Geometrical four-point functions in the two-dimensional critical $Q$-state Potts model: The interchiral conformal bootstrap - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2020

Geometrical four-point functions in the two-dimensional critical $Q$-state Potts model: The interchiral conformal bootstrap

Résumé

Based on the spectrum identified in our earlier work [1], we numerically solve the bootstrap to determine four-point correlation functions of the geometrical connectivities in the Q-state Potts model. Crucial in our approach is the existence of “interchiral conformal blocks”, which arise from the degeneracy of fields with conformal weight h$_{r,1}$, with r ∈ ℕ$^{*}$, and are related to the underlying presence of the “interchiral algebra” introduced in [2]. We also find evidence for the existence of “renormalized” recursions, replacing those that follow from the degeneracy of the field $ {\Phi}_{12}^D $ in Liouville theory, and obtain the first few such recursions in closed form. This hints at the possibility of the full analytical determination of correlation functions in this model.
Fichier principal
Vignette du fichier
HeJaSa20.pdf (8.25 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-02863081 , version 1 (12-04-2023)

Licence

Identifiants

Citer

Yifei He, Jesper Lykke Jacobsen, Hubert Saleur. Geometrical four-point functions in the two-dimensional critical $Q$-state Potts model: The interchiral conformal bootstrap. Journal of High Energy Physics, 2020, 2020 (12), pp.019. ⟨10.1007/JHEP12(2020)019⟩. ⟨hal-02863081⟩
66 Consultations
16 Téléchargements

Altmetric

Partager

More