Numerical scheme for kinetic transport equation with internal state - Archive ouverte HAL
Article Dans Une Revue Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal Année : 2021

Numerical scheme for kinetic transport equation with internal state

Shugo Yasuda

Résumé

We investigate the numerical discretization of a two-stream kinetic system with an internal state, such system has been introduced to model the motion of cells by chemotaxis. This internal state models the intracellular methylation level. It adds a variable in the mathematical model, which makes it more challenging to simulate numerically. Moreover, it has been shown that the macroscopic or mesoscopic quantities computed from this system converge to the Keller-Segel system at diffusive scaling or to the velocity-jump kinetic system for chemotaxis at hyperbolic scaling. Then we pay attention to propose numerical schemes uniformly accurate with respect to the scaling parameter. We show that these schemes converge to some limiting schemes which are consistent with the limiting macroscopic or kinetic system. This study is illustrated with some numerical simulations and comparisons with Monte Carlo simulations.
Fichier principal
Vignette du fichier
Internal_num_Hal.pdf (664.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02861713 , version 1 (09-06-2020)

Identifiants

Citer

Nicolas Vauchelet, Shugo Yasuda. Numerical scheme for kinetic transport equation with internal state. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2021, 19 (1), pp.18-27. ⟨10.1137/20m134441x⟩. ⟨hal-02861713⟩
98 Consultations
64 Téléchargements

Altmetric

Partager

More