for motion es-

timation have been investigated in the literature. In [12], the

authors included a sparsity prior to an OF estimation prob-

lem and used the wavelet basis for the sparse coding step.

This approach was also investigated in [13] using a learned

motion dictionary. The method proposed in this paper com-

bines a specific similarity measure for UI with spatial smooth-

ness and sparse regularizations. This strategy exploits jointly

the statistical properties of the speckle noise and the smooth

and sparse properties of the cardiac motion. More precisely,

we consider a multiplicative Rayleigh noise model introduced

in [14]1, a spatial regularization based on the l2-norm of the

motion gradient and introduce a regularization exploiting a

DL-based sparse representation of the cardiac motion.

The paper is organized as follows. Section 2 formulates

the cardiac motion estimation problem and introduces the pro-

posed strategy based on a sparse regularization. Some imple-

mentation details are provided in Section 3. Simulation re-

sults are presented and discussed in Section 4. In particular,

the proposed method is evaluated on two sequences of highly

realistic simulations and compared with two state-of-the-art

algorithms: (i) a classical and widely used speckle tracking

method, i.e., the conventional block-matching (BM) [15], us-

ing the normalized cross-correlation (NCC) and (ii) an elas-

tic registration method using a B-spline parameterization [3].

Concluding remarks are finally reported in Section 5.

2. MOTION ESTIMATION

We consider the estimation of a 2D displacement field be-

tween a pair of consecutive images (rk, rk+1) ∈ R
N × R

N

acquired at time instants k and k + 1. The motion field be-

tween these two images is denoted as (u,v)T ∈ R
N × R

N ,

where the subscript k has been omitted for simplicity. In the

proposed motion estimation method we seek to exploit the

sparse properties of the motion field when it is decomposed

on a suitable dictionary. We propose to make use of this idea

by estimating the motion vector u (resp. v) and the sparse co-

efficient vector αp through the minimization of the following

cost function, composed of an energy Edata(u) penalized by

sparse and spatial regularization terms

min
αp,u

{Edata(u) + λdEsparse(u,αp) + λsEspatial(u)} (3)

where λd ∈ R
+ and λs ∈ R

+ are two regularization param-

eters allowing the importance of the two regularization terms

to be controlled [16]. In this work, the problem is written

independently for the horizontal and vertical components u

1Other similarity measures based on optical flow or on different noise

models could be considered as well.

and v. Note that the first term in (3) is also referred to as

the data fidelity term, which expresses the similarity between

the displaced image rk+1 and the reference image rk. On the

other hand, the two regularization terms Esparse and Espatial

express the sparsity and the spatial coherence of the motion

field. More details about these terms are provided in the fol-

lowing sections.

2.1. Data fidelity term

According to the maximum likelihood (ML) approach, the es-

timation of the motion u is achieved by maximizing the con-

ditional probability density function of the observation rk+1

given rk and u, denoted as p(rk+1|rk,u). The problem is

usually reformulated in the negative log-domain leading to

min
u
− ln[p(rk+1|rk,u)]. (4)

In the case of US images, classical intensity-based similarity

measures, such as the sum of squared differences (SSD) or

NCC suffer from the presence of speckle noise [17]. The

Rayleigh multiplicative noise is a more appropriate and

widely accepted noise model in UI [18]. As explained

in [14, 16], this assumption leads to the following energy

(resulting from (4))

Edata(u) = −2d(u) + 2 log[e2d(u) + 1] + cst (5)

where d(u) = 1
b

N∑
n=1

[rk+1(n + u(n)) − rk(n)], n indicates

the pixel index, u = [u(1), ..., u(N)]T is the full motion vec-

tor, rk = [rk(1), ..., rk(N)]T and cst = − log
(
2σ4/b

)
is a

constant depending on the scale parameter of the Rayleigh

distribution σ ∈ R
+ and on the linear gain b related to the

formation of the log-compressed B-mode images and set to 1

as in [3].

2.2. Spatial regularization

The spatial regularization term ensures the smoothness of the

motion estimate. A classical choice is Espatial(u) = φ(∇u),
where φ is a penalty function and ∇ is the gradient operator.

In this work, we use φ(.) = ‖ .‖22, which enforces weak spa-

tial gradients on the two motion components and leads to the

first-order spatial regularization term [19]

Espatial(u) = ‖∇u‖22. (6)

2.3. Sparse regularization

The proposed sparse regularization consists in finding the mo-

tion u that is best described by a few atoms of a dictionary

that contains patterns of training motions. The sparse regular-

ization is performed patch-wise, so that each patch of motion

Ppu is constrained to have a sparse representation with re-

spect to the motion dictionary D, i.e.,

Esparse(u) =
∑

p
‖Ppu−Dαp‖22 (7)



where αp is the sparse coefficient vector associated with the

pth patch [13].

The combination of (5), (6) and (7) results in an origi-

nal motion estimation problem exploiting a Rayleigh noise

model with spatial smoothness and sparsity constraints. The

next section studies the optimization algorithm that has been

investigated to solve (3).

3. OPTIMIZATION STRATEGY

3.1. Dictionary learning

We start by learning an offline dictionary D from patches of

a set of training motion fields. In this work, the DL problem

(2) has been solved using the ODL algorithm, which iterates

between a sparse coding step (D fixed) and a dictionary up-

date step (αp fixed). Once the dictionary D has been learned,

it is fixed and used for the motion estimation step described

in the next section2.

3.2. Cardiac motion estimation

Using the data fidelity and regularization terms detailed in

Section 2, the cardiac motion estimation reduces to the fol-

lowing optimization problem

min
αp,u

{
Edata(u) + λd

∑
p
‖Ppu−Dαp‖22 + λs‖∇u‖22

}

(8)

subject to ∀p, ‖αp‖0 ≤ K

where Edata has been defined in (5) and D has been deter-

mined offline as described in Section 3.1. Since (8) is hard to

solve directly, we adopt an alternate minimization scheme,

similar to the half quadratic splitting strategy employed in

[20]. For fixed values of λd and λs, we alternate optimizations

with respect to αp and u. This process is repeated during a

few iterations (typically 4 or 5 [20]) after which the sparsity

parameter λd is increased. More details about these two steps

are provided below.

3.2.1. Sparse coding

Two classes of algorithms have been investigated in the liter-

ature to solve sparse coding problems similar to (1). These

algorithms are based on greedy strategies or on convex relax-

ation methods, which relax the l0-minimization problem to an

l1-minimization. This paper focuses on the OMP algorithm

solving the following problem [8]

min
αp

∑
p
‖Ppu−Dαp‖22 subject to ∀p, ‖αp‖0 ≤ K (9)

where p indicates the patch index and K is the maximum

number of non-zero coefficients.3

2Note that the dictionary D could be updated jointly with the sparse co-

efficients in an adaptive way [16]. However, we have not observed significant

improvements with this adaptive scheme for cardiac motion estimation in UI.
3Note that the LASSO algorithm was also considered for sparse coding.

However, the obtained results did not change significantly compared to OMP.

3.2.2. Motion field estimation

Once the sparse codes and the dictionary have been deter-

mined, the motion field u is updated (starting from a first ini-

tialization u0 = 0) by solving the following problem

min
u

{
Edata(u) + λd

∑
p
‖Ppu−Dαp‖22 + λs‖∇u‖22

}
.

(10)

The solution to (10) can be found by equating the gradient to

zero, and following the optimization approach studied in [3].

4. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed

method using a sparse representation and DL for cardiac mo-

tion estimation. The experiments were conducted on a dataset

resulting from realistic simulations with known ground-truth.

The performance of the proposed method is compared to two

state-of-the-art motion estimation methods including the BM

algorithm using the NCC similarity measure and an image

registration method based on a B-spline motion parameter-

ization [3]. Note that the B-spline algorithm uses the same

similarity measure [14] and spatial regularization as the pro-

posed method. In order to highlight the influence of the

proposed combination of sparse and spatial regularizations,

the proposed approach is also contrasted with the use of the

spatial and sparse regularization terms separately.

4.1. Performance measures

4.1.1. Endpoint error

The endpoint error [21] is used to evaluate the motion esti-

mation accuracy. For each pixel n, the endpoint error is de-

fined as en = [u(n)− û(n)]2 + [v(n)− v̂(n)]2, where

u(n),v(n) and û(n), v̂(n) are the true and estimated hori-

zontal and vertical displacements at pixel n.

4.1.2. Strain

Following the method studied in [22], we measure along the

longitudinal direction the deformation of the myocardium

with respect to its original shape. If d0 denotes the distance

between adjacent points located in the first frame and dk the

same distance in the kth frame, strain values can be defined

as sk = dk/d0 − 1, for k = 1, ...,M with M the length of

the image sequence [22].

4.2. Realistic Simulations

4.2.1. Simulation scenario

In this work, we consider two sequences of realistic simulated

B-mode US data with available ground-truth generated using

the scenario described in [22]. Both sequences contain 34 im-

ages (of size 224 × 208, with a pixel size of 0.7 × 0.6 mm2,

and a frame rate ∈ [21, 23] Hz) that span a full cardiac cycle



and represent dilated cardiomiopathy cases with synchronous

(i.e., sync) and dyssynchronous (i.e., LBBB) activation pat-

terns [22]4. The LBBB sequence was used for training the

dictionary whereas the tests were conducted on the sync se-

quence.

4.2.2. Simulation results

The parameters used in the DL step were selected by cross-

validation and fixed for all simulations. More precisely, the

patch size was set to w = 16×16 pixels, the number of atoms

in the dictionary was na = 384 and the maximum number of

non-zero coefficients was adjusted to K = 5. The horizontal

and vertical motion dictionaries were learned separately from

patches of the LBBB sequence (see Section 4.2).

The sparse coding and motion estimation steps require the

adjustment of the two regularization parameters λs and λd.

The spatial regularization parameter was fixed to λs = 0.1
after being varied in the interval [0.01, 10]. For each outer

iteration of the proposed method, λd was logarithmically in-

creased from 10−3 to 102 (see Section 3) in 6 iterations.

Cross-validation was also used to adjust the parameters of

the BM and B-spline methods. For the B-spline algorithm, the

mesh window size between the B-spline control points was set

to wB-spline = 15×15 and the spatial regularization parameter

was set to λB-spline = 3 to avoid too much deformation. The

window size for the BM algorithm was wBM = 32× 32.

Fig. 1: Ground-truth and estimated meshes of the 10th frame

of the sync sequence.

Fig. 1 compares a typical example of an estimated sys-

tolic motion field (sync sequence) obtained using the pro-

posed method to the corresponding true displacement meshes.

It shows that the estimated motion field is qualitatively con-

sistent with the ground-truth. This performance is comple-

mented by more quantitative results summarized in Table 1.

The proposed method clearly performs better than the two

other algorithms providing smaller average endpoint errors

and smaller estimated standard deviations (calculated for the

entire sequence). Table 1 also shows that the proposed com-

bination of both regularizations outperforms the use of sparse

4The data and related papers can be found at

https://team.inria.fr/asclepios/data/straus/.

(λs = 0) or spatial (λd = 0) regularizations alone.

Method Proposed B-spline BM Sparse Spatial

Error 0.199±0.089 0.713±0.276 0.985±0.441 0.27±0.19 0.33±0.19

Table 1: Average endpoint error for the simulation sequence

sync.

In order to have a more detailed performance analysis

during the cardiac cycle, Fig. 2 shows the time evolution of

the estimates and the estimated mean strain values. The pro-

posed method outperforms the B-spline and BM algorithms

for all frames. Moreover, the differences in estimation ac-

curacy between the beginning (large displacements) and the

end (small displacements) of the cardiac cycle are less pro-

nounced, which is an interesting property of the proposed

method. Note that a coarse-to-fine estimation scheme was

employed for the B-spline method in order to cope with large

displacements. However, this multi-resolution scheme was

not used for the BM and proposed methods.

(a)(a)

(b)

Fig. 2: Mean endpoint error (a) and mean longitudinal strain

values (b) for the sync sequence.

5. CONCLUSIONS

This paper studied a new method for cardiac motion estima-

tion in 2D US images. This method used a similarity measure

based on the multiplicative Rayleigh noise assumption penal-

ized by spatial and sparse regularizations. The sparse regu-

larization was based on a dictionary of typical motion vectors

computed from realistic images with controlled ground truth.

The performance in terms of motion and strain accuracies was

very competitive with respect to state-of-the-art methods. For

future work, it would be interesting to perform more exten-

sive simulations, e.g., based on in vivo data. Another possible

prospect is to consider potential deviations in the data fidelity

and regularization terms for robust motion estimation.
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