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1 Introduction and summary

Recent years have witnessed the power of the modern bootstrap approach to conformal field
theories (CFT) starting with the seminal work of [5]. Since then many rigorous results on
critical phenomena in dimension d > 2 have been obtained; some significant examples
can be found in [6–8]. While this approach and its ramifications rely on the unitarity of
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the CFT, an alternative method was also proposed for bootstrapping in the non-unitary
case [9, 10] which has subsequently been applied to interesting geometrical models such as
percolation and polymers [11, 12].

As exciting as these developments in d > 2 CFT may be, important questions in d = 2
CFT still remain to be answered. Prime among those is the issue of geometrical critical
phenomena, where the definition of correlation functions involves non-local aspects. One
typical example is the Q-state Potts model which, in the Q → 1 limit, describes the per-
colation problem. In such models, one focuses on the so-called geometrical correlations
describing the connectivities in terms of the non-local, extended degrees of freedom, such
as the Fortuin-Kasteleyn (FK) clusters [13] in the case of the Potts model. The determi-
nation of such correlations is a difficult problem, because their very definition renders the
underlying CFT non-unitary.

In the past decade, the understanding of the geometrical three-point functions was
gradually achieved [14–16] in a development that revealed interesting connections to a so-
called imaginary (or time-like) variant of Liouville theory with central charge c < 1. The
next natural, yet highly non-trivial step, is to extend this development to geometrical four-
point functions [17]. We stress here that we are exclusively interested in the bulk geometry,
which presents fundamental difficulties not present in the boundary case [18].

An interesting strategy towards the determination of the geometrical four-point func-
tions was proposed in a recent work [19] using the conformal bootstrap philosophy. The
idea can be stated simply: to obtain the amplitudes of the primary fields entering a given
correlation function, one solves the crossing equation numerically with a proposed spec-
trum for the conformal weights of the participating primaries. This has led to a simple
conjecture for the Potts spectrum in [19] with apparent agreement with Monte-Carlo sim-
ulations [19, 20].1

It was however shown in [1] that, unfortunately, the simple spectrum of [19] does not
correctly describe the geometrical correlations in the Potts model, although to the precision
of Monte-Carlo simulations it appears as a rather convincing approximation. Moreover, [1]
made a more involved proposal for the spectrum, based on the representation theory of
the affine Temperley-Lieb algebra, and verified its correctness through analytical checks in
a number of solvable cases, by analytically arguing that the extra states in the corrected
spectrum are actually necessary to avoid certain singularities which would otherwise be
present, and finally by carrying out high-precision numerical verifications using a transfer
matrix approach which is capable of targeting the amplitudes of the added parts of the
spectrum.

To summarize, the spectrum of [1] is now understood to provide the correct descrip-
tion of geometrical correlations in the Potts model. Meanwhile, the correlation functions
associated with the simpler spectrum of [19] were solved analytically in [4] and understood
later to provide a certain analytic continuation of correlation functions in type-D minimal
models, or a non-diagonal generalization of the Liouville theory.

1See [21, 22] for related studies on the torus. See also [23] for a recent study of the four-spin correlations
using the Coulomb Gas approach.
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Figure 1. Chart of the contents of this paper.

Although the spectrum used in [19] is thus not correct for describing the geometrical
correlation functions of interest, the other main idea of that work — namely, to study
numerically the bootstrap equations — is certainly valid and worth further exploitation.
The obvious suggestion is thus to revisit this idea, but in the context of the corrected Potts
spectrum obtained in [1]. This investigation is the focus of our work here.

To guide the readers through the bulk of this paper, we draw in figure 1 a chart
which highlights the logical relations between the parts of this work, while locating the
“landmarks” of our findings.

We consider geometrical four-point functions which involve one or two FK clusters,
i.e., the probabilities of the four points belonging to one or two distinct clusters. They are
denoted as

Paaaa, Paabb, Pabab, Pabba,

which can be seen as variants of CFT four-point functions of the spin operator Φ 1
2 ,0

:

〈Φ 1
2 ,0

Φ 1
2 ,0

Φ 1
2 ,0

Φ 1
2 ,0
〉.

In [1], the s-channel spectra of the probabilities were obtained using a combination of
algebraic and numerical methods. They are encoded by the affine Temperley-Lieb (ATL)
modules

Wj,z2
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whose continuum limit gives rise to the conformal fields. The t- and u-channel spectra
follow from geometric considerations. See eqs. (2.19)–(2.21).

Further studies on the lattice model, carried out in [3], reveal interesting features re-
garding how these fields contribute to the geometrical four-point functions: there exist
universal ratios which relate either the amplitudes of the fields in different Potts probabili-
ties, or the Potts amplitudes themselves, with the amplitudes appearing in the non-diagonal
Liouville theory of [19]. We have already established in [3], that the CFT four-point func-
tions in the Liouville theory have a geometric interpretation in terms of clusters very similar
to that of the Potts model, however with different weights assigned to the topologically
non-trivial clusters. The amplitude ratios are universal in the sense that they depend only
on the ATL module to which a given field belongs, and on the parameter Q. We briefly
review these results in section 3.1 and 3.2 and redefine the universal amplitude ratios

Rβ , Rα, Rᾱ

for further convenience. See eqs. (3.7)–(3.12) for definitions and their explicit expressions
up to a certain level, as obtained from the lattice computations in [3].

The existence of the universal amplitude ratios strongly hints at the objects we call
the “interchiral conformal blocks”

Fj,z2 ,

which organize the fields in the spectra according to the ATL modules they belong to
(this “organization” corresponds, in the continuum limit, to the action of an interchiral
algebra [2], whence the name). Our crucial observation is the following: since the universal
amplitude ratios depend only on the ATL modules, it is the same interchiral conformal
blocks that enter various Potts probabilities as well as the non-diagonal Liouville theory
of [19]. Only the global amplitudes associated with entire ATL modules are modified by
the change in the cluster weights implied [3] by the passage from the true Potts correlators
to non-diagonal Liouville correlators. By contrast, the relations among the fields within the
same ATL module remain the same, i.e., the structure of the interchiral blocks Fj,z2 is rigid.
We discuss this in details in section 3.3. There, using the interchiral block expansion of
the four-point function in the non-diagonal Liouville theory and comparing with the Potts
probabilities, we see that the bootstrap problem originally considered in [19] has non-unique
solutions. Furthermore, using the amplitude ratios R, one can in fact extract some of the
Potts amplitudes A from the known amplitudes AL of the non-diagonal Liouville theory
as obtained in [4]:

A← AL.

The results are given in eq. (3.19).
With the existence of the interchiral conformal blocks established, the determination

of the geometrical four-point functions reduces to solving for the global amplitudes

Aaaaa(Wj,z2), Aaabb(Wj,z2), Aabab(Wj,z2), Aabba(Wj,z2)

of the entire ATL modules. The bootstrap idea proposed in [19] then comes into play.
We proceed by fully exploiting this idea using the interchiral block expansions of all four

– 4 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

probabilities as related through crossing, and writing down the interchiral bootstrap equa-
tions (3.32). This is a linear system of the global amplitudes A(W) in (3.31) whose relations
are further constrained through the amplitude ratios Rα, Rᾱ. In addition, the Potts am-
plitudes A extracted from the Liouville amplitudes AL further constrain the bootstrap
problem. The precise ingredients of the bootstrap we carry out are indicated in blue on
the chart (see figure 1).

To implement the bootstrap, we need to construct the interchiral blocks Fj,z2 . For this,
we first observe the degeneracy in the Potts spectra: the ATL module W0,q2 consists of
Kac modules in the CFT, i.e., they are degenerate representations of the Virasoro algebra.
This includes in particular the field ΦD

2,1. Degeneracy of this field (as well as ΦD
1,2) are

known to appear in the diagonal and non-diagonal Liouville theories [4, 24–26] which lead
to recursions in the amplitudes when the Kac indices (r, s) are shifted by 2 units, eventually
providing the full analytic solutions to those theories. Here, in the Potts model, with the
sole degeneracy of ΦD

2,1 (but not ΦD
1,2), by focusing on four-point functions of the spin

operator, we obtain instead recursions

RD, RN

of amplitudes where the Kac index r is shifted by 1 unit. The explicit expressions are given
in eqs. (4.14) and (4.5) and the D,N here label the diagonal and non-diagonal fields in the
spectra. Such recursions exactly relate the amplitudes of the fields within the same ATL
module, and we use them to re-sum the ordinary Virasoro conformal blocks F into the
interchiral conformal blocks F. This construction is given in section 4.1 where the explicit
interchiral blocks are given after eq. (4.16) and illustrated with figure 2. We present the
detailed derivation of the recursions from the degeneracy in section 4.1.1.

The results of the numerical bootstrap are given in section 4.2 for A(Wj,z2), with the
ATL index j ≤ 4. We plot these amplitudes in the whole range of 0 < Q < 4 in fig-
ures 7–15. From these plots, we see clearly the analytic structures of the amplitudes, in
particular their poles in Q at certain rational values of the central charge. The following
section 4.3 is then devoted to analyzing these poles in details from a combination of per-
spectives: the requirement of smoothness as a function of Q for the geometrical four-point
functions, the amplitude ratios R which relate the amplitudes in the different geometries,
and the corresponding difference in their respective spectrum. Through this analysis, we
obtain certain exact amplitudes at special values of Q which interpolate smoothly between
the numerical bootstrap results as displayed in figures 16–19. The bootstrap results are
subsequently compared with lattice computations and the approximate description given
by the non-diagonal Liouville theory of [19] in section 4.4.

One interesting observation from the bootstrap on the Potts amplitudes is the fol-
lowing: while the degeneracy of the field ΦD

1,2 in the (non-diagonal) Liouville theory, and
therefore the resulting recursion for shifting the Kac s-index, are absent in the case of
the Potts model, there exists a “renormalized” version of the Liouville recursion, with the
renormalization factors given by ratios of polynomials in Q. On the one hand, this is ob-
tained from the extraction of the Potts amplitudes A from the Liouville amplitudes AL.
On the other hand, we also obtain the remaining renormalized Liouville recursion up to
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level j = 4 from the accurate numerical bootstrap results. They are given in eqs. (4.110)
and (4.111). It is natural to speculate that by fully understanding these renormalized Li-
ouville recursions, combined with our interchiral block constructions, it would be possible
to solve the Potts geometrical four-point functions analytically, which we will leave for
future work.

We have in the above provided a complete guide and summary of the results con-
tained in this paper. For the readers’ convenience, we also give background reviews and
supplementary materials. In section 2, we give a review of the critical Potts model and
the conformal bootstrap with emphasis on the application of the bootstrap approach to
the Potts geometrical four-point functions. While the numerical aspects are important in
the determination of the Potts amplitudes we present in section 4.2, we leave the technical
details to appendix B. In addition, we recall in appendix A the original amplitude ratios
obtained in [3] and in appendix C the relevant analytic results of the non-diagonal Liouville
theory, as they are used in various places in the paper.

2 The conformal bootstrap approach to the Potts model

We recall in this section the ingredients necessary to set up the conformal bootstrap for
the geometrical correlation functions in the Potts model.

2.1 The Potts model

The Q-state Potts model [27] is defined on a lattice where at each site resides a spin variable
taking Q possible values σi = 1, . . . , Q and the nearest neighbors have interaction energy
−Kδσi,σj . The partition function is given by

Z =
∑
{σ}

∏
{ij}

eKδσi,σj , (2.1)

where {ij} indicate the edges on the lattice and the sum is over all spin configurations {σ}.
It is easy to recognize that the familiar Ising model corresponds to the case of Q = 2.

While the original definition (2.1) is restricted to integer values of Q, a more general
definition is given by the Fortuin-Kasteleyn (FK) clusters [13] where, by setting v = eK−1,
the partition function (2.1) becomes

Z =
∑
D
v|D|Qκ(D) . (2.2)

In this formulation, the partition function in given by configurations of bonds formed
between neighboring lattice sites when they share the same spin value, with a probability
v/(1 + v). The sum in (2.2) is over all diagrams D, where |D| is the number of bonds and
κ(D) denotes the number of connected components — the so-called FK clusters — within
a diagram. We henceforth focus on the two-dimensional square lattice. At the critical
value [28],

vc =
√
Q , (2.3)

– 6 –
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for 0 ≤ Q ≤ 4, the system goes through a second-order phase transition and is described
by a conformal field theory (CFT) [27, 28]. Notice that in the FK-cluster description, the
number of states Q from the original definition enters the partition funciton (2.2) as a
parameter and therefore the model is analytically continued to real values of Q.

Another equivalent formulation of the Potts model is through loops [29]. Taking the
midpoint of each edge to form another lattice, the loops are formed by connecting the
nearest-neighboring sites such that they bounce on the FK clusters and internal cycles.
As a result, two distinct Potts clusters are separated by an even number of loops.2 The
partition function in this case becomes

Z = Q|V |/2
∑
D

(
v

n

)|D|
n`(D) . (2.4)

The `(D) is the number of loops in a certain configuration and the loop fugacity is

n =
√
Q = q + q−1 , (2.5)

where q is a quantum-group related parameter. At criticality (2.3), the partition func-
tion (2.4) only depends on the number of loops. In particular, all contractible and non-
contractible loops get weight n.

On the lattice, one naturally considers the correlation functions

Ga1,a2,...,aN = 〈Oa1(σi1)Oa2(σi2) · · · OaN (σiN )〉 , (2.6)

where the spin operator (the order parameter) is defined by

Oa(σi) ≡ Qδσi,a − 1 . (2.7)

More generic correlations are defined as a probability:

PP = 1
Z

∑
v|D|Qκ(D)IP(i1, i2, . . . , iN ), (2.8)

usually labelled by N ordered symbols in P. The indicator function IP is defined such
that two sites ij , ik belong to the same FK cluster if and only if the corresponding ordered
symbols in P are the same. These probabilities, which are well-defined for arbitrary real
value of Q, are the geometrical correlations that we will study. In particular, we focus on
the four-point geometrical correlations involving one or two clusters: Paaaa, Paabb, Pabba and
Pabab. On the lattice, they can be formally related to the lattice spin correlation functions
by studying the combinatorics [17]:

Gaaaa = (Q− 1)(Q2 − 3Q+ 3)Paaaa + (Q− 1)2(Paabb + Pabba + Pabab) , (2.9a)
Gaabb = (2Q− 3)Paaaa + (Q− 1)2Paabb + Pabba + Pabab , (2.9b)
Gabba = (2Q− 3)Paaaa + Paabb + (Q− 1)2Pabba + Pabab , (2.9c)
Gabab = (2Q− 3)Paaaa + Paabb + Pabba + (Q− 1)2Pabab . (2.9d)

Notice that the left-hand side is only well-defined for integer values of Q.
2For more details of the loop formulations, see section 2.1 of [3].
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In the continuum limit at criticality, the Potts model can be parameterized as [30]

√
Q = 2 cos

(
π

x+ 1

)
, x ∈ [1,∞], (2.10)

where the parameter x is related to the central charge of the CFT by

c = 1− 6
x(x+ 1) , (2.11)

and the quantum group related parameter q = e
iπ
x+1 . One can adopt a Kac parameterization

for the conformal dimensions of the primary fields as:

hr,s = [(x+ 1)r − xs]2 − 1
4x(x+ 1) (2.12)

with h−r,−s = hr,s, although in this case the x is not restricted to be an integer as in the
minimal models and furthermore, the Kac indices (r, s) can be fractions. In particular,
the order parameter — i.e., the spin operator — is known to be given by the Kac indices
(r, s) =

(
1
2 , 0
)
[31, 32]. For convenience, we will also use another parameterization β for

the central charge:

β2 = x

x+ 1 ,
1
2 ≤ β2 ≤ 1, (2.13)

which is closely related to c < 1 Liouville theory [33].
Throughout the paper, we will refer to diagonal and non-diagonal primaries with the

Kac indices (r, s) whose left and right conformal dimensions are given by

(h, h̄) =

(hr,s, hr,s), diagonal,
(hr,s, hr,−s), non-diagonal.

(2.14)

We shall often label such a primary by the superscript D for diagonal, or N for non-
diagonal. Its total conformal dimension is

h+ h̄ (2.15)

and the conformal spin is

h̄− h =

0, diagonal,
rs, non-diagonal.

(2.16)

The four lattice sites in the continuum limit become (i1, i2, i3, i4)→ (z1, z2, z3, z4) and
the s, t, u-channels are defined as

s-channel : z1 → z2 , t-channel : z1 → z4 , u-channel : z1 → z3 . (2.17)

From the relations with the lattice spin correlations (2.9), it is natural to consider the
four-point geometrical correlations Paaaa, Paabb, Pabba and Pabab as four-point functions of
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the spin operator Φ 1
2 ,0

of the type:3

〈Φ 1
2 ,0

(z1, z̄1)Φ 1
2 ,0

(z2, z̄2)Φ 1
2 ,0

(z3, z̄3)Φ 1
2 ,0

(z4, z̄4)〉 (2.18)

and they are therefore given by the conformal blocks of the spectra in the fusion channels.
Accounting for the geometry, the spectra of each channel in the geometrical correlations
are related through crossing:

probability s-channel t-channel u-channel
Paaaa S1 S1 S1
Paabb S2 S3 S3
Pabab S3 S3 S2
Pabba S3 S2 S3

(2.19)

In particular, under s↔ t which we will focus on below, the spectra of Paaaa and Pabab are
symmetric while Paabb and Pabba get interchanged.

The spectra (2.19) were determined in [1] by focusing on the s-channel, using a combi-
nation of algebraic and numerical methods. They are given in terms of the affine Temperley-
Lieb (ATL) modules Wj,z2 :

spectrum ATL modules Parities
S1 W0,−1 ∪Wj,e2iπp/M j ∈ 2N∗, jp/M even
S2 W0,−1 ∪W0,q2 ∪Wj,e2iπp/M j ∈ 2N∗, jp/M even
S3 Wj,e2iπp/M j ∈ 2N∗, jp/M integer

(2.20)

where p,M are coprime integers with in particular p = 0 allowed. The ATL modules each
contains a tower of primary fields and their descendants with the following Kac indices:

Wj,e2iπp/M : (r, s) =
(
Z + p

M
, j

)N
, non-diagonal (2.21a)

W0,q2 : (r, s) = (N∗, 1)D, diagonal (2.21b)

where we recall that N,D stand for non-diagonal and diagonal respectively, with the con-
formal dimensions given by (2.14). In particular, the Virasoro modules in W0,q2 are given
by Kac modules, where the null descendant of the primaries with (r, s) ∈ N∗ at level rs is
removed.

Notice that jp/M indicates the conformal spin rs of the leading primary in a module
Wj,e2iπp/M and in the following we will often need to refer to the modules with even and

3The spin operator Φ1/2,0, as determined by the representation theory of the symmetric group SQ, has a
non-zero N -point function as long as each point belongs to the same FK cluster as at least one other point.
The four-point function thus provides non-zero contributions to precisely the probabilities Paaaa, Paabb,
Pabba and Pabab, with an overall multiplicity that can be computed from the representation theory [34–36].
Whenever we wish to single out one of these contributions, we must therefore specify the corresponding
labels.

– 9 –
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odd spins separately. We will thus use the notation

W+
j,e2iπp/M , jp/M even, (2.22a)

W−
j,e2iπp/M , jp/M odd, (2.22b)

for the rest of the paper.

2.2 The conformal bootstrap approach

Consider a generic four-point function of identical operators:

〈Φ(z1, z̄1)Φ(z2, z̄2)Φ(z3, z̄3)Φ(z4, z̄4)〉. (2.23)

After mapping the four points (z1, z2, z3, z4) to (z, 0,∞, 1) through a global conformal
transformation, the s, t, u channels (2.17) become

s-channel : z → 0 , t-channel : z → 1 , u-channel : z →∞ , (2.24)

and the four-point function (2.23) can be written in terms of the conformal block expan-
sions:

G(z, z̄) =
∑

(h,h̄)∈S(c)

A(c)(h, h̄)F (c)
h (z)F̄ (c)

h̄
(z̄), with c = s, t, u. (2.25)

The constant coefficient A(c)(h, h̄) here — which we will henceforth refer to as the amplitude
for field (h, h̄) — arises from the structure constant in the fusion

Φ× Φ (c)−→ (h, h̄) (2.26)

as4

A(c)(h, h̄) = C(Φ,Φ, (h, h̄))C((h, h̄),Φ,Φ), (2.27)

where we have chosen the normalization of the two-point functions of identical primaries to
be 1 besides position-dependent factor. Note that our discussions below are independent
of this normalization which we take merely for convenience and notation simplicity. The
structure constant is symmetric under permutation of the three fields and in the following
we will also use the notation

C(ri,si)(rj ,sj)(rk,sk) , (2.28)

where the indices (r, s) = (r, s)D,N represent diagonal or non-diagonal fields, as specified
by the superscript. Notice that the fusion with the identity operator ΦD

(1,1) gives:

ΦD
1,1 × (h, h̄)→ (h, h̄) , (2.29)

suggesting the structure constants

C(1,1)D(r,s)(r,s) = 1 , (2.30)

since this reduces to the normalized two-point function of (r, s).
4As explained in footnote 3, the correlation function decomposes into probabilities Paaaa, Paabb, Pabba

and Pabab, depending on the chosen geometry. The amplitudes similarly depend on the geometry, but in the
general reasoning presented here we shall keep that dependence implicit and only specify it when needed.
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The essence of the conformal bootstrap approach lies in the crossing equation for
the four-point functions, which states the equivalence of the conformal-block expansions in
different fusion channels [37]. In the case of the four-point function (2.23), this is to say that
the conformal-block expansions (2.25) in different channels c = s, t, u give the same four-
point functions, as a result of the associativity of the fusion algebra (2.26). Such equivalence
puts strong constraints on the spectra S(c) and the amplitudes A(c)(h, h̄), and in certain
cases can uniquely define the theory of interest. Combining with positivity constraints from
unitarity5 and powerful numerical implementations, the conformal bootstrap approach has
recently led to many rigorous results in d > 2 unitary theories [6, 7].

In the non-unitary case, one cannot resort to such positivity constraints. However,
with a proposed spectrum and a clever algorithm, it is possible to solve a target theory
numerically using the crossing equation alone. This is the idea recently proposed in [19],
in the context of non-unitary geometric models such as the Potts model. It is this type of
bootstrap approach that we are applying here to study the Potts geometrical correlations
using the spectra (2.20).

Consider in our case the conformal block expansion of geometrical correlations (2.18).
The crossing-symmetric probabilities P (z, z̄) = Paaaa, Pabab have the same spectrum in the
s- and t-channel and are given by:

P (z, z̄) =
∑

(h,h̄)∈S

A(h, h̄)F (s)
h (z)F (s)

h̄
(z̄) =

∑
(h,h̄)∈S

A(h, h̄)F (t)
h (z)F (t)

h̄
(z̄), (2.31)

where S = S(s) = S(t). For Paaaa one has S = S1 and A(h, h̄) = Aaaaa(h, h̄) while for Pabab,
S = S3 and A(h, h̄) = Aabab(h, h̄). Rewritten as

∑
(h,h̄)∈S

A(h, h̄)
(
F (s)
h (z)F (s)

h̄
(z̄)−F (t)

h (z)F (t)
h̄

(z̄)
)

= 0, (2.32)

this is a linear system for the amplitudes A(h, h̄). Using the method proposed in [19], one
can numerically solve this linear system by sampling the points zi. Doing this multiple
times provides statistics on the amplitudes which were used in [19] as a measurement of
crossing symmetry.

Here we are going to take this approach one step further since we have the spectra (2.20)
for all four probabilities. While the crossing-symmetric probabilities, Paaaa and Pabab, can
be expanded using (2.31), the other two probabilities, Pabba and Paabb, get interchanged
under s↔ t and thus have the following conformal block expansions:

Paabb =
∑

(h,h̄)∈S2

Aaabb(h, h̄)F (s)
h (z)F (s)

h̄
(z̄) =

∑
(h,h̄)∈S3

Aabba(h, h̄)F (t)
h (z)F (t)

h̄
(z̄), (2.33)

Pabba =
∑

(h,h̄)∈S3

Aabba(h, h̄)F (s)
h (z)F (s)

h̄
(z̄) =

∑
(h,h̄)∈S2

Aaabb(h, h̄)F (t)
h (z)F (t)

h̄
(z̄). (2.34)

5In unitary CFTs, the amplitudes (2.27) are positive, as the squares of the structure constants or the
matrix constructed from pairwise products of the structure constants are positive-definite.

– 11 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

As discussed in [1], the fields (r, s) with even and odd spins have the following amplitude
relations:

Aabab = Aabba, rs even, (2.35a)
Aabab = −Aabba, rs odd, (2.35b)

and therefore the symmetric and anti-symmetric combinations, Pabab + Pabba and Pabab −
Pabba, only involve fields with even and odd conformal spin, respectively.

Eq. (2.32) for Paaaa, Pabab and eqs. (2.33)–(2.34) for Paabb, Pabba together define our
problem of solving the Potts geometrical correlations.

2.2.1 Conformal blocks

One main ingredient in the conformal bootstrap approach to the four-point functions is the
computation of conformal blocks. For practical implementations, we use the Zamolodchikov
recursive formula [38] to compute the Virasoro conformal blocks of the primary fields
appearing in (2.20). In particular, in the case of the four-spin correlations (2.18) with
external dimensions h 1

2 ,0
, the s-channel conformal block for an internal field with dimension

h is given by:

F (s)
h (z) = (16q)h−

c−1
24 (z(1− z))−

c−1
24 −

1
8β2 θ3(q)−

c−1
6 −

1
β2Hh(q), (2.36)

and in the t-channel we have:
F (t)
h (z) = F (s)

h (1− z). (2.37)

In the above expressions, the elliptic nome q and the Jacobi theta function θ3(q) are
given by:

q(z) = eiπτ , τ = i
K(1− z)
K(z) , θ3(q) =

∞∑
n=−∞

qn
2
, (2.38)

where K(z) is the complete elliptical integral of the first kind. The Hh(q) is given by the
recursive relation

Hh(q) = 1 +
∞∑

m,n=1

(16q)mn

h− hm,n
Rm,nHhm,−n(q), (2.39)

where the Rm,n in the case of four-spin conformal blocks are given explicitly by [19]:

Rm,n =

0, n odd,

−21−4mnλmn
∏m
m′=1−m

∏n
n′=1−n λ

(−1)n′+1

m′,n′ , n even,
(2.40)

with λm′,n′ = −m′

2β + n′β
2 and the products exclude (m′, n′) = (0, 0).

Notice that in the spectrum (2.20), there are primary fields with degenerate indices, i.e.,
r, s ∈ N∗, appearing in the modules Wj,1. This poses problems for the computation of the
conformal blocks for these primaries which have poles for r, s ∈ N∗, as is obvious in (2.39).
Of course, the appearance of such pole terms in the Zamolodchikov recursive formula is
associated with the fact that in minimal models the degenerate representations have the null
descendants decoupling from the spectrum, while in the case of the Potts model, we do not
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expect such decoupling to occur. This means that the theory is generically logarithmic [39].
The fields with r, s ∈ N∗ in Wj,1 are expected to have logarithmic partners, and the
presence of Jordan cells for L0, L̄0 should lead to finite confomal blocks regularizing the
naive divergences in Zamolodchikov’s formula, with, in particular, a ln(zz̄) dependency.6

This will be studied in detail in a forthcoming paper. For the time being, we content
ourselves with a “naive” regularization procedure for numerical implementations. As can
be seen from (2.36) and (2.39), the residue of the pole at h = hm,n is given by

Rm,nF (s)
hm,−n

, (2.41)

where F (s)
hm,−n

is the conformal block of the descendant with conformal dimension h =
hm,−n = hm,n + mn. We therefore subtract this pole term from the (left and right) block
of F (s)

hm,n
and include the term

F (s)
hm,−n

(z)F (s)
hm,−n

(z̄) (2.42)

in the four-point function with a free coefficient.7 This takes into account certain contri-
butions of the descendants in the four-point functions. However, it is worth stressing that
this serves as an approximation in the numerical bootstrap, since in general the coefficient
involved should have logarithmic dependence in z and the modification here could change
the higher-level structure of the blocks. While this may introduce instabilities into the
numerics, we will discuss below extra constraints to impose on the numerical bootstrap in
order to stabilize the solution.

Note that in the module W0,q2 of (2.20), the fields also have degenerate indices (r, 1).
However, for the case of four-spin conformal blocks, the residue is zero for these fields
due to (2.40), which exactly removes the null descendants and generate the Kac modules
appearing in W0,q2 . The conformal blocks in this case are thus exact.

3 From minimal models to the Potts model

In [19], the authors conjectured a simple spectrum for some of the geometrical correlations
in the Potts model which, using the bootstrap approach, was checked to satisfy the crossing
equation (2.32). While it provides a numerical description of the Potts probabilities that
appeared to be in accord with Monte-Carlo simulations [20], the proposed spectrum was
finally shown in [1] to be only a subset of the true Potts spectrum (2.20). Later it was
understood [4] that the spectrum of [19] was in fact valid for a generalization of type-D
minimal models, when the β2 in (2.13) was taken to irrational values.

In [3], we studied the CFT four-point functions given by the spectrum of [19] from
the lattice point of view and revealed its connection with the Potts probabilities: the
four-point functions of the operators of interest involve the same types of diagrammatic
expansion in terms of clusters/loops as the Potts probabilities we consider here, however
with different weights assigned to the topologically non-trivial loops. We referred to the

6We thank S. Ribault for various discussions on the topic of conformal blocks.
7This is similar to the regularization procedure in [19], however we do not assume a specific z-dependence.

– 13 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

geometrical correlations thus obtained as the “pseudo-probabilities” (see eq. (3.3) below for
a precise definition). In the work [3] we have also studied the Potts probabilities in a lattice
regularization — i.e., on semi-infinite cylinders of finite circumference L — and observed,
to arbitrarily high numerical precision, several striking facts regarding the contribution of
the fields to the Potts probabilities and to the pseudo-probabilities. Crucially, these facts
were observed to be independent of L, and can hence be presumed to carry over to the
continuum limit as well. In this section, we briefly summarize these results and explain
how they can be used to extract information about the Potts model from minimal models
(i.e., the generalization to generic central charges) and also as input for the bootstrap of
the Potts model itself.

3.1 A geometric picture of the correlation functions

In [19], the authors found a crossing-symmetric spectrum Sr,s = SZ+ 1
2 ,2Z

at generic values
of 0 < Q < 4,8 for the s↔ t crossing-symmetric four-point function conjectured to describe
the Potts probabilities9

〈V D
1
2 ,0
V N

1
2 ,0
V D

1
2 ,0
V N

1
2 ,0
〉 ∝∼ Paaaa + 2

Q− 2Pabab , (3.1)

which is approximately true for generic Q and becomes exact for Q = 0, 3, 4. The fields
V D

1
2 ,0

and V N
1
2 ,0

have conformal dimensions
(
h 1

2 ,0
, h 1

2 ,0

)
, i.e., same as the spin operator, and

have their origin in the diagonal and non-diagonal sectors, respectively, of the type-D
minimal models (here and below D and N stand for diagonal and non-diagonal). Initially
proposed as the spectrum for the Potts probabilities, it is now understood [4] that this
spectrum arises from a certain limit of minimal models when the β2 in (2.13) is taken to
irrational values, although numerically it gives a reasonable approximation of some of the
Potts probabilities [20]. The structure constants appearing in the four-point function were
later obtained analytically in [4] and the corresponding CFT at generic central charges
is in fact a non-diagonal generalization of Liouville theory [26].10 From now on, we will
refer to the analytically-known amplitudes (the square of the structure constants) in this
four-point function (3.1) as AL, where L stands for Liouville. See appendix C for explicit
expressions of AL that are relevant in this paper.

Regarding this intriguing relation between the Potts model and minimal models, we
studied in [3] the cluster interpretation of the minimal-model four-point functions and its
irrational limit and thus provided a geometric picture of (3.1). We have seen there that
the four-point function in question is, in fact, given by the cluster expansion on the lattice
of the type

〈V D
1
2 ,0
V N

1
2 ,0
V D

1
2 ,0
V N

1
2 ,0
〉 ∝ Paaaa + P̃abab , (3.2)

8In [19], the spectrum was found to be crossing symmetric for complex values of Q. Here we focus on real
0 ≤ Q ≤ 4 corresponding to the second-order phase transition in the lattice model for which the continuum
limit is known to be conformally invariant.

9The factor 1
Q−2 was fixed later in [20] and the claim in [19] that (3.1) was exact was modified to an

approximation in [20]. We show here the approximate nature of the proportionality by the symbol ∝∼.
10The exact relation between this non-diagonal Liouville theory and the well-known diagonal Liouville

theory is however unclear. See [40] for a recent study on this.
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where we have defined the pseudo-probability

P̃abab = 1
ZPotts

∑
D∈Dabab

WPotts(D)M(k(D)), (3.3)

with the sum over all diagrams of the type Dabab, i.e., points 1, 3 and 2, 4 belonging to
two distinct FK clusters. The multiplicity M(k(D)) is defined as the weight of a diagram
D with respect to the Potts weight when the two marked clusters — i.e., those labelled a

and b — are separated by k (necessarily even) non-contractible loops.11 This difference in
weighing a certain diagram is ultimately due to the different weights assigned to the non-
contractible loops in the Potts model and minimal models.12 In contradistinction to (3.3),
the true Potts probability is

Pabab = 1
ZPotts

∑
D∈Dabab

WPotts(D). (3.4)

Note that the two quantities (3.3) and (3.4) are expanded by the same set of diagrams
D ∈ Dabab, with the difference in the weight summarized into the multiplicity M(k(D)).
The explicit expression of M is given by [3]

M(k = 2l) = 2
Ql

l∑
m=−l

(
2l

l +m

)
1

q2m + q−2m , (3.5)

and can be written in terms of ratios of polynomials in Q

M(k = 2) = 2
Q− 2 , (3.6a)

M(k = 4) = 2(3Q− 10)
(Q− 2)(Q2 − 4Q+ 2) , (3.6b)

...

Similar expressions hold for the geometries Dabba,Daabb giving rise to the relations between
probabilities Pabba, Paabb and pseudo-probabilities P̃abba, P̃aabb.

3.2 Universal amplitude ratios

Through numerical studies on the lattice, we have further investigated in [3] the relation
between the geometry of the lattice models and the contribution of the spectrum to the
geometrical correlation functions. We found facts about how the fields in (2.20) contribute
through their amplitudes to various Potts probabilities, and to their counterparts — the
pseudo-probabilities — where the geometric content is modified. These facts state the
existence of universal amplitude ratios of eigenvalues of the lattice transfer matrix and,

11Non-contractible on the four-time punctured sphere at the marked points.
12In the case of the Potts probabilities, the non-contractible loops each gets the weight

√
Q as in (2.5)

while in the pseudo-probability (3.3), one sums over the algebra of the type-D Dynkin diagram for the
non-contractible loop weight. See [3] for more details.
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amazingly, such ratios do not depend on the lattice size. It is therefore natural to assume
that the same ratios hold in the continuum limit in the corresponding CFT and is translated
into ratios of amplitudes of the fields.13 Here we restate these facts directly in the CFT
language and they are of the following two types:

1. When the same field contributes to both a Potts probability and to the corresponding
pseudo-probability, the ratio of the two corresponding amplitudes depends only on
the ATL module that the field belongs to, and on Q.

2. When the same field contributes to two different Potts probabilities, the ratio of the
corresponding amplitudes depends only on the ATL module that the field belongs to,
and on Q.

The facts of the first type give the ratios between the amplitudes A in the true Potts
probabilities (Pabab, Pabba and Paabb) and Ã in the pseudo-probabilities (P̃abab, P̃abba and
P̃aabb). Note that the probability Paaaa does not involve any non-contractible loops14 and
therefore there is no corresponding pseudo-probability. We now define the following ratios
for a certain ATL module related to the β given in appendix A:

Rβ(Wj,z2) ≡ Ãabab
Aabab

(Wj,z2) =
∑j
k=2 even β

(k)
j,z2M(k)∑j

k=2 even β
(k)
j,z2

. (3.7)

Using the explicit expressions of β(k)
j,z2 given in appendix A, we have the following:

Rβ(W2,−1) = 2
Q− 2 , (3.8a)

Rβ(W4,−1) = − 4
(Q− 1)(Q− 2)(Q2 − 4Q+ 2) . (3.8b)

Notice that for W4,−1, the denominator in the last expression of (3.7) actually vanishes at
Q = 1 and Q = 4, indicating that the module decouples from Pabab at these values of Q.
This is partially taken care of by the factor of Q − 1 in the denominator of (3.8b), while
at Q = 4 the module disappears from P̃abab as well, since M(k) = 1 at Q = 4. One can
similarly define Rγ as

Rγ(Wj,z2) ≡ Ãaabb
Aaabb

(Wj,z2) , (3.9)

which is related to the γ in appendix A. We shall however not use its explicit expression
in this paper.

13It is crucial for this translation between lattice quantities and the continuum limit that the affine
Temperley-Lieb modules Wj,z2 — the centerpiece of our algebraic understanding of the lattice model —
have well-defined continuum limits, and in particular their labels j and z2 can be cleanly interpreted in
both contexts [1].

14This is because any loop surrounding the four points can be contracted at “infinity” on the sphere.
See [3] for more details.
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In addition, we also have the ratios relating amplitudes in different Potts probabilities
from the second type of facts:

Rᾱ(W+
j,z2) ≡

ᾱj,z2

2 = Aabab
Aaaaa

(W+
j,z2) = Aabba

Aaaaa
(W+

j,z2), (3.10)

and
Rα(W+

j,z2) ≡ αj,z2 = Aaabb
Aaaaa

(W+
j,z2), (3.11)

where we have used the definitions of α and ᾱ in (A.1) and that Aabab(W+
j,z2) = Aabba(W+

j,z2)
due to (2.35a) and (2.22a). Note that Rᾱ and Rα are not defined for W−j,z2 , i.e., jp

M odd,
since Aaaaa(W−j,z2) = 0. Using the expressions of α and ᾱ in appendix A, we have the
following expressions for Rα and Rᾱ:

Rα(W0,−1) = −1 , (3.12a)

Rα(W2,1) = 1
1−Q , (3.12b)

Rᾱ(W2,1) = 2−Q
2 , (3.12c)

Rα(W4,−1) = 2−Q
2 , (3.12d)

Rᾱ(W4,−1) = (Q− 1)(Q− 4)
4 , (3.12e)

Rα(W4,1) = −Q
5 − 7Q4 + 15Q3 − 10Q2 + 4Q− 2

2(Q2 − 3Q+ 1) , (3.12f)

Rᾱ(W4,1) = −(Q2 − 4Q+ 2)(Q2 − 3Q− 2)
4 . (3.12g)

As discussed in [3], the ratios (3.8) and (3.12) were obtained as a numerical lattice
observation whose first-principle derivation is still unknown. These thus comprise all the
ratios of the two types for ATL modules up to j = 4.15 In the following, we will first
use the ratios (3.8) to analytically extract certain Potts amplitudes from the well-known
Liouville amplitudes AL. We will then use this together with the ratios (3.12) to bootstrap
the Potts probabilities.

3.3 Probabilities and pseudo-probabilities

The key observation now from the results we summarized above is that, while the geometric
feature is changed from the Potts probability (3.4) to the pseudo-probability (3.3) through
the multiplicity M(k), only the global amplitudes A(Wj,z2) associated with entire ATL
modules are modified. The relations between the amplitudes of fields belonging to the
same ATL module remain the same and this relation permeates into the continuum — as

15As mentioned in appendix D of [3], it is numerically impossible to obtain the complete set of ratios for
j = 6 using the current lattice-computation approach, although we have provided in that reference some
partial results.
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manifested in the existence of the universal amplitude ratios. This allows us to define the
“interchiral conformal blocks” Fj,z2 , which group the Virasoro conformal blocks according
to the ATL modules they belong to. From (3.7), (3.10) and (3.11) we see that it is the same
interchiral conformal blocks Fj,z2 that enter various probabilities and pseudo-probabilities.
The existence of these blocks is ultimately due to the degeneracy of the field ΦD

2,1 in W0,q2

and can be constructed explicitly as an infinite sum of products of left and right conformal
blocks, which we shall discuss in details in section 4.1. As suggested in [2], the underlying
algebra can be considered as an extension of the product of left and right Virasoro algebras
via fusion with ΦD

2,1, leading to the object dubbed the interchiral algebra in that reference.
This algebra, in turn, can be obtained as the continuum limit of the affine Temperley-Lieb
algebra.

Consider now the combination

Paaaa + P̃abab. (3.13)

The corresponding CFT correlation function (3.2) is well-known to be given by the non-
diagonal Liouville theory of [19]. Note that its spectrum SZ+ 1

2 ,2Z
belongs to the ATL

modules Wj,−1. We can then expand it in terms of the interchiral conformal blocks as

Paaaa + P̃abab =
∞∑

j=0 even
AL(Wj,−1)Fj,−1. (3.14)

Meanwhile, from the lattice study in [3], we have seen that the modules W0,−1 and Wj,z2

from the Potts spectrum (2.20) all appear, where the amplitudes for Wj,z2 are modified
from their corresponding values in the Potts model through the ratios Rβ(Wj,z2) defined
in (3.7). The combination (3.13) can thus be written as

Paaaa + P̃abab = Aaaaa(W0,−1)F0,−1 +
∑
j
2 odd

Ãabab(W−j,−1)Fj,−1

+
∑
j
2 even

(
Aaaaa(W+

j,−1) + Ãabab(W+
j,−1)

)
Fj,−1

+
∑

jp
M

even

(
Aaaaa(W+

j,z2) + Ãabab(W+
j,z2)

)
Fj,z2 +

∑
jp
M

odd

Ãabab(W−j,z2)Fj,z2

= Aaaaa(W0,−1)F0,−1 +
∑
j
2 odd

RβAabab(W−j,−1)Fj,−1

+
∑
j
2 even

Aaaaa(W+
j,−1)

(
1 + RβRᾱ

)
Fj,−1

+
∑

jp
M

even

Aaaaa(W+
j,z2)

(
1 + RβRᾱ

)
Fj,z2 +

∑
jp
M

odd

RβAabab(W−j,z2)Fj,z2 .

(3.15)
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In the case of the true Potts probabilities, one has instead the combination:

Paaaa + Pabab = Aaaaa(W0,−1)F0,−1 +
∑
j
2 odd

Aabab(W−j,−1)Fj,−1

+
∑
j
2 even

(
Aaaaa(W+

j,−1) +Aabab(W+
j,−1)

)
Fj,−1

+
∑

jp
M

even

(
Aaaaa(W+

j,z2) +Aabab(W+
j,z2)

)
Fj,z2 +

∑
jp
M

odd

Aabab(W−j,z2)Fj,z2

= Aaaaa(W0,−1)F0,−1 +
∑
j
2 odd

Aabab(W−j,−1)Fj,−1

+
∑
j
2 even

Aaaaa(W+
j,−1)

(
1 + Rᾱ

)
Fj,−1

+
∑

jp
M

even

Aaaaa(W+
j,z2)

(
1 + Rᾱ

)
Fj,z2 +

∑
jp
M

odd

Aabab(W−j,z2)Fj,z2 .

(3.16)
Note that F in (3.15) and (3.16) represent s- or t-channel blocks since in both cases we
have combinations that are crossing-symmetric under s↔ t.

One remark on the bootstrap problem follows immediately. By comparing eqs. (3.15)–
(3.16), it is obvious that the crossing-symmetric spectrum proposed in [19], which gives a
complete description of eq. (3.15), is also a solution to the conformal block expansion of the
true Potts probabilities (3.16) using the full spectrum (2.20), with of course the amplitudes
for the whole ATL modules given by Ãabab instead of Aabab as in (3.15). This means that
within the full spectrum (2.20) of the Potts model, the states which do not appear in the
spectrum of [19] have Aaaaa + Ãabab = 0, i.e.,

1 + Rβ(W+
j,z2)Rᾱ(W+

j,z2) = 0, (3.17a)

Rβ(W−j,z2) = 0, (3.17b)

for p
M 6=

1
2 , as we have checked explicitly in [3] for all the ATL modules up to j = 4. This

suggests that the solution to the original bootstrap problem considered in [19], i.e., the
bootstrap of the probabilities Paaaa + Pabab, is not unique: the spectrum and amplitudes
in [19] is one solution, while the true Potts spectrum with its amplitudes provides another
one, and possibly there exists (infinitely many?) further solutions. Geometrically this
can be understood as the freedom of assigning weights to cluster/loop configurations, a
mechanism which we have seen explicitly at play above, where it involves two different
ways of assigning weights to the non-contractible loops. This complexity of the solution to
the bootstrap problem is perhaps rooted in the irrationality of the theory in general, and
the simple spectrum given by [19] — being itself a generalization of minimal models —
stands out as special, or “minimal” in a(nother) sense, as it sees a large number of fields
decouple from the spectrum, cf. (3.17).

Now focus on eqs. (3.15)–(3.16). It is fascinating to see that we can, in fact, extract
the true Potts amplitudes from the known Liouville amplitudes AL for the modules that

– 19 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

contribute to both combinations:

Aaaaa(W0,−1) = AL(W0,−1), (3.18a)

RβAabab(W−j,−1) = AL(W−j,−1), j

2 odd, (3.18b)

Aaaaa(W+
j,−1)(1 + RβRᾱ) = AL(W+

j,−1), j

2 even. (3.18c)

Using eqs. (3.8) and (3.12), we have the following expressions of the Potts amplitudes in
terms of the Liouville amplitudes:

Aaaaa(W0,−1) = AL(W0,−1), (3.19a)

Aabab(W2,−1) = Q− 2
2 AL(W2,−1), (3.19b)

Aaaaa(W4,−1) = (Q− 2)(Q2 − 4Q+ 2)
Q(Q− 3)2 AL(W4,−1). (3.19c)

Writing this out explicitly, the Potts probabilities are given by the AL and the interchiral
blocks as

Paaaa = AL(W0,−1)F0,−1+(Q−2)(Q2−4Q+2)
Q(Q−3)2 AL(W4,−1)F4,−1+. . . , (3.20a)

Pabab = Q−2
2 AL(W2,−1)F2,−1+(Q−1)(Q−4)(Q−2)(Q2−4Q+2)

4Q(Q−3)2 AL(W4,−1)F4,−1+. . . ,

(3.20b)

where we have used (3.12e) in writing the second term of (3.20b), and the left-out terms
(. . .) are to be determined by the bootstrap computations.

Let us now turn to another combination of probabilities

Paaaa + P̃aabb. (3.21)

In the s-channel, as studied in [3], we have

Paaaa + P̃aabb =
(
Aaaaa(W0,−1) + Ãaabb(W0,−1)

)
F(s)

0,−1

+
∑

jp
M

even

(
Aaaaa(W+

j,z2) + Ãaabb(W+
j,z2)

)
F(s)
j,z2 +

∑
a
Ãaabb(W0,q2a)F(s)

0,q2a

=
(
Aaaaa(W0,−1) + RγAaabb(W0,−1)

)
F(s)

0,−1

+
∑

jp
M

even

(
Aaaaa(W+

j,z2) + RγAaabb(W+
j,z2)

)
F(s)
j,z2 +

∑
a
Ãaabb(W0,q2a)F(s)

0,q2a ,

(3.22)
where the last term involves diagonal Verma modules with the conformal dimensions(

he+ a
x+1 ,0, he+

a
x+1 ,0

)
, e ∈ Z. (3.23)
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It was argued in [3], by comparison with the CFT results [41], that the s-channel here
involves purely diagonal fields so the first two terms disappear from (3.22) with the am-
plitude ratios Rγ ,Rα as we have checked explicitly in [3]. In the limit of irrational β2, the
sum in the last term becomes an integral over a compact set,∫ π

0
dθ , (3.24)

where we have introduced the variable θ = aπ
x+1 , and (3.23) becomes

(hr,0, hr,0), r ∈ R, (3.25)

i.e., a continuous diagonal spectrum. Geometrically speaking this indicates that the non-
contractable loop weights are integrated over the fugacities

nz = z + z−1, with z = eiθ. (3.26)

In contrast with this, we have in the Potts model:

Paaaa + Paabb =
(
Aaaaa(W0,−1) +Aaabb(W0,−1)

)
F(s)

0,−1

+
∑

jp
M

even

(
Aaaaa(Wj,z2) +Aaabb(Wj,z2)

)
F(s)
j,z2 +Aaabb(W0,q2)F(s)

0,q2

= Aaaaa(W0,−1)
(
1 + Rα(W0,−1)

)
F(s)

0,−1

+
∑

jp
M

even

Aaaaa(Wj,z2)
(
1 + Rα(Wj,z2)

)
F(s)
j,z2 +Aaabb(W0,q2)F(s)

0,q2 .

(3.27)

First notice that for the first two terms, we do not expect in general a cancellation and thus,
the s-channel spectrum here in the true Potts probabilities involves non-diagonal modules
Wj,z2 . Furthermore, the last term, as argued in [1] already, comes from the requirement
that in the Potts model, all loops — contractible or non-contractible — carry the weight√
Q. Therefore one fixes [1]:

z2 = q±2, (3.28)

and obtains the module W0,q2 . As mentioned before, this includes the Kac modules of
diagonal primaries with conformal dimensions

(hr,1, hr,1), r ∈ N∗, (3.29)

a discrete spectrum. By comparing (3.22) with (3.27), we see that the diagonal spectrum
in the s-channel of the geometry Daabb, where the two FK clusters are separated by a
large number of non-contractible loops, encodes important geometric information on the
non-contractible loop weight in the lattice model.
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3.4 The interchiral bootstrap equations

We will consider the bootstrap problem of the following probabilities as related by crossing:

P (s)
aaaa = P (t)

aaaa, (3.30a)
P

(s)
abab = P

(t)
abab, (3.30b)

P
(s)
aabb = P

(t)
abba, (3.30c)

P
(s)
abba = P

(t)
aabb. (3.30d)

Eqs. (3.30) are simply a shorthand rewriting of eqs. (2.32), (2.33) and (2.34) which should
be interpreted as follows: the subscripts indicate the spectrum for the interchiral block
expansions and thus the corresponding amplitudes, while the superscripts indicate which
channel of the blocks to use. The basic idea is now to write the Potts probabilities in terms
of the interchiral block expansions with the amplitudes A(W) associated with the whole
ATL modules. Eqs. (3.30) are then a coupled linear system for these amplitudes and will
be used for the “interchiral conformal bootstrap”.

The amplitudes involved here are:

Aaaaa(W0,−1), Aaaaa(W+
j,z2),

Aabab(W+
j,z2), Aabab(W−j,z2),

Aabba(W+
j,z2), Aabba(W−j,z2),

Aaabb(W0,−1), Aaabb(W+
j,z2), Aaabb(W0,q2),

(3.31)

and we can then write eq. (3.30) as the interchiral bootstrap equations:

AaaaaF
(s)
0,−1 +

∑
{W+

j,z2}

AaaaaF
(s)
j,z2 = AaaaaF

(t)
0,−1 +

∑
{W+

j,z2}

AaaaaF
(t)
j,z2 , (3.32a)

∑
{W+

j,z2}

AababF
(s)
j,z2 +

∑
{W−

j,z2}

AababF
(s)
j,z2 =

∑
{W+

j,z2}

AababF
(t)
j,z2 +

∑
{W−

j,z2}

AababF
(t)
j,z2 ,

(3.32b)

AaabbF
(s)
0,−1 +AaabbF

(s)
0,q2 +

∑
{W+

j,z2}

AaabbF
(s)
j,z2 =

∑
{W+

j,z2}

AabbaF
(t)
j,z2 +

∑
{W−

j,z2}

AabbaF
(t)
j,z2 ,

(3.32c)∑
{W+

j,z2}

AabbaF
(s)
j,z2 +

∑
{W−

j,z2}

AabbaF
(s)
j,z2 = AaabbF

(t)
0,−1 +AaabbF

(t)
0,q2 +

∑
{W+

j,z2}

AaabbF
(t)
j,z2 ,

(3.32d)

where we have omitted the arguments for the amplitudes for notation simplicity. Notice
that we can further impose the constraints Rα and Rᾱ from (3.12). Recall also that W+

j,z2

have the same amplitudes Aabab and Aabba, while W−j,z2 have opposite amplitudes due
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to (2.35). This gives us:

AaaaaRα = Aaabb, for W0,−1,W+
j,z2 (3.33a)

AaaaaRᾱ = Aabab, for W+
j,z2 (3.33b)

Aabab = Aabba, for W+
j,z2 (3.33c)

Aabab = −Aabba, for W−j,z2 . (3.33d)

In addition, we have obtained analytically (3.19) which, with proper normalizations, can
be imposed as extra constraints into the bootstrap.

4 The interchiral conformal bootstrap

With the setup given by eqs. (3.32) and (3.33), we are now ready to bootstrap the ampli-
tudes (3.31). In this section, we start by constructing the interchiral conformal blocks Fj,z2

explicitly and show how they arise from the degeneracy of the field ΦD
2,1. We then present

and study the bootstrap results on the amplitudes. The numerical details of the bootstrap
will be discussed in appendix B.

4.1 Recursions and the interchiral conformal blocks

In the conformal bootstrap approach to the diagonal Liouville theory [24, 25], the degener-
acy of the diagonal fields Φr,s = ΦD

1,2 and ΦD
2,1 are used to obtain the recursions when the

structure constants, and thus the amplitudes, are related through shifting the Kac indices
by 2 units: s± 1 or r ± 1, which eventually leads to a full solution of the theory. The key
idea is to consider the four-point functions involving these degenerate fields which, in the
conformal block expansions, truncate to only two terms. One can then write the relations
of the structure constants using the fusing matrix — the linear transformation between the
conformal blocks in the two channels as constructed from the solutions of BPZ equations.
This technique was further generalized to the non-diagonal case in [4, 26] which gives the
analytic amplitudes AL of the non-diagonal Liouville theory in [19].

In the case of the Potts model, the degeneracy of ΦD
1,2 is absent and therefore this

technique does not apply directly. However, we see in the spectrum (2.20) that the field
ΦD

2,1 ∈ W0,q2 is degenerate and one expects the recursions in the (diagonal and non-
diagonal) Liouville theory for shifting the first Kac index, r±1, to hold in this case. In fact,
for the Potts geometrical correlations Paaaa, Pabab, Paabb, Pabba which can be considered (up
to the remarks in footnote 3) as four-point functions of the spin operator (2.18):

〈Φ 1
2 ,0

Φ 1
2 ,0

Φ 1
2 ,0

Φ 1
2 ,0
〉, (4.1)

the degeneracy of ΦD
2,1 indicates a recursion of the amplitudes with r shifted by 1 which we

will give explicitly below, deferring the derivation to section 4.1.1. Such recursion exactly
relates the amplitudes of the primaries belonging to the same ATL module and organizes
the corresponding Virasoro conformal blocks into the interchiral conformal blocks.
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Recall from the spectrum (2.20) that the non-diagonal primary fields in the modules
Wj,e2iπp/M have the conformal dimensions(

h p
M

+e,j , h p
M

+e,−j

)
, e ∈ Z. (4.2)

The module Wj,e2iπp/M therefore contains fields related by e → e + 1, with the leading
amplitude A

(
h p
M
,j , h p

M
,−j

)
. We will therefore take the overall amplitude associated with

the interchiral blocks to be:

A(Wj,e2iπp/M ) =

A(h0,j , h0,−j), for p = 0,

2A
(
h p
M
,j , h p

M
,−j

)
, otherwise,

(4.3)

where the factor of 2 in the second line accounts for the identification of the amplitudes:

A(hr,s, hr,−s) = A(hr,−s, hr,s) = A(h−r,s, hr,s), (4.4)

since the two non-diagonal fields (r, s) and (r,−s) have the same total conformal dimen-
sion (2.15) and spin (2.16) (up to a sign). The amplitudes of the other fields within the
module are related by the recursion

RNe,j = A(he+1,j , he+1,−j)
A(he,j , he,−j)

=
Γ
(
−j− e

β2

)
Γ
(
1+j−1+e

β2

)
Γ
(

1−j
2 + e

2β2

)
Γ
(

1+j
2 + e

2β2

)
Γ
(

1−j
2 +1+e

2β2

)
Γ
(

1+j
2 +1+e

2β2

)
Γ
(
j+1+e

β2

)
Γ
(
1−j+ e

β2

)
Γ
(

1+j
2 −

1+e
2β2

)
Γ
(

1−j
2 −

1+e
2β2

)
Γ
(

1+j
2 −

e
2β2

)
Γ
(

1−j
2 −

e
2β2

) ,

(4.5)
which has the properties

1
RN−e−1,−j

= RNe,j , (4.6a)

1
RN−e−1,j

= RNe,j , (4.6b)

where (4.6a) is explicit while (4.6b) is expected due to (4.4) and can be easily checked
using that j ∈ Z. Notice that in the special case of e = 0, the expression (4.5) includes the
divergent factor Γ(−j)

Γ(1−j) . In this case one can use the property (4.6b) to obtain instead:

RN0,j =
Γ(j)Γ

(
1− j − 1

β2

)
Γ
(

1−j
2 + 1

2β2

)
Γ
(

1+j
2 + 1

2β2

)
Γ(1 + j)Γ

(
−j + 1

β2

)
Γ
(

1−j
2 −

1
2β2

)
Γ
(

1+j
2 −

1
2β2

) (4.7)

which is divergence-free.
Note that due to the definition (4.3) and the identification (4.4), we have also

A(Wj,e2iπp/M ) = 2A
(
h p
M
,j , h p

M
,−j

)
= 2A

(
h− p

M
,j , h− p

M
,−j

)
= 1
RN− p

M
,j

A(Wj,e2iπ(1−p/M)),

(4.8)
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i.e., the recursion (4.5) also relates the global amplitudes for the modules

Wj,e2iπp/M ↔Wj,e2iπ(1−p/M) , (4.9)

which corresponds to16

z↔ z−1. (4.10)

This reduces the independent non-diagonal amplitudes to A(Wj,e2iπp/M ) with

0 ≤ p

M
≤ 1

2 . (4.11)

The module W0,q2 involves diagonal primaries with conformal dimensions

(h1+e,1, h1+e,1), e ∈ N. (4.12)

Again the corresponding Kac modules are related by e→ e+ 1 with the leading (h1,1, h1,1)
and therefore we take

A(W0,q2) = A(h1,1, h1,1). (4.13)

The amplitudes of diagonal fields have the recursion:17

RDe,s = A(he+1,s, he+1,s)
A(he,s, he,s)

=
Γ
(
s− e

β2

)
Γ
(
1 + s− 1+e

β2

)
Γ
(

1−s
2 + 1+e

2β2

)2
Γ
(

1−s
2 + e

2β2

)2

Γ
(
−s+ 1+e

β2

)
Γ
(
1− s+ e

β2

)
Γ
(

1+s
2 −

e
2β2

)2
Γ
(

1+s
2 −

1+e
2β2

)2 ,

(4.14)

which has the explicit property
1

RD−e−1,−s
= RDe,s (4.15)

as expected since hr,s = h−r,−s.
The interchiral conformal blocks involved in the bootstrap equations (3.32) are the

following:
F(c)
j,−1, F(c)

j,z2=e2iπp/M , F(c)
0,q2 , (4.16)

where here and below the channels are denoted with c = s, t. Writing explicitly, we define:

F(c)
j,−1 = 1

2
∑
e∈N
Re+ 1

2 ,j

(
F (c)
h
e+ 1

2 ,j
(z)F (c)

h
e+ 1

2 ,−j
(z̄) + F (c)

h
e+ 1

2 ,−j
(z)F (c)

h
e+ 1

2 ,j
(z̄)
)
,

=
∑
e∈N
Re+ 1

2 ,j
Re
[
F (c)
h
e+ 1

2 ,j
(z)F (c)

h
e+ 1

2 ,−j
(z̄)
] (4.17)

16Recall that z is related with the phase acquired by the non-contractible lines as they wind around the
axis of the cylinder [42]. Switching z and z−1 amounts to switching clockwise and counterclockwise.

17In the spectrum (2.20) we have only s = 1, but here we give the most general recursion as the result
of the degenerate ΦD2,1. Note that compared to (4.5) we have changed the notation j → s since the module
W0,q2 corresponds to j = 0 but the conformal weights can be written with s = 1 using (2.12). See eq. (5.21)
in [1].
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where

Re+ 1
2 ,j
≡
A
(
he+ 1

2 ,j
, he+ 1

2 ,−j

)
A
(
h 1

2 ,j
, h 1

2 ,−j

) =


1, for e = 0,∏e−1
i=0 R

N
i+ 1

2 ,j
, for e 6= 0,

(4.18)

and we have used (4.4) to write the block of
(
h−e− 1

2 ,j
, he+ 1

2 ,j

)
as

F (c)
h
e+ 1

2 ,−j
(z)F (c)

h
e+ 1

2 ,j
(z̄) (4.19)

to restrict the summation to e ≥ 0.
For F(c)

j,z2=e2iπp/M with p
M 6=

1
2 we have

F(c)
j,e2iπp/M = 1

2
∑
e∈N
Re+ p

M
,j

(
F (c)
h
e+ p

M
,j

(z)F (c)
h
e+ p

M
,−j

(z̄) + F (c)
h
e+ p

M
,−j

(z)F (c)
h
e+ p

M
,j

(z̄)
)
,

=
∑
e∈N
Re+ p

M
,jRe

[
F (c)
h
e+ p

M
,j

(z)F (c)
h
e+ p

M
,−j

(z̄)
] (4.20)

with

Re+ p
M
,j ≡

A
(
he+ p

M
,j , he+ p

M
,−j

)
A
(
h p
M
,j , h p

M
,−j

) =


1, for e = 0,∏e−1
i=0 R

N
i+ p

M
,j , for e 6= 0.

(4.21)

Notice that we have used (4.4) to group the blocks in the module Wj,e2iπ(1−p/M) with e < 0
with the blocks in the module Wj,e2iπp/M with e ≥ 0 to construct Fj,e2iπp/M , and vice versa.
See figure 2 for an illustration of this for the case of F4,i and F4,−i. Also keep in mind that
due to (4.8), the blocks Fj,e2iπp/M and Fj,e2iπ(1−p/M) can be further grouped into

Fj,e2iπp/M +RN− p
M
,jFj,e2iπ(1−p/M) . (4.22)

In the special case of p = 0, we have

F(c)
j,1 = 1

2
∑
e≥0
Re,j

(
F (c)
he,j

(z)F (c)
he,−j

(z̄) + F (c)
he,−j

(z)F (c)
he,j

(z̄)
)
,

=
∑
e≥0
Re,jRe

[
F (c)
he,j

(z)F (c)
he,−j

(z̄)
] (4.23)

with

Re,j ≡


1, for e = 0,
2A(he,j ,he,−j)
A(h0,j ,h0,−j) = 2

∏e−1
i=0 R

N
i,j , for e 6= 0,

(4.24)

where the difference in the definition of Re 6=0,j and R0,j takes into account the special
choice of (4.3) for p = 0.

Finally, the block F0,q2 is given by:

F(c)
0,q2 =

∑
e∈N∗
Re,1F (c)

he,1
(z)F (c)

he,1
(z̄), (4.25)

where

Re,1 ≡
A(he,1, he,1)
A(h1,1, h1,1) =

1, for e = 1,∏e−1
i=1 R

D
i,1, for e 6= 1.

(4.26)

In figure 2, we give explicit examples of the construction of various interchiral blocks.
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indicate the fields (r, s) =
(
e+ p

M , j
)N

, (e + 1, 1)D whose amplitudes satisfy the recursion RD,N

in eqs. (4.14) and (4.5) under e → e + 1 as illustrated by the arrows. The leading primary in
each ATL module whose amplitude is taken as A(W) in (4.3) and (4.13) is labeled red. We give
explicit examples of the coefficients R for sub-leading fields entering the blocks indicated with blue.
The fields in modules Wj,e2iπp/M and Wj,e2iπ(1−p/M) are regrouped into the blocks Fj,e2iπp/M and
Fj,e−2iπp/M as illustrated in the magenta boxes.

4.1.1 Recursions from degeneracy

In this subsection, we derive the recursions (4.5) and (4.14) using the degeneracy of ΦD
2,1.

The key is to study the four-point functions involving the degenerate field ΦD
2,1, as done in

the conformal bootstrap approach to the diagonal and non-diagonal Liouville theory in [4,
24–26]. We first briefly summarize the general formalism and then explore its consequences
on the geometrical correlation of the type (4.1).

Consider a generic four-point function with the degenerate field ΦD
2,1:

〈ΦD
2,1Φr2,s2Φr3,s3Φr4,s4〉 , (4.27)
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Figure 3. The s- and t-channel of the four-point function 〈ΦD2,1Φr2,s2Φr3,s3Φr4,s4〉.

where Φri,si represent either diagonal or non-diagonal fields. Due to the degeneracy of ΦD
2,1,

the fusion involves only two terms

ΦD
2,1 × ΦD

r,s → ΦD
r+1,s + ΦD

r−1,s, (4.28a)
ΦD

2,1 × ΦN
r,s → ΦN

r+1,s + ΦN
r−1,s. (4.28b)

and the s- and t-channels of the four-point function (4.27) are illustrated in figure 3. The
conformal block expansions of (4.27) in the s- and t-channel therefore truncate to two
terms:

〈ΦD
2,1Φr2,s2Φr3,s3Φr4,s4〉 =

[
F+ F−

](s)
a(s)

[
F̄+
F̄−

](s)

=
[
F+ F−

](t)
a(t)

[
F̄+
F̄−

](t)

, (4.29)

where ± represents (ri ± 1, si) and we have omitted the dependence on the external fields.
Note that depending on the external fields, the s- and t-channels can independently involve
either diagonal or non-diagonal fields. We will in the following study four-point functions
of various types and use the labels:

DD, NN, DN, ND (4.30)

where the first letter indicates the type of field in the s-channel, and the second letter
similarly specifies the type for the t-channel. (According to the fusion (4.28), these are just
the labels for the fields Φr2,s2 and Φr4,s4 .) The amplitude matrix a(c) in (4.29) is given by

a(c) =



 a(c)
+ 0
0 a

(c)
−

 , diagonal,

 0 a
(c)
+

a
(c)
− 0

 , non-diagonal,

for c = s, t. (4.31)

The amplitudes a(c)
± come from the structure constants:

a
(c)
± =

C(2,1)D(r2,s2)(r2±1,s2)C(r2±1,s2)(r3,s3)(r4,s4), for c = s,

C(2,1)D(r4,s4)(r4±1,s4)C(r4±1,s4)(r3,s3)(r2,s2), for c = t,
(4.32)
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where (r, s) represent either diagonal or non-diagonal fields obeying the fusion (4.28). The
s- and t-channel conformal blocks are related through the fusing matrix:

[
F+
F−

](s)

=
[
F++ F+−
F−+ F−−

] [
F+
F−

](t)

, (4.33)

and similarly [
F̄+
F̄−

](s)

=
[
F̄++ F̄+−
F̄−+ F̄−−

] [
F̄+
F̄−

](t)

, (4.34)

where F±± is given by

Fst =
Γ
(
1− 2s

β λr2,s2

)
Γ
(

2t
β λr4,s4

)
∏

+,− Γ
(

1
2 ±

1
βλr3,s3 − s

βλr2,s2 + t
βλr4,s4

) , with s, t = ± (4.35)

and F̄ is obtained by replacing λ with λ̄, defined as:18

λri,si = − ri
2β + siβ

2 , (4.36a)

λ̄ri,si =

λri,si , diagonal,

λ−ri,si , non-diagonal.
(4.36b)

Plugging (4.33) and (4.34) into (4.29), we obtain

[
F++ F+−
F−+ F−−

]T
a(s)

[
F̄++ F̄+−
F̄−+ F̄−−

]
= a(t), (4.37)

which gives the relations among a
(s)
± and a

(t)
± . Keep in mind that the explicit relations

depend on the properties (4.30) and therefore the explicit form of a(c) as in (4.31).
In the conformal bootstrap approach to solve the diagonal [24, 25] and non-diagonal [4,

26] Liouville theory, the ratio

ρ =
a

(s)
+

a
(s)
−

(4.38)

has been exploited in various four-point functions of the type (4.27) to obtain the recursion
for shifting the amplitudes with r ± 1 as we mentioned in the previous section. Here, we
will focus on the other consequence of (4.37), that is, the relation between a

(t)
± and a

(s)
± .

From (4.37), this relation can be extracted for different types of the four-point function as
labeled with (4.30). Defining the ratios

χst = a
(t)
t

a
(s)
s
, with s, t = ±, (4.39)

18This corresponds to the Liouville momentum Ps,r used in [4].
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we will need the following explicit expressions from (4.37):

χDN−+ = F−+F̄−− + ρDNF++F̄+−,

χND+− = F+−F̄−− + 1
ρND

F−−F̄+−,

χDD−+ = F−+F̄−+ + ρDDF++F̄++,

χDD+− = F+−F̄+− + 1
ρDD

F−−F̄−−,

χDD−− = F−−F̄−− + ρDDF+−F̄+−,

(4.40)

where
ρDN = −F−+F̄−+

F++F̄++
, ρND = −F−+F̄+−

F++F̄−−
, ρDD = −F−+F̄−−

F++F̄+−
. (4.41)

The superscript should be interpreted as in (4.30): for example, χDN−+ corresponds to the
amplitude ratio of the non-diagonal t-channel field (r4 +1, s4)N with the diagonal s-channel
field (r2 − 1, s2)D.

We are now ready to derive the recursions (4.5) and (4.14) for non-diagonal and diag-
onal fields in the four-point function (4.1).

For non-diagonal fields, consider the following four-point function of the type (4.1):

〈ΦN
1
2 ,0

ΦD
1
2 ,0

ΦN
1
2 ,0

ΦD
1
2 ,0
〉 , (4.42)

where the fusion gives the non-diagonal fields in the Potts spectrum (2.20):

ΦN
1
2 ,0
× ΦD

1
2 ,0
→ (he,j , he,−j) (4.43)

and the amplitudes arise from the structure constants:

A(he,j , he,−j) = C( 1
2 ,0)

N( 1
2 ,0)

D(e,j)NC(e,j)N( 1
2 ,0)

D( 1
2 ,0)

N . (4.44)

The desired recursion (4.5) is then written as

RNe,j = A(he+1,j , he+1,−j)
A(he,j , he,−j)

=
C( 1

2 ,0)
N( 1

2 ,0)
D(e+1,j)NC(e+1,j)N( 1

2 ,0)
D( 1

2 ,0)
N

C( 1
2 ,0)

N( 1
2 ,0)

D(e,j)NC(e,j)N( 1
2 ,0)

D( 1
2 ,0)

N

. (4.45)

Now consider the four-point function

GDN1 = 〈ΦD
2,1ΦD

1
2 ,0

ΦN
1
2 ,0

ΦN
e,j〉 , (4.46)

whose crossing equation and the relevant fusion channels are illustrated in figure 4. The
corresponding amplitudes in the two channels come from the structure constants and give
the following ratio:

χDN−+,1 =
C(2,1)D(e,j)N (e+1,j)NC(e+1,j)N( 1

2 ,0)
D( 1

2 ,0)
N

C(2,1)D( 1
2 ,0)

D(− 1
2 ,0)

DC(− 1
2 ,0)

D( 1
2 ,0)

N (e,j)N
. (4.47)
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Figure 4. The s- and t-channels of the four-point function 〈ΦD2,1ΦD1
2 ,0

ΦN1
2 ,0

ΦNe,j〉. Notice that
since

( 1
2 , 0
)
and

(
− 1

2 , 0
)
both represent the same spin field, we obtain the structure constants

C(− 1
2 ,0)D( 1

2 ,0)N (e,j)N in the s-channel and C(e+1,j)N( 1
2 ,0)D( 1

2 ,0)N in the t-channel which relates two
fields with e→ e+ 1.

Keep in mind the identification

C(− 1
2 ,0)

D( 1
2 ,0)

N (e,j)N = C( 1
2 ,0)

D( 1
2 ,0)

N (e,j)N , (4.48)

since
(

1
2 , 0
)
and

(
−1

2 , 0
)
represent the same spin field.

We then turn to the four-point function:

GND2 = 〈ΦD
2,1ΦN

e,jΦN
e,jΦD

2,1〉 (4.49)

as illustrated in figure 5. Notice that in this case we have

a
(t)
− = C(2,1)D(2,1)D(1,1)DC(1,1)D(e,j)N (e,j)N = 1, (4.50)

where (1, 1)D represents the identity field and the structure constants in (4.50) are given
by (2.30), due to the normalization of the two-point function.19 Therefore, one has

χND+−,2 = 1
C(2,1)D(e,j)N (e+1,j)NC(e+1,j)N (e,j)N (2,1)D

. (4.51)

Finally, consider the four-point function

GDD3 = 〈ΦD
2,1ΦD

1
2 ,0

ΦD
1
2 ,0

ΦD
2,1〉 (4.52)

as illustrated in figure 6. Similar to the previous case, one has

a
(t)
− = C(2,1)D(2,1)D(1,1)DC(1,1)D( 1

2 ,0)
D( 1

2 ,0)
D = 1, (4.53)

19We have, for convenience, chosen (2.30) which means the constant in the two-point functions are
normalized to 1. With a different normalization, the derivation here still holds, since all the normalization
factors cancel in the final expression (4.55) below. Therefore, the recursions we obtain here are independent
of the normalization.
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Figure 5. The s- and t-channels of the four-point function 〈ΦD2,1ΦNe,jΦNe,jΦD2,1〉. Notice the appear-
ance of the identity field ΦD1,1 in the t-channel and the corresponding amplitude a(t)

− = 1, due to the
normalization of the two-point functions.

Figure 6. The s- and t-channels of the four-point function 〈ΦD2,1ΦD1
2 ,0

ΦD1
2 ,0

ΦD2,1〉.

and therefore
χDD−−,3 = 1

C(2,1)D( 1
2 ,0)

D(− 1
2 ,0)

DC(− 1
2 ,0)

D( 1
2 ,0)

D(2,1)D
. (4.54)

It is now easy to see that the recursion (4.45) can be expressed as

RNe,j =
χDN−+,1χ

ND
+−,2χ

DN
−+,1

χDD−−,3
, (4.55)

where we have used the permutation symmetry of the three-point structure constants.
After plugging in the explicit expressions of (4.40)–(4.41), eq. (4.55) becomes (4.5).

In the diagonal case, the derivation of (4.14) is completely analogous. We then consider
the following four-point function of the type (4.1):

〈ΦD
1
2 ,0

ΦD
1
2 ,0

ΦD
1
2 ,0

ΦD
1
2 ,0
〉 , (4.56)

where the diagonal fields arise from the fusion

ΦD
1
2 ,0
× ΦD

1
2 ,0
→ (he,s, he,s) (4.57)

– 32 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

with the amplitudes

A(he,s, he,s) = C( 1
2 ,0)

D( 1
2 ,0)

D(e,s)DC(e,s)D( 1
2 ,0)

D( 1
2 ,0)

D . (4.58)

The recursion (4.14) is then given by

RDe,s = A(he+1,s, he+1,s)
A(he,s, he,s)

=
C( 1

2 ,0)
D( 1

2 ,0)
D(e+1,s)DC(e+1,s)D( 1

2 ,0)
D( 1

2 ,0)
D

C( 1
2 ,0)

D( 1
2 ,0)

D(e,s)DC(e,s)D( 1
2 ,0)

D( 1
2 ,0)

D

. (4.59)

Going through the same procedure as in the non-diagonal case, but replacing (4.46),
(4.49) with

GDD1 = 〈ΦD
2,1ΦD

1
2 ,0

ΦD
1
2 ,0

ΦD
e,s〉, (4.60a)

GDD2 = 〈ΦD
2,1ΦD

e,sΦD
e,sΦD

2,1〉, (4.60b)

one arrives at the expression for the recursion (4.59) given by

RDe,s =
χDD−+,1χ

DD
+−,2χ

DD
−+,1

χDD−−,3
. (4.61)

Plugging in (4.40)–(4.41), we obtain (4.14).
Note that to obtain (4.55) and (4.61), it is important that we are studying a four-point

function of the spin operator where the amplitudes are given by three-point structure
constants as in (4.44) and (4.58), since in this case the four-point function of figure 4
involving ΦD

2,1 gives rise to both C( 1
2 ,0)( 1

2 ,0)(e,j) and C( 1
2 ,0)( 1

2 ,0)(e+1,j) in their s- and t-
channels.

4.2 Results

In this section, we give the bootstrap results on the amplitudes (3.31) associated with the
ATL modules up to j = 4 and leave the numerical details to appendix B. As discussed
in section 3.4, this involves solving numerically the truncated interchiral bootstrap equa-
tions (3.32) combined with the constraints of the amplitude ratios (3.33) and the analytic
results (3.19). For this last constraint, we have in fact imposed the ratios of

Aabab(W2,−1)
Aaaaa(W0,−1) ,

Aaaaa(W4,−1)
Aaaaa(W0,−1) (4.62)

as obtained from (3.19) without fixing the overall normalization. It is worth pointing out
that (4.62) can in fact be (partially) bootstrapped as a consistency check. See figure 29
and the related discussions in appendix B.1. Notice that in the Potts spectrum (2.20),
the leading primary in the module W0,q2 has the conformal dimension (h1,1, h̄1,1) = (0, 0),
corresponding to the identity field. This is in fact the field with the lowest conformal
dimension, and since it only appears in the probability Paabb, it is natural to use the
normalization

Aaabb(W0,q2) = 1 (4.63)

for the bootstrap equations (3.32).
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Figure 7. The amplitude Aaaaa(W0,−1). Red dots are the numerical bootstrap result and the
black curve is the analytic expression (3.19a). They agree perfectly (the black curve being only
visible behind the red points close to Q = 4).

From the discussions in [1], it is expected that some amplitudes should display sin-
gularities at rational values of β2, the effect of which is to cancel the overall singularities
and thus lead to smooth geometrical correlations. We will study this in more details in the
next section, while here we simply point out the locations of the singularities.

4.2.1 Aaaaa

Up to j = 4, the following amplitudes appear in the interchiral block expansion of Paaaa:

Aaaaa(W0,−1), Aaaaa(W2,1),
Aaaaa(W4,−1), Aaaaa(W4,1).

(4.64)

All the other amplitudes of the primaries can be obtained using the recursions which
have been incorporated into the interchiral blocks for the numerical bootstrap. With the
normalization (4.63), we obtained the amplitude Aaaaa(W0,−1) given in figure 7, where
we also plot the analytic amplitude (3.19a). The explicit expression of the latter is given
in (C.4) of appendix C, as obtained originally in [4] and reproduced in [20], where it was also
found to agree with Monte-Carlo simulations. It was pointed out in [20] that this specific
normalization for the amplitude A

(
h 1

2 ,0
, h 1

2 ,0

)
(i.e., our Aaaaa(W0,−1) here) underlies the

three-point structure constants describing the probability Paaa of three points belonging
to the same FK cluster [14]. Here we can clearly see that the agreement with bootstrap
result is perfect.

In figure 8, we show on the left the amplitude Aaaaa(W2,1) and on the right
Aaaaa(W4,−1) as given in (3.19c). In both cases, the amplitudes have simple poles at
Q = 2 and no other poles in the range 0 < Q < 4.

The amplitude Aaaaa(W4,1) is shown in figure 9. It has simple poles at:

Q = 4 cos2
(3π

8

)
= 0.585786 . . . , (4.65a)

Q = 4 cos2
(
π

8

)
= 3.414213 . . . , (4.65b)
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(a) (b)

Figure 8. The bootstrapped Aaaaa(W2,1) on the left and the analytic Aaaaa(W4,−1) on the right.

Figure 9. The bootstrap result of the amplitude Aaaaa(W4,1) and its detailed pole structure in
the regions 0 < Q < 2 and 2 < Q < 4.

of which we also plot the details in the zoomed-in regions of 0 < Q < 2 and 2 < Q < 4 in
the bottom part of the figure.

4.2.2 Aabab

In Pabab, up to j = 4, we have the following amplitudes

Aabab(W2,1), Aabab(W2,−1),
Aabab(W4,1), Aabab(W4,−1),
Aabab(W4,i), Aabab(W4,−i).

(4.66)

The second amplitude Aabab(W2,−1) was obtained analytically in (3.19b), and for the mod-
ules W2,1, W4,1, W4,−1 the corresponding amplitudes are related to the Aaaaa through Rᾱ
in (3.12). This was in fact used as input in the bootstrap for the final results we present
here. However for completeness we plot all these amplitudes below.
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(a) (b)

Figure 10. The bootstrapped Aabab(W2,1) on the left and the analytic Aabab(W2,−1) on the right.

(a) (b)

Figure 11. The bootstrapped Aabab(W4,1) on the left and the analytic Aabab(W4,−1) on the right.

The amplitudes Aabab(W2,1) and Aabab(W2,−1) are shown in figure 10. They are smooth
with no singularities in the whole range 0 < Q < 4.

The numerical Aabab(W4,1) and the analytic Aabab(W4,−1) are plotted in figure 11,
where the latter are obtained using (3.19c) and (3.12e). Notice that the amplitude
Aabab(W4,1) is smooth for 0 < Q < 4, due to the cancellation of the zeros of Rᾱ(W4,1)
in (3.12g) with the poles in Aaaaa(W4,1), which further confirms that the singularities
at (4.65a) and (4.65b) in Aaaaa(W4,1) appear as simple poles.

The modules W4,i and W4,−i only appear in Pabab (and Pabba with the same amplitude
but the opposite sign) and hence were obtained purely through the numerical bootstrap.
Recall that they are in fact related by (4.8). The amplitudes display poles at

Q = 4 cos2
(3π

8

)
= 0.585786 . . . , (4.67a)

Q = 4 cos2
(
π

8

)
= 3.414213 . . . . (4.67b)

These poles were in fact already observed in [1] for A
(
h 1

4 ,4
, h 1

4 ,−4

)
(i.e., Aabab(W4,i) in the

present notation) which we will analyze in more details in the next section. The results
are plotted in figures 12 and 13 together with their detailed pole structures in the bottom
parts of those figures.
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Figure 12. The bootstrap result of the amplitude Aabab(W4,i) and its detailed pole structures in
the regions 0 < Q < 2 and 2 < Q < 4.

Figure 13. The bootstrap result of the amplitude Aabab(W4,−i) and its detailed pole structures in
the regions 0 < Q < 2 and 2 < Q < 4.
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(a) (b)

Figure 14. The bootstrapped Aaabb(W2,1) on the left and the analytic Aaabb(W4,−1) on the right.

4.2.3 Aaabb

In the probability Paabb, we have the following amplitudes

Aaabb(W0,q2), Aaabb(W0,−1),
Aaabb(W2,1),
Aaabb(W4,−1), Aaabb(W4,1).

(4.68)

While the first amplitude provides the normalization (4.63), we plot last three in figures 14
and 15. (Note here that Aaabb(W0,−1) is trivially related to Aaaaa(W0,−1) in figure 7 by a
minus sign as in (3.12a).) The analytic structures of these amplitudes can be seen from that
of Aaaaa and Rα from (3.12b), (3.12d) and (3.12f). In particular, Rα(W2,1) and Rα(W4,1)
indicate new poles in Aaabb(W2,1) at Q = 1 and in Aaabb(W4,1) at

Q = 4 cos2
(2π

5

)
= 0.381966 . . . , (4.69a)

Q = 4 cos2
(
π

5

)
= 2.61803 . . . . (4.69b)

4.3 Singularities and exact amplitudes

As pointed out in [1], the proposal of [19] cannot be the accurate description of the Potts
geometrical correlations due to the appearance of divergences in Q in their correlation
functions, whereas the Potts probabilities are expected to be smooth functions in Q. The
spectrum of (2.20), on the other hand, has the effect of canceling such unwanted singu-
larities, as already studied in [1] through an example. We now proceed further along this
line to analyze in full detail the bootstrapped amplitudes that we have presented in the
previous section. We will see that combining with the analytic amplitudes that we gave
in section 3.3 and with the recursions that we established in section 4.1, this gives us ex-
act amplitudes at special values of Q corresponding to rational β2 given by (2.13). Such
rational values of β2 are currently not directly accessible to the numerical bootstrap.20 In

20The Zamolodchikov recursive formula for computing conformal blocks is singular at rational β2 and
therefore we do not bootstrap directly at the corresponding values of Q.
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Figure 15. The bootstrap result of the amplitude Aaabb(W4,1) and its detailed pole structures in
the regions 0 < Q < 2 and 2 < Q < 4.

the meantime, we will see the intricate interplay between the spectra involved in various
Potts probabilities and the analytic structures in the amplitudes. This provides a CFT
interpretation of some of the amplitude ratios in (3.12), which were originally obtained as
an observation in the lattice-model computations.

Aabab(W4,i). In [1], it was argued that the leading field
(
h 1

4 ,4
, h 1

4 ,−4

)
is necessary in

addition to the field
(
h 3

2 ,2
, h 3

2 ,−2

)
of the spectrum of [19] in order for Pabab to be a smooth

function of Q. As our first case, we now make this analysis more precise and explain the
poles in the amplitudes Aabab(W4,i) at (4.67).

At Q = 4 cos2
(

3π
8

)
, one finds a coincidence of conformal dimensions:

h 1
4 ,4

= h̄1,2, h̄ 1
4 ,4

= h̄ 3
2 ,2
, h 3

2 ,2
= h1,2. (4.70)

The contribution of
(
h 3

2 ,2
, h 3

2 ,−2

)
in Pabab therefore has a divergent term

Aabab(W2,−1)R 3
2 ,2

Re
[
Fh 3

2 ,2
(z)Fh 3

2 ,−2
(z̄)
]

= Aabab(W2,−1)R 3
2 ,2

R1,2
h 3

2 ,2
−h1,2

Re
[
Fh−1,2(z)Fh 3

2 ,−2
(z̄)
]
+. . . ,

(4.71)
where we have used (4.3), (4.17), (4.18) and (2.41). The divergence is necessarily can-
celed by

Aabab(W4,i)Re
[
Fh 1

4 ,4
(z)Fh 1

4 ,−4
(z̄)
]
, (4.72)

which requires

Aabab(W4,i) = −Aabab(W2,−1)R 3
2 ,2

R1,2
h 3

2 ,2
− h1,2

+O(1). (4.73)
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Figure 16. The residues of the amplitude Aabab(W4,i) at Q = 4 cos2 ( 3π
8
)
(left) and Q = 4 cos2 (π

8
)

(right) given by the exact expressions (4.74) and (4.77) are indicated with black dots. The slightly
smaller blue dots are the bootstrap results in the nearby region.

Extracting the residue, we obtain at Q = 4 cos2
(

3π
8

)
:

Res [Aabab(W4,i)] |Q=4 cos2 3π
8

= −AL(W0,−1)
174607744311πΓ

(
−56

5

)
Γ
(
−3

4

)
Γ
(

1
8

)
Γ
(

4
5

)
Γ
(

9
8

)
Γ
(

19
10

)
5777653760000 5√2Γ

(
−34

5

)
Γ
(
−9

8

)
Γ
(
−1

8

)
Γ
(

3
4

)
Γ
(

11
10

)
Γ
(

11
5

) ,
(4.74)

where we have used the explicit expression (3.19b) ofR 3
2 ,2

, and the expression of AL(W0,−1)
is given in (C.4) in appendix C.

Similarly, at Q = 4 cos2 (π
8
)
, one finds

h̄ 1
4 ,4

= h̄2,2, h 1
4 ,4

= h̄ 3
2 ,2
, h 3

2 ,2
= h2,2. (4.75)

A completely parallel calculation to the above leads to the exact result

Aabab(W4,i) = −Aabab(W2,−1)R 3
2 ,2

R2,2
h 3

2 ,2
− h2,2

+O(1) (4.76)

and explicitly:

Res [Aabab(W4,i)] |Q=4 cos2 π
8

= AL(W0,−1)
1932805πΓ

(
−5

4

)
Γ
(

5
14

)
Γ
(

11
8

)2
Γ
(

25
14

)
Γ
(

33
14

)
501377302265856 7√2Γ

(
−19

14

)
Γ
(
−3

8

)2
Γ
(

9
14

)
Γ
(

17
14

)
Γ
(

5
4

) .
(4.77)

In figure 16, we plot (4.74) and (4.77) together with the bootstrap results in the
respective regions of Q. As can be seen, the exact results interpolate smoothly between
the numerical bootstrap results.

While the above analysis focuses on a single probability Pabab, in the following we
consider the comparison of analytic structures of the amplitudes in different probabilities
which are explicitly related by (3.12). We will focus on how such differences are related to
the corresponding differences of the spectra in (2.20). This will give an analytic explanation
of some of the ratios R, as well as exact results on the amplitudes.

Rα(W2,1) and W0,q2. Consider now the amplitudes Aaabb(W2,1) in figure 14a. Com-
pared to Aaaaa(W2,1), it has an extra pole at Q = 1, as can be seen explicitly from the ratio
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Rα(W2,1) in (3.12b). One naturally suspects that such difference in the analytic structure is
directly related to the difference in the spectra of the two probabilities involved, the module
W0,q2 in this case. Indeed, at Q = 1, one finds a collision of the conformal dimensions

h1,1 = h̄1,1 = h1,2. (4.78)

This means that the left and right conformal blocks for the identity field include the
following divergent term:21

Fh1,1(z) = F̃h1,2(z) + R1,2
h1,1 − h1,2

Fh1,−2(z), (4.79a)

Fh̄1,1
(z̄) = F̃h1,2(z̄) + R1,2

h̄1,1 − h1,2
Fh1,−2(z̄). (4.79b)

Note that the F̃ still have divergences due to the coincidence of (h1,1, h̄1,1) with other
fields, with however different z, z̄-dependence. With the normalization Aaabb(W0,q2) = 1
from (4.63), the identity field enters the s-channel of Paabb as

Fh1,1(z)Fh̄1,1
(z̄) =

R2
1,2

(h1,1−h1,2)2Fh1,−2(z)Fh1,−2(z̄)+ 2R1,2
h1,1−h1,2

Re
[
F̃h1,2(z)Fh1,−2(z̄)

]
+. . . .

(4.80)
First, notice that the double pole in the first term is canceled exactly within the block

of W0,q2 . Due to the coincident dimensions

h3,1 = h̄3,1 = h1,−2, (4.81)

the block F0,q2 from (4.25) includes the term

R3,1Fh3,1(z)Fh3,1(z̄) = R3,1Fh1,−2(z)Fh1,−2(z̄), (4.82)

where R3,1 has a double pole at Q = 1 whose residue cancels the residue of R2
1,2

(h1,1−h1,2)2

exactly, as can be easily checked.
Now, in order to cancel the simple pole in the second term of (4.80), it is necessary

for the amplitude of (h1,2, h1,−2) at Q = 1 to be of the form

Aaabb(h1,2, h1,−2) = − R1,2
h1,1 − h1,2

+O(1), (4.83)

where we recall the identification (4.4) to account for the factor of 2. Notice that the
blocks in the second term of (4.80) are precisely the regular part of the blocks for the field
(h1,2, h1,−2) after removing the pole, as described in (2.41)–(2.42).22 We then deduce

Aaabb(W2,1) = − R1,2
(h1,1 − h1,2)RN0,2

+O(1) , (4.84)

21We have in this section omitted the superscript of the conformal blocks indicating the channels. The
arguments here apply to either one of the s- and t-channels whose blocks are related by (2.37).

22Even though our treatment of conformal blocks for fields with degenerate indices is not exact due to
the logarithmic structure, we believe the regular part is accurate.
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where RN0,2 is given by the recursion (4.7). Now, using (3.12b), we obtain the exact ampli-
tude Aaaaa(W2,1) at Q = 1:

Aaaaa(W2,1)|Q=1 =
5πΓ

(
−5

4

)
Γ
(

7
4

)
144
√

3Γ
(

1
4

)
Γ
(

5
4

) . (4.85)

In figure 17a, we plot the value of (4.85) together with the bootstrapped amplitude
Aaaaa(W2,1) in the region around Q = 1.

We have seen above that from the CFT point of view, the amplitude ratio Rα(W2,1) is
necessary to introduce the pole at Q = 1 in the amplitude Aaabb(W2,1), in order to cancel
the simple pole generated by the conformal blocks of W0,q2 appearing in the s-channel of
Paabb. This picture is quite generic as we shall now see in another example.

Rᾱ(W2,1) and W0,−1. From figures 8a and 10a, one can see that the amplitudes
Aaaaa(W2,1) has a pole at Q = 2 which is canceled by Rᾱ(W2,1) of (3.12c) in Aabab(W2,1).
This difference could easily be understood from the participation of the module W0,−1 in
Paaaa. At Q = 2, one finds

h 1
2 ,0

= h̄ 1
2 ,0

= h1,2 = h2,2 (4.86)

leading to the following contribution to Paaaa:

Fh 1
2 ,0

(z)Fh̄ 1
2 ,0

(z̄) =
R2

1,2(
h 1

2 ,0
−h1,2

)2Fh1,−2(z)Fh1,−2(z̄)+
R2

2,2(
h 1

2 ,0
−h2,2

)2Fh2,−2(z)Fh2,−2(z̄)

+ 2R1,2
h 1

2 ,0
−h1,2

Re
[
F̃h1,2(z)Fh1,−2(z̄)

]
+ 2R2,2
h 1

2 ,0
−h2,2

Re
[
F̃h2,2(z)Fh2,−2(z̄)

]
+. . .

(4.87)
with an overall amplitude Aaaaa(W0,−1). The two double poles are again canceled exactly
within the block F0,−1 by the terms

R 5
2 ,0
Fh 5

2 ,0
(z)Fh 5

2 ,0
(z̄) +R 7

2 ,0
Fh 7

2 ,0
(z)Fh 7

2 ,0
(z̄) (4.88)

due to the coincident dimensions

h 5
2 ,0

= h̄ 5
2 ,0

= h1,−2, h 7
2 ,0

= h̄ 7
2 ,0

= h2,−2, (4.89)

as can be easily checked.To cancel the simple poles one needs the amplitudes for (h1,2, h1,−2)
and (h2,2, h2,−2) to be

−Aaaaa(W0,−1) R1,2
h 1

2 ,0
− h1,2

, −Aaaaa(W0,−1) R2,2
h 1

2 ,0
− h2,2

. (4.90)

This on one hand requires the recursion

RN1,2 = A(h2,2, h2,−2)
A(h1,2, h1,−2) = −R2,2

R1,2
, (4.91)
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(a) (b)

Figure 17. The amplitudes Aaaaa(W2,1) at Q = 1 (left) and Aabab(W2,1) at Q = 2 (right).
The red and blue dots are the bootstrap results and the slightly bigger black dots are the exact
expressions (4.85) and (4.93) obtained from the requirement of singularity cancellations.

which can indeed be shown to be true. On the other hand, one finds that at Q = 2:

Aaaaa(W2,1) = −Aaaaa(W0,−1) R1,2(
h 1

2 ,0
− h1,2

)
RN0,2

+O(1). (4.92)

Using (3.12c), this gives the exact value of Aabab(W2,1) at Q = 2:

Aabab(W2,1)|Q=2 = AL(W0,−1)
21πΓ

(
−7

6

)
Γ
(

5
3

)
2048 3√2Γ

(
1
6

)
,Γ
(

4
3

) , (4.93)

where the expression of AL(W0,−1) is given in (C.4). In figure 17b, we show this exact
amplitude at Q = 2 together with the bootstrapped amplitudes in the region around Q = 2.

We have seen in the above how singularities in the amplitudes cancel the divergences
in the conformal blocks at special values of Q. In the last part of this section, we shall see
another type of divergences which arises from the R in the construction of the interchiral
conformal blocks in section 4.1 (which ultimately comes from the recursions) and how it
leads to singularities in the amplitudes, and also provides exact results.

Canceling divergences from R. As we have seen in figure 15, the ratio Rα(W4,1)
in (3.12f) introduces poles in Aaabb(W4,1) at Q2 − 3Q + 1 = 0, viz., those given in (4.69).
This is naturally due to the module W0,q2 . At Q = 4 cos2

(
2π
5

)
, one finds the coincidence

of dimensions between the leading field in W4,1 with the diagonal field (h3,1, h3,1) inW0,q2 :

h0,4 = h̄0,4 = h3,1 = h̄3,1. (4.94)

Meanwhile recall that the contribution of (h3,1, h3,1) is given by

R3,1Fh3,1(z)Fh3,1(z̄), (4.95)

and that R3,1 as defined in (4.26) has a simple pole. To cancel this divergence in the
s-channel of Paabb (or the t-channel of Pabba), we need

Aaabb(W4,1) = −R3,1 +O(1), (4.96)
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or using (3.12f):
Aaaaa(W4,1) = − R3,1

Rα(W4,1) . (4.97)

This gives the exact amplitude at Q = 4 cos2
(

2π
5

)
:

Aaaaa(W4,1)|Q=4 cos2( 2π
5 ) =

9
√

(5 +
√

5)πΓ
(
−10

3

)
Γ
(
−4

3

)
Γ
(

5
6

)2
Γ
(

5
3

)3

256
√

10Γ
(
−2

3

)3
Γ
(

1
6

)2
Γ
(

7
3

)
Γ
(

10
3

) . (4.98)

Similarly at Q = 4 cos2 (π
5
)
, one has instead

h0,4 = h̄0,4 = h4,1 = h̄4,1. (4.99)

and therefore
Aaabb(W4,1) = −R4,1 +O(1). (4.100)

This means that
Aaaaa(W4,1) = − R4,1

Rα(W4,1) , (4.101)

which is explicitly given by

Aaaaa(W4,1)|Q=4 cos2(π5 ) =

√
(5−

√
5)πΓ

(
−11

4

)
Γ
(
−7

4

)
Γ
(

5
8

)2
Γ
(

5
4

)3
Γ
(

15
8

)4

10
√

10Γ
(
−7

8

)4
Γ
(
−1

4

)3
Γ
(

3
8

)2
Γ
(

11
4

)
Γ
(

15
4

) . (4.102)

One can carry out the same analysis on the poles of Aaaaa(W4,1) and Aabab(W4,1) at
Q2 − 4Q + 2 = 0 which disappear in Aaabb(W4,1) due to the ratio Rᾱ(W4,1) from (3.12g).
This can be understood from the module W0,−1 with the divergences in R 7

2 ,0
and R 5

2 ,0
.

We do not repeat the details here but give the exact results from the cancellation of these
divergences:

Aabab(W4,1)|Q=4 cos2( 3π
8 ) = −AL(W0,−1)

45(2+
√

2)πΓ
(
− 12

5

)
Γ
(
− 7

5

)
Γ
(
− 4

5

)
Γ
(

9
10

)2 Γ
(

17
10

)4

16384Γ
(
− 7

10

)4 Γ
(

1
10

)2 Γ
(

9
5

)
Γ
(

12
5

)
Γ
(

17
5

) , (4.103a)

Aabab(W4,1)|Q=4 cos2(π8 ) = AL(W0,−1)
823543(

√
2−2)Γ

(
− 6

7

)
Γ
(
− 3

7

)
Γ
(

1
7

)
Γ
(

11
14

)2 Γ
(

19
14

)3 Γ
(

27
14

)2

6871947673600 7√2Γ
(
− 13

14

)2 Γ
(
− 5

14

)2 Γ
(

3
14

)
Γ
(

6
7

)
Γ
(

10
7

)
Γ
(

17
7

) ,
(4.103b)

where again the AL(W0,−1) is given in (C.4).
In figures 18 and 19, we plot the analytic expressions (4.102), (4.98), (4.103a)

and (4.103b) together with the bootstrap results.

4.4 Comparisons

The amplitudes that we have obtained from the bootstrap in section 4.2 can be compared
with a few existing partial results. Note that while such comparisons provide some sanity
checks on the bootstrapped amplitudes, there has not been a complete determination of
the amplitudes in the Potts probabilities up to this level before our work. In the following
we will discuss the comparison of the bootstrap results with numerical transfer-matrix
computations in the lattice model [1], and with the non-diagonal Liouville theory of [19]
which provides an approximate description.
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Figure 18. The amplitudes Aaaaa(W4,1) in the regions around Q = 4 cos2 ( 2π
5
)

(left) and
Q = 4 cos2 (π

5
)
(right). The red dots are the bootstrap results and the black dots are the ex-

act expressions (4.98) and (4.102).

Figure 19. The amplitudes Aabab(W4,1) in the regions around Q = 4 cos2 ( 3π
8
)

(left) and
Q = 4 cos2 (π

8
)
(right). The blue dots are the bootstrap results and the black dots are the ex-

act expressions (4.103a) and (4.103b).

4.4.1 Lattice

The approach of computing the amplitudes on the lattice is described in details in [1]
where a few examples were also given.23 Here we apply this lattice approach to obtain the
amplitudes associated with the primary fields in the four probabilities within the range
0 < Q < 4. On one hand, this provides a check on the Potts solution to the bootstrap
we obtained above, namely the amplitudes A(W) associated with entire ATL modules,
which we show in this section. On the other hand, the lattice results for the sub-leading
primaries in a ATL module also serve as basic checks on the interchiral conformal blocks
as established in section 4.1, by means of a comparison of the lattice results with the
recursions (4.5) and (4.14). We leave this latter issue to appendix B.1.

23Specifically we are using the scalar product method exposed in section 4.3.2 of [1], for which ample
technical details were given in appendix A.2 of that paper. We were generally able to obtain finite-size
results for cylinders of circumferences L = 5, 6, . . . , Lmax, with a maximal size Lmax = 11 for the amplitudes
corresponding to the lowest-lying eigenvalues in the transfer matrix spectrum, and Lmax = 10 for higher-
lying cases. Extrapolations to the scaling limit L→∞ were done separately for even and odd sizes, using
the tricks given in section 4.3.3 of [1]. Indicative error bars were estimated from the difference between the
extrapolations through even and odd sizes.
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We now consider the lattice comparisons for the bootstrapped amplitudes

Aaaaa(W2,1), Aaaaa(W4,1), Aabab(W4,i), Aabab(W4,−i). (4.104)

Note that due to the normalization in the lattice computation (see below), we do not have
the lowest amplitude in each probability for the lattice results. On the other hand, since
the bootstrap has imposed the amplitude ratios (3.12), which were obtained originally from
lattice computations [3], it suffices to consider the comparisons of the amplitudes (4.104)
and ignore the ones related to them through (3.12).

In the lattice computation, one needs to choose a normalization for each probability
which we have chosen to be the amplitude of the field with the lowest dimension. In
particular, as described in [1, 3], for the probabilities Pabab and Pabba, we focus on the
symmetric and antisymmetric combinations

PS = Pabab + Pabba, PA = Pabab − Pabba , (4.105)

which consist respectively of modules with even and odd spins, due to (3.33c) and (3.33d).
This way, we obtain the following results on the lattice:

Aaaaa(W2,1)
Aaaaa(W0,−1) ,

Aaaaa(W4,1)
Aaaaa(W0,−1) ,

Aabab(W4,i)
Aabab(W2,−1) ,

Aabab(W4,−i)
Aabab(W2,−1) (4.106)

and plot them in figures 20, 21, 22 and 23 together with the corresponding bootstrap re-
sults. In each of these, the bootstrap and the lattice results agree on the analytic structures
(the location of poles and zeros), the order of magnitudes (which vary considerably with
the amplitude being considered) and the generic behavior as a function of Q (sign, mono-
tonicity, local extrema). The difference in the actual values is likely largely due to the
finite-size effect of the lattice computations. In particular, for each parity of the lattice size
L we have only three points at our disposal, which is a rather precarious situation for per-
forming reliable extrapolations.24 Overall, given these constraints, we find the agreement
on the general features of the curves highly satisfactory, while the detailed comparison of
the actual values ranges from excellent (for the lowest-lying amplitudes) to acceptable (for
the higher-lying ones).

4.4.2 Non-diagonal Liouville theory

As claimed by the authors of [20], the spectrum SZ+ 1
2 ,2Z

applied to the four-point func-
tion (3.1) provides an approximate description that becomes accurate at Q = 0, 3, 4. This
means that the difference between the spectrum (2.20) and SZ+ 1

2 ,2Z
vanishes at these values

of Q for the combination in (3.1), as can be easily checked using our results. This involves
the modules W2,1, W4,1, W4,i and W4,−i.

For W2,1, using (3.12c), one has

Aaaaa(W2,1) + 2
Q− 2Aabab(W2,1) = 0 (4.107)

24Concretely, we extrapolated to the limit L →∞ using a second-order polynomial in 1/L, which might
not always be sufficient due to the amount of curvature observed in the data.
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Figure 20. The amplitude Aaaaa(W2,1) normalized with the leading amplitude Aaaaa(W0,−1) in
Paaaa. Comparison of the lattice results (indicated with ×) and bootstrap results (indicated with •).

Figure 21. The amplitude Aaaaa(W4,1) normalized with the leading amplitude Aaaaa(W0,−1) in
Paaaa. Comparison of the lattice results (indicated with ×) and bootstrap results (indicated with
•) in the regions 0 < Q < 2 and 2 < Q < 4.

Figure 22. The amplitude Aabab(W4,i) normalized with the leading amplitude Aabab(W2,−1) in
Pabab−Pabba. Comparison of the lattice results (indicated with ×) and bootstrap results (indicated
with •) in the regions 0 < Q < 2 and 2 < Q < 4.
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Figure 23. The amplitude Aabab(W4,−i) normalized with the leading amplitude Aabab(W2,−1) in
Pabab−Pabba. Comparison of the lattice results (indicated with ×) and bootstrap results (indicated
with •) in the regions 0 < Q < 2 and 2 < Q < 4.

for all values of Q, which explains why [19] gives a reasonable numerical approximation,
since this is the next-to-leading contribution in the combination Paaaa + Pabab after the
module W0,−1. On the other hand, as we have studied in [3], the expression (3.1) is
accurate up to diagrams involving two non-contractible loops, which is reflected in the
amplitude identities for modules with j = 2, i.e., eqs. (3.19b) above and (4.107) here.

For W4,1, using (3.12g), one obtains

Aaaaa(W4,1) + 2
Q− 2Aabab(W4,1) = −Aaaaa(W4,1)Q

2(Q− 3)(Q− 4)
2(Q− 2) (4.108)

and indeed, the module disappears in this combination exactly at Q = 0, 3, 4. For generic
values of Q, this does not vanish but the values are numerically small — except obviously
for the regions near the poles at Q = 2, 4 cos2

(
3π
8

)
and 4 cos2 (π

8
)
— as we show in

figure 24. The situation is similar for W4,i and W4,−i: since they do not appear in Paaaa,
the combination (3.1) involves simply the amplitudes

2
Q− 2Aabab(W4,i),

2
Q− 2Aabab(W4,−i) (4.109)

which — as is clearly seen from figures 12 and 13 — vanish at Q = 0, 3, 4 and remain small
for generic values of Q. In this case, they also give rise to poles at Q = 2, 4 cos2

(
3π
8

)
and

4 cos2 (π
8
)
which appear in the correlation functions (3.1).

4.5 “Renormalized” Liouville recursions

As we have mentioned in section 4.1, the field ΦD
1,2 in (non-diagonal) Liouville theory is

degenerate, and this feature leads to the recursions AL(Wj+1,−1)
AL(Wj−1,−1) . The explicit expressions

were obtained in [4, 26] and we recall them in appendix C. In the case of the Potts model,
the degeneracy of this field is absent and therefore the usual Liouville recursions for shifting
the j-index do not hold any more. We see however in (3.19), that this is replaced by a
renormalized version in which the Liouville recursion is dressed by a factor consisting of
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Figure 24. The amplitude of W4,1 in the combination Paaaa + 2
Q−2Pabab (the right-hand side

of (3.1)) which is approximated by the four-point function of [19] (the left-hand side of (3.1))
whose spectrum does not include these fields. The values are generically small and vanishes at
Q = 0, 3, 4 where the approximation becomes exact.

ratios of polynomials in Q:

Aaaaa(W4,−1)
Aaaaa(W0,−1) = (Q− 2)(Q2 − 4Q+ 2)

Q(Q− 3)2
AL(W4,−1)
AL(W0,−1) , (4.110a)

Aabab(W4,−1)
Aabab(W2,−1) = (Q− 1)(Q− 4)(Q2 − 4Q+ 2)

2Q(Q− 3)2
AL(W4,−1)
AL(W2,−1) . (4.110b)

Interestingly, using the bootstrap results, we have managed to conjecture another renor-
malized Liouville recursion:

Aaaaa(W4,1)
Aaaaa(W2,1) = (Q− 2)2

(Q− 1)2(Q2 − 4Q+ 2)
AL(W4,1)
AL(W2,1) . (4.111)

It is certainly remarkable that the precision of the numerical bootstrap results is sufficient
for such a relation to be established. Notice that despite of the fields in modules W4,1
and W2,1 being absent in the spectrum of (non-diagonal) Liouville theory, the recursion
AL(W4,1)
AL(W2,1) exists as a result of the degeneracy of ΦD

1,2 there. In the case of the Potts-model
probabilities considered here, it is renormalized by a Q-dependent factor similar to (4.110)
which we have established analytically. In figure 25 and 26, we plot the bootstrap results
of (4.111) and the analytic expression on the right-hand side and they agree perfectly.

5 Conclusions

Our results fully confirms the correctness of the spectrum for the Potts-model four-point
functions proposed in [1], and, for all practical purposes, solve the bootstrap problem
and determine accurately the leading amplitudes, hence carrying to its term the program
initiated in [19]. To be fair, our treatment of conformal blocks arising from fields in the
modules Wj,1 with degenerate conformal weights is a bit unsatisfactory, as we did not
take into account the likely presence of logarithmic terms (ln(zz̄)). We do not expect this,
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Figure 25. The renormalized Liouville recursion of Aaaaa(W4,1)
Aaaaa(W2,1) from the bootstrap result (red dots)

matches perfectly with the analytic expression on the right-hand side of (4.111) (black curve).

Figure 26. The agreement of the bootstrap result of Aaaaa(W4,1)
Aaaaa(W2,1) with the right-hand side of (4.111)

in the regions 0 < Q < 2 and 2 < Q < 4.

however, to affect the numerically determined amplitudes significantly, as witnessed by the
excellent agreement with data from lattice calculations. Nonetheless, we hope to revisit
this question in our next paper.

In the course of this work, we have also unearthed a lot of structure that remains to
be understood. The degeneracy of fields with weight hr,1, for r ∈ N∗, arising in W0,q2 led
naturally to the existence of interchiral conformal blocks, a structure deeply related with
the underlying affine Temperley-Lieb algebra. This begs further study of the continuum
limit of this algebra, which is more than the product of left and right Virasoro algebras,
and was postulated in [2] to be described by an interchiral algebra. The results of this paper
should make possible the construction of this algebra beyond the case c = −2 discussed
in [2]: we also plan to come back to this question soon.

Certainly the most fascinating result of our work is the existence of “renormalized”
Liouville recursions, hinting at a structure in the Potts model that would replace the
degeneracy of fields ΦD

12 familiar in Liouville theory. This “structure” manifests itself by
an infinite series of rational functions of Q (see, e.g., (4.110) and (4.111)), whose origin
remains largely mysterious to us. Understanding these functions would likely require a
deeper study of the algebraic structure of the models on the lattice, and result in the full

– 50 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

analytic determination of the correlation functions in the Potts model and in particular,
the analytic expressions for the amplitudes. This question belongs as well to our list of
ongoing investigations.

In conclusion, it is worth mentioning that a fully similar approach would lead to
geometrical correlation functions in the O(n) model (involving “polymer lines” instead of
clusters).
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A α, β, γ from [3]

In [3], we have stated several facts regarding how the eigenvalues of the lattice transfer
matrix (which in the continuum limit become the fields in the CFT) contribute to various
quantities with different geometric content. Here we recall the definitions and expressions
which are used in the main text for deriving further consequences on the Potts model.

One of the main results in [3] is that the ratios of the amplitudes of these eigenvalues
in different probabilities, different sub-diagrams contributing to the probabilities, and the
diagrams with modified loop weights, depend only on the corresponding ATL modules and
Q, which allows one to define the following quantities:

αj,z2 ≡
Aaabb
Aaaaa

(Wj,z2), ᾱj,z2 ≡
Aabab +Aabba

Aaaaa
(Wj,z2),

β
(k)
j,z2 ≡

A
(k)
abab

A
(2)
abab

(Wj,z2), γ
(a)
j,z2 ≡

A
(a)
aabb

Aaabb
(Wj,z2).

(A.1)

Here A(k) refers to the amplitude of a module in sub-diagrams with a fixed number k
(necessarily even) of non-contractible loops between the marked FK clusters, and note
that a module Wj,z2 has at most k = j. By definition, β(2)

j,z2 = 1. A(a) refers to the
amplitude of a module when the non-contractible loop is given weight

na = qa + q−a, (A.2)

with a = 1 in the case of the Potts model. In section 3.2, we have used αj,z2 , ᾱj,z2 , β
(k)
j,z2 to

define the ratios Rα,Rᾱ,Rβ . One can similarly define the ratio

Rγ(Wj,z2) = Ãaabb
Aaabb

(Wj,z2) =
p−1∑

a=1 odd
(−1)

a−1
2 γ

(a)
j,z2 , (A.3)

where p is from the minimal models labeled by M(p, q) before taking the irrational limit
(see [3] for more details).

– 51 –



J
H
E
P
1
2
(
2
0
2
0
)
0
1
9

We have then [3]:

α0,−1 = −1 , (A.4a)

α2,1 = 1
1−Q , (A.4b)

ᾱ2,1 = 2−Q , (A.4c)

α4,−1 = 2−Q
2 , (A.4d)

ᾱ4,−1 = (Q− 1)(Q− 4)
2 , (A.4e)

α4,1 = −Q
5 − 7Q4 + 15Q3 − 10Q2 + 4Q− 2

2(Q2 − 3Q+ 1) , (A.4f)

ᾱ4,1 = −(Q2 − 4Q+ 2)(Q2 − 3Q− 2)
2 . (A.4g)

In addition, we have
β

(4)
4,−1 = −Q(Q− 2)

3Q− 4 . (A.5)

The explicit expressions of β(4)
4,1 , β

(4)
4,±i and γ

(a)
j,z2 are also given [3], but since they are irrelevant

in this paper we do not repeat them here.

B More details on the numerical bootstrap

Our numerical bootstrap follows the general philosophy proposed in [19] but adapted to our
bootstrap program with the interchiral conformal block construction. Namely we solve the
interchiral bootstrap equations (3.32) as a linear system for the amplitudes (3.31) with the
coefficients given by the blocks F(s,t) evaluated at a set of points {zi} in the region where the
s- and t-channel conformal blocks converge fast.25 See appendix A.2 of [43] for a rewriting of
the recursive formula (2.36) convenient for numerical implementation. We then re-sum the
conformal blocks into the interchiral conformal blocks using the analytic recursions (4.5)
and (4.14) and truncate the blocks according to the total conformal dimension of the
primaries (see the caption of figure 27). Solving the bootstrap equations a few times with
different sets of points {{zi}m} gives a set of amplitudes Am({zi}). As pointed out in [19],
since the amplitudes are supposed to be constants arising from the three-point structure
constants in the fusion channels, they should not depend on {zi}m and therefore have a
small variation within the numerical errors. After imposing various constraints to fix the
solution to the Potts model, as described at the beginning of section 4.2, we use this criteria
of small variation as a check for the stability of the solution, up to the chosen truncation.
This variation is defined through the quantity

δ(A) =

√∑M
m=1(Am−Ā)2

M−1

Ā
, (B.1)

25The q-expansion in the Zamolodchikov recursive formula is convergent everywhere on the z-plane except
at z = 1,∞ for the s-channel and at z = 0,∞ for the t-channel. This speeds up the convergence within
{zi||zi| < 1} ∩ {zi||zi − 1| < 1} where we evaluate the blocks.
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where Ā is the average among the set of m = 1, . . . ,M results. Meanwhile, δ(A) also
provides an estimate of the number of significant figures reliable of the average Ā.

As we have discussed at the end of section 2.2.1, since for the moment we do not know
the exact regularization procedure for the pole terms in (2.39) for the modules Wj,1 and
therefore leave a free amplitude for the block Fhm,−n(z)Fhm,−n(z̄), the latter amplitudes
are not expected to be constants and will have unstable results. In addition, same as for
the primary fields, we also impose the amplitude ratios (3.12) for these free amplitudes
associated with the null descendants, for the modules W2,1 and W4,1 in particular. This is
a reasonable constraint as in obtaining these ratios on the lattice in [3], it was observed that
they hold for all fields in the same ATL module, regardless of primaries or descendants.
Of course, as stated above, this has to be taken as a numerical approximation since the
possible logarithm is not taken into consideration. As a result, the instability of these null
descendant amplitudes does not influence our final results on the amplitudes that we have
presented in section 4.2.

The spectrum (2.20) is truncated at a certain total conformal dimension h + h̄ after
which the primary fields are organized into ATL modules and enter the interchiral conformal
block constructions. We have found that in order to obtain a stable bootstrap result on
the amplitudes with j ≤ 4 for the whole range of 0 < Q < 4, it is good to truncate
out the modules with j ≥ 6.26 This being said, it is however necessary to include the
conformal block of the diagonal field (r, s)D = (3,−2), i.e., the level-6 null descendant of
(r, s) = (3, 2) whose block comes with a free amplitude, despite that its total dimension is
above the dimension of the lowest j = 6 field (r, s) = (0, 6) — left out by the truncation —
within the region 0 < Q < 2. We illustrate the truncation of the spectrum in figure 27.

As mentioned at the beginning of section 4.2, in addition to the constraints (3.33),
we have also imposed the analytic ratios (4.62) for obtaining the final results we give in
section 4.2. Essentially, this is imposing the renormalized Liouville recursions we observed
in section 4.5 to fix the bootstrap solution to the Potts model. The input of Aaaaa(W4,−1) is
particular important for obtaining stable amplitudes for j = 4. This is likely due to a certain
instability introduced by the “naive” regularization we implement in the module W2,1.

For the plots we give in section 4.2, we have typically δ(A) ≈ 10−5, 10−6 except for a
few less stable cases (near Q = 0 for example) with δ(A) ≈ 10−3, 10−4. We present here
the detail of a typical bootstrap result:

amplitude Ā δ(A)
Aaaaa(W0,−1) 1.07789 3.16955× 10−11

Aaaaa(W2,1) 0.137467 5.27509× 10−6

Aaaaa(W4,1) 1.77935× 10−7 1.0648× 10−5

Aabab(W4,i) 6.7319× 10−7 4.8053× 10−6

(B.2)

at Q = 1.56 and the other amplitudes are obtained using the recursions (4.5), (4.14) and
the amplitude ratios (3.12). As stated in [19] and mentioned above, the δ(A) here gives

26By including the j = 6 modules, the resulting amplitudes with j ≤ 4 on average do not exhibit a
significant change, but they are less stable.
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Figure 27. The truncation of the Potts spectrum (2.20) in the interchiral bootstrap. On the left
we plot the total dimensions h + h̄ for the primary fields in the spectrum. After organizing them
in terms of ATL modules, we plot on the right the total dimension of the leading fields in the ATL
modules whose amplitudes are taken as the overall amplitude A(W) in the interchiral conformal
block expansions of the geometrical correlations and need to be determined by the bootstrap. We
truncate at j = 6 and plotted the total dimension of (r, s) = (0, 6) in cyan. However we include the
diagonal null descendant (r, s)D = (3,−2) whose dimension is plotted in magenta. Notice that its
total dimension is larger than the truncation for 0 ≤ Q < 2.

Figure 28. The relative errors in the comparisons of the bootstrap results with the analytic
expressions of Aaaaa(W0,−1) in figure 7 (left) and Aaaaa(W4,1)

Aaaaa(W2,1) in figure 25 (right). These give a
measure of the accuracy in the bootstrapped amplitudes.

an estimate of the accuracy in the bootstrap determination of the amplitudes A. This is
also reflected in the few comparisons with the analytic expressions we give in figures 7, 25
above. We plot the relative error of these comparisons in figure 28.

B.1 Basic checks

In the bootstrap, we have re-summed the Virasoro conformal blocks into the interchiral con-
formal blocks using the recursions obtained from the degeneracy of field ΦD

2,1, as discussed
in details in section 4.1. On the other hand, we have also imposed the relations (4.62)
which, as discussed in section 4.5, is essentially a renormalized version of the Liouville re-
cursions. It is actually a fun exercise to check these constraints with lattice computations
or “reduced bootstrap” where the constraints are loosened. We provide some results on
such basic checks in this subsection.
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Figure 29. The analytic results of Aabab(W2,−1)
Aaaaa(W0,−1) and Aaaaa(W4,−1)

Aaaaa(W0,−1) compared with lattice (indicated
with ×) and reduced bootstrap results (indicated with ).

Figure 30. The recursions (4.5) compared with lattice results. The continuous curves are the
analytic expressions. The “+” indicate the lattice results from the amplitudes in Paaaa and “�”
indicate the lattice results from Pabab + Pabba.

Aabab(W2,−1)
Aaaaa(W0,−1) and Aaaaa(W4,−1)

Aaaaa(W0,−1) . In figure 29, we plot the analytic results of Aabab(W2,−1)
Aaaaa(W0,−1)

and Aaaaa(W4,−1)
Aaaaa(W0,−1) obtained in section 3.3 (see also eq. (4.110)) compared with lattice-

computation and “reduced bootstrap” results. In particular, we bootstrapped Aabab(W2,−1)
Aaaaa(W0,−1)

using eqs. (3.32a) and (3.32b) with constraints (3.33b), whose result is quite stable with
δ(A) . 10−6 in general. We do not have the lattice results for this ratio, since it involves
the leading amplitudes in Paaaa and Pabab − Pabba which are used as normalization for the
other amplitudes in the same probabilities. For the second ratio Aaaaa(W4,−1)

Aaaaa(W0,−1) , the bootstrap
result is much less stable, with δ(A) ≈ 10−2 at most. This is obtained by bootstrapping
eq. (3.32a) alone. In the plot we show at a few values of Q with δ(A) ≈ 10−2 and also
the lattice results. As can be seen, the bootstrap results match the analytical values more
accurately than the lattice results which have finite-size errors.

Recursions (4.5). In figure 30, we plot the analytic recursions (4.5) compared with the
lattice results and find reasonable agreement. In particular, the lattice data for the last
two plots are obtained from amplitudes of W2,1 in both Paaaa and Pabab + Pabba. The
small discrepancies between these two different determinations appear to be a reasonable
measure of the accuracy of the lattice computations, and to within roughly this accuracy
the lattice computations are consistent with the analytic results.
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C AL and the Liouville recursions from [4]

In section 3.3, we have obtained the analytic form of certain Potts amplitudes in terms
of the Liouville amplitudes AL, where the latter refers to the non-diagonal generalization
of the Liouville theory with the explicit expressions given in [4]. In addition, we have
discussed in section 4.5 how the recursions of the amplitudes in the Potts model with the
index j shifted turn out to be a renormalized version of the Liouville recursion and provided
the renormalization factors for all the modules up to j = 4. In this appendix, we give the
expression of AL and the corresponding Liouville recursions as originally obtained in [4]
for the reader’s convenience.

The non-diagonal Liouville amplitudes AL were solved in [4] for the four-point func-
tion (3.1) and the proportionality in this approximate description of Potts probabilities
was fixed to be 1

2 by comparing with Monte-Carlo simulation in [20]. Due to the exact
relation (3.2), the combination of (3.13) is therefore

Paaaa + P̃abab = 2
〈
V D

1
2 ,0
V N

1
2 ,0
V D

1
2 ,0
V N

1
2 ,0

〉
, (C.1)

whose conformal block expansion is given by the spectrum SZ+ 1
2 ,2Z

:27

〈
V D

1
2 ,0
V N

1
2 ,0
V D

1
2 ,0
V N

1
2 ,0

〉
=
∑
e∈N

AL
(
he+ 1

2 ,0
, h̄e+ 1

2 ,0

)
F (c)
h
e+ 1

2 ,0
(z)F (c)

h
e+ 1

2 ,0
(z̄)

+
∑

e∈N,s≥2
AL

(
he+ 1

2 ,s
, h̄e+ 1

2 ,s

)(
F (c)
h
e+ 1

2 ,s
(z)F (c)

h
e+ 1

2 ,−s
(z̄)+F (c)

h
e+ 1

2 ,−s
(z)F (c)

h
e+ 1

2 ,s
(z̄)
)
.

(C.2)
Comparing (C.2) with our construction of the interchiral blocks Fj,−1 in (4.17) and the
definition of AL(Wj,−1) in (3.14), we can identify:

AL (W0,−1) = 2AL
(
h 1

2 ,0
, h̄ 1

2 ,0

)
, (C.3)

whose explicit expression is given by [20]:

2AL
(
h 1

2 ,0
, h̄ 1

2 ,0

)
= 8π2β

2
β2−2β2 Γ(β2)Γ

(
1
β2

)
Γ(2−β2)Γ

(
2− 1

β2

)
×Γ3

β

(
β+ 1

2β

)
Γ3
β

(
β− 1

2β

)
Γ3
β

( 1
2β

)
Γ3
β

( 3
2β

)
Υ2

β

(
β

2−
1

4β

)
Υ6

β

(
β

2 + 1
4β

)
,

(C.4)
where Γβ and Υβ are the double-Gamma and Upsilon functions. Eq. (C.4) is the expression
we have used for plotting the analytic curve in figure 7, where we have found perfect
agreement with the bootstrap results with the normalization (4.63). On the other hand,
for s ≥ 2, i.e., j ≥ 2, the identification is

AL(Wj,−1) = 4AL
(
h 1

2 ,j
, h̄ 1

2 ,j

)
. (C.5)

27The AL(hr,s, h̄r,s) here should be identified with D(s,r) in [20].
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The recursion of shifting the index s for (hr,s, h̄r,s) was given in [4] as:

AL(hr,s+1, h̄r,s+1)
AL(hr,s−1, h̄r,s−1)

= −Γ(−r − sβ2)Γ(r − sβ2)Γ(−r + (1− s)β2)Γ(1− r − (1 + s)β2)
Γ(−r + sβ2)Γ(r + sβ2)Γ(−r + (1 + s)β2)Γ(1− r − (1− s)β2)

×
Γ
(
− r

2 + s
2β

2)2 Γ
(

2−r
2 + s

2β
2
)2

Γ
(

1−r
2 + s

2β
2
)4

Γ
(
− r

2 −
s
2β

2)2 Γ
(

2−r
2 −

s
2β

2
)2

Γ
(

1−r
2 −

s
2β

2
)4

(C.6)
which gives us the following Liouville recursions for j ≥ 2:

AL(W2,−1)
AL(W0,−1) = 2

AL
(
h 1

2 ,2
, h̄ 1

2 ,2

)
AL

(
h 1

2 ,0
, h̄ 1

2 ,0

) , (C.7a)

AL(W4,−1)
AL(W2,−1) =

AL
(
h 1

2 ,4
, h̄ 1

2 ,4

)
AL

(
h 1

2 ,2
, h̄ 1

2 ,2

) . (C.7b)

Notice that the factor of 2 in (C.7a) is due to the special definition of AL with j = 0
in (C.2). In general, the Liouville recursion is given by

AL(Wj+1,e2iπp/M )
AL(Wj−1,e2iπp/M ) =

AL
(
h p
M
,j+1, h̄ p

M
,j+1

)
AL

(
h p
M
,j−1, h̄ p

M
,j−1

) , for j 6= 1, (C.8)

which we have used in (4.111) for extracting another renormalized Liouville recursion from
the bootstrap. Note that despite the amplitudes in the numerator and denominator on the
right-hand side of (C.8) not being given by the analytic results of [4], the recursion exists
and coincides with that of [4], as a result of the degeneracy of the field ΦD

1,2 there.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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