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Numerical scheme for kinetic transport equation with internal state∗

Nicolas Vauchelet† Shugo Yasuda‡

June 9, 2020

Abstract

We investigate the numerical discretization of a two-stream kinetic system with an internal
state, such system has been introduced to model the motion of cells by chemotaxis. This internal
state models the intracellular methylation level. It adds a variable in the mathematical model,
which makes it more challenging to simulate numerically. Moreover, it has been shown that the
macroscopic or mesoscopic quantities computed from this system converge to the Keller-Segel
system at diffusive scaling or to the velocity-jump kinetic system for chemotaxis at hyperbolic
scaling. Then we pay attention to propose numerical schemes uniformly accurate with respect to
the scaling parameter. We show that these schemes converge to some limiting schemes which are
consistent with the limiting macroscopic or kinetic system. This study is illustrated with some
numerical simulations and comparisons with Monte Carlo simulations.

Keywords: Asymptotic-preserving scheme, chemotaxis, kinetic-transport model with internal
state, well-balanced scheme.

AMS Classification: 65M08, 65N08, 65M12, 92C17.

1 Introduction

Kinetic equations are by now widely used to model the motion of bacteria by so-called ’run-and-
tumble’ process, i.e. an alternance of forward-moving runs with reorienting tumbles. In a simple
mathematical model, bacteria respond to a given external chemical signal only by modulating their
probability to tumble. Then, the motion of bacteria may be described by the dynamics of their
distribution function, which corresponds to the probability to find a bacteria at time t with position
x and velocity v. This mathematical approach has been introduced in [15] and has attracted the
attention of many mathematical works, in particular it has been shown that Keller-Segel equations
may be derived at diffusive scaling (see e.g. [16, 3, 2, 11] and references therein).

Actually, the response of bacteria to signal changes is governed by a sophisticated chemotactic
signal transduction pathway. It involves a rapid response of the cell to the external signal change
called ’excitation’, and a slow ’adaptation’ which allows the cell to subtract out the background sig-
nal. In order to describe the multiscale mechanism between the intracellular chemo-sensory system
and the individual and collective motions of bacteria, more elaborated kinetic models have been pro-
posed. In [3, 4], a cell-based model which incorporates a linear cartoon description of the excitation
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and adaptation response of a cell has been introduced. The signal transduction pathway has been
studied in e.g. [10, 17]. We refer to [17, 24, 28, 26] where the case of bacteria E. coli and the link
between cell-based models and continuum models have been extensively studied.

In this paper, we consider the simplest description of the biochemical pathways, in which a
single additional variable m ≥ 0, which represents the intracellular methylation level, is used. The
methylation has an equilibrium level M , depending on time t and position x. Using F (m,M) as the
adaptation rate, the intracellular adaptation dynamics is governed by a differential equation

dm

dt
= F (m,M(t, x)).

In order to model the dynamics of a population of bacteria, the following pathway-based kinetic-
transport model has been proposed in [3, 22]. Let q(t, x, v,m) be the probability density function of
bacteria at time t, position x ∈ Rd, moving at velocity v ∈ V, where V is a bounded domain of Rd,
and methylation level m > 0. We have∂tq + v · ∇xq + ∂m[F (m,M)q] = Q[m,M ](q),

q(x, v,m = 0, t) = 0.
(1.1)

The ’run’ phase is modelled by the transport term in x, whereas the evolution of the methylation
level is modelled by the m-derivative. The ’tumble’ phase is described in the right hand side by the
tumbling operator Q[m,M ](q). It is given by

Q[m,M ](q) =
1

‖V‖

∫
V

[
λ(m,M, v, v′)q(t, x, v′,m)− λ(m,M, v′, v)q(t, x, v,m)

]
dv′, (1.2)

where λ(m,M, v, v′) denotes the methylation dependent tumbling frequency from v′ to v. Departing
from such pathway-based kinetic equation several authors (see [3, 4, 2, 25, 21, 26, 23, 19]) developed
the asymptotic theory which allows to recover, in the diffusion limit, macroscopic equations as the
Keller-Segel (KS) or the flux-limited Keller-Segel (FLKS) system which governs the dynamics of the
macroscopic quantities depending only on t and x. In [18], the authors show that, at hyperbolic
scaling, the above pathway-based kinetic equation converges to the classical velocity jump kinetic
equation for mesoscopic quantities depending on t, x, and v.

For E. coli chemotaxis, it may be assumed that the tumbling frequency λ in (1.2) depends only
on M − m [22] : λ(m,M, v, v′) = λ0Λ(M−mδ ), where λ0 > 0 is the mean tumbling frequency and
δ > 0 is the stiffness of the chemotactic response. Moreover, we consider the linear model

dm

dt
= F (m,M) =

1

τ
(M −m),

where τ > 0 is the characteristic time of adaptation. The equilibrium level M is a function of
extra-cellular chemical concentration and is assumed to be independent of time. Usually, it has a
logarithmic dependancy as it has been experimentally evidenced for E. coli in [14], which allows
to consider that ∇xM is uniform in space in exponential environment. We denote G ∈ Rd the
constant vector G = ∇xM . Then, we introduce the new variable y = M(x)−m

δ , and the unknown
p(t, x, v, y) = q(t, x, v,m). After this change of variable and introducing a time scaling parameter σ,
equation (1.1) rewrites (see [18, 19])

σ∂tp(t, x, v, y) + v · ∇xp+ ∂y

(
(v · G

δ
− y

τ
)p

)
= λ0Λ(y)(〈p〉 − p). (1.3)
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An asymptotic analysis of Eq. (1.3) depending on the scalings of λ−1
0 , δ, σ, and τ may lead to various

models. In [19], several scalings have been investigated depending on the relative magnitude order
of λ−1

0 = ε, δ = τ , and σ. In particular, the authors recover macroscopic flux-limited Keller-Segel
models or Keller-Segel models as ε → 0 when δ = τ = ε and σ = ε2, when δ = τ = ε2, σ = ε, and
when δ = τ = 1, σ = ε. In [18], the authors consider the hyperbolic case λ−1

0 = 1 and δ = τ = ε for
which the limiting model is the kinetic ’run-and-tumble’ model. Let us mention that these limits
are singular in the sense that the distribution function converges to Dirac deltas.

In order to further illustrate those asymptotic behaviors numerically and elucidate the compli-
cated multiscale mechanism between the intra-cellular pathway dynamics and the collective motions
of bacteria, one needs an accurate and efficient numerical method which can address the asymptotic
limits. This paper is devoted to the numerical discretization and simulation of such kinetic system
with internal variable (1.3). In order to simplify the study and facilitate the presentation of the com-
putations, we consider the problem in one dimensional spatial domain and assume that v ∈ {−1, 1}.
We denote by pε,+(t, x, y) and pε,−(t, x, y) the unknowns, depending on ε, of our problem. In this
one dimensional setting with δ = τ , equation (1.3) rewrites

σ∂tp
ε,± ± ∂xpε,± +

1

τ
∂y((±G− y)pε,±) = ±λ0

Λ(y)

2
(pε,− − pε,+). (1.4)

This system is complemented with some initial data pε,±(t = 0, y). In this work, we would like to
propose numerical schemes for (1.4) which are able to deal with the diffusive limit (σ = λ−1

0 = ε�
1 = τ) and the hyperbolic limit (σ = λ0 = 1, τ = ε� 1). This is the so-called asymptotic preserving
(AP) property [7, 13]. There are several challenging issues in doing so. As already mentionned, one
difficulty is due to the extra variable y, then usual AP numerical schemes for kinetic equations may
not be directly applied. Another difficulty is that the distribution function has a singular limit when
ε → 0 since it converges to Dirac deltas (see [18, 19]). To overcome these difficulties, we follow the
approach in [5], which proposes accurate numerical schemes preserving stationary states, and we
couple it with a projection step which allows us to capture the Dirac deltas.

The paper is organized as follows. In Section 2.1, we investigate the numerical discretization of
system (1.4) at diffusive scaling. We propose a numerical scheme having the so-called asymptotic
preserving property. Section 3 deals with the hyperbolic scaling. Although we follow the same idea
as for the diffusive scaling, the scheme should be adapted to this scaling, as it is emphasized in §3.3.
Numerical illustrations are proposed in Section 4 and compared with a Monte Carlo (MC) scheme.
This paper ends with a conclusion. Finally, an appendix gathers a useful technical computation and
a presentation of the MC scheme used for comparison.

2 Diffusive scaling

2.1 System at diffusive scaling

We first consider system (1.4) at the diffusive limit σ = λ−1
0 = ε, τ = 1. We denote pε,+(t, x, y),

resp. pε,−(t, x, y), the distribution function of bacteria at time t > 0, with internal state y, going to
the positive, resp. negative, direction. Their dynamics is governed by the system :

ε2∂tp
ε,± ± ε∂xpε,± + ε∂y((±G− y)pε,±) = ±Λ(y)

2
(pε,− − pε,+). (2.5)

We first notice that it has been proved in [19] that when the support of initial data pε,±(0, ·) is
included into [−|G|, |G|], then for any t > 0 the support of pε,±(t, ·) is also included into [−|G|, |G|].
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Thus we will assume that the support in y of the initial data is included into [−|G|, |G|] such that
the domain of the internal variable y is [−|G|, |G|].

Before focusing on the numerical discretisation of (2.5), we first explain how to perform formally
the diffusive limit ε → 0 into (2.5). Let us assume formally that pε,± admit a Hilbert expansion
pε,± = p±0 + εp±1 +O(ε2). Letting ε→ 0 in (2.5), we first deduce that p+

0 = p−0 = p0. Then, injecting
the Hilbert expansion into (2.5) and identifying the term at order 1 in ε, we get

±∂xp0 + ∂y((±G− y)p0) = ±Λ(y)

2
(p−1 − p

+
1 ).

Adding these two equations, we deduce ∂y(yp0) = 0. Hence p0(t, x, y) = p̄0(t, x)δy=0 for some p̄0.
We are left with the relation

∂xp0 + ∂y(Gp0) =
Λ(y)

2
(p−1 − p

+
1 ).

Therefore, injecting the relation p0(t, x, y) = p̄0(t, x)δy=0, we get

p−1 − p
+
1 =

2

Λ(y)
∂xp̄0δy=0 +

2Gp̄0

Λ(y)
δ′y=0.

Integrating over y, we deduce∫
R

(p−1 − p
+
1 ) dy =

2

Λ(0)
∂xp̄0 + 2Gp̄0

Λ′(0)

Λ(0)2
. (2.6)

Moreover, adding the two equations in (2.5) and letting formally ε→ 0 leads to

2∂tp0 + ∂x(p+
1 − p

−
1 ) + ∂y(G(p+

1 − p
−
1 )− y(p+

1 + p−1 )) = 0.

Integrating over y and injecting (2.6), we get

∂tp̄0 − ∂x
(

1

Λ(0)
∂xp̄0 +Gp̄0

Λ′(0)

Λ(0)2

)
= 0, (2.7)

which is the Keller-Segel equation for the density p̄0. This formal computation has been done
rigorously in [19].

2.2 A consistent uniform numerical scheme

From above computations, we observe that a difficulty in the design of the numerical scheme is the
emergence of Dirac deltas at the diffusive limit. Then, an uniform numerical scheme should be able
to captur this Dirac deltas. In order to overcome this difficulty, we consider an approach consisting
in two steps:

• In a first step we solve

∂tp
± − 1

ε
∂y(yp

±) = 0. (2.8)

When ε → 0 this step may be seen as a projection step onto the set of Dirac deltas in y = 0
which is the limiting set. Indeed taking ε→ 0 into this equation leads formally to ∂y(yp

±) = 0
which implies that p± are Dirac deltas in y = 0. A similar idea has also been used in [6].

• In a second step we consider an uniform discretization of

ε∂tp
± ± ∂xp± ±G∂yp± = ±Λ(y)

2ε
(p− − p+). (2.9)
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More precisely, let us consider a cartesian grid xi = i∆x for i ∈ Z and yk = k∆y for k =
−K, . . . ,K such that K∆y = |G|. In this paper, to simplify the computations, we assume that
∆y = |G|∆x, unless otherwise stated.

In the first step, we discretize (2.8) by an implicit upwind scheme

p
±,n+ 1

2
i,k = p±,ni,k −

∆t

ε∆y

(
J
±,n+ 1

2

i,k+ 1
2

− J±,n+ 1
2

i,k− 1
2

)
, (2.10a)

J
±,n+ 1

2

i,k+ 1
2

= (−yk)+p
±,n+ 1

2
i,k − (−yk+1)−p

±,n+ 1
2

i,k+1 . (2.10b)

In this scheme, we use the usual notation u+ = max{0, u} for the positive part, and u− = max{0,−u}
for the negative part. We impose no-flux boundary conditions at the boundary : J

±,n+ 1
2

i,K+ 1
2

=

J
±,n+ 1

2

i,−K− 1
2

= 0, for any i.

In the second step, we discretize (2.9) thanks to a well-balanced asymptotic preserving scheme.
However, this equation may be considered as a two-dimensional equation with the two directions x
and y. In order to be consistent with the asymptotic limit, it is not a good idea to split the directions
as it is illustrated in §3.3. Truly two-dimensional well-balanced schemes are not much developed
yet. We mention the recent paper [1], and [9] in the particular case of radiative transfer equation.
However, the case at hand can be seen as a one dimension problem by introducing a new variable.
Indeed, let us denote q±(t, z) = p±(t, x+ z, y + zG), then (2.9) rewrites

ε∂tq
± ± ∂zq± = ±Λ(y + zG)

2ε
(p− − p+).

This latter equation can be discretized following the idea in [7, 8]. We find the numerical scheme

q+,n+1
j = q

+,n+ 1
2

j − ∆t

ε∆x
(q+,n+1
j − q−,n+1

j ) +
2∆tG

∆x(2εG+ Λ̄k− 1
2
)
(q

+,n+ 1
2

j−1 − q−,n+ 1
2

j )

q−,n+1
j−1 = q

−,n+ 1
2

j−1 +
∆t

ε∆x
(q+,n+1
j−1 − q−,n+1

j−1 ) +
2∆tG

∆x(2εG+ Λ̄k− 1
2
)
(q
−,n+ 1

2
j − q+,n+ 1

2
j−1 ),

where Λ̄k− 1
2

=
∫ yk
yk−1

Λ(y) dy. Coming back to the notation p±, it gives, when G > 0,

p+,n+1
i,k = p

+,n+ 1
2

i,k − ∆t

ε∆x
(p+,n+1
i,k − p−,n+1

i,k ) (2.11a)

+
2∆tG

∆x(2εG+ Λ̄k− 1
2
)
(p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k )

p−,n+1
i−1,k−1 = p

−,n+ 1
2

i−1,k−1 +
∆t

ε∆x
(p+,n+1
i−1,k−1 − p

−,n+1
i−1,k−1) (2.11b)

+
2∆tG

∆x(2εG+ Λ̄k− 1
2
)
(p
−,n+ 1

2
i,k − p+,n+ 1

2
i−1,k−1).
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When G < 0, we have

p+,n+1
i,k = p

+,n+ 1
2

i,k − ∆t

ε∆x
(p+,n+1
i,k − p−,n+1

i,k ) (2.12a)

+
2∆tG

∆x(2εG+ Λ̄k+ 1
2
)
(p

+,n+ 1
2

i−1,k+1 − p
−,n+ 1

2
i,k )

p−,n+1
i−1,k+1 = p

−,n+ 1
2

i−1,k+1 +
∆t

ε∆x
(p+,n+1
i−1,k+1 − p

−,n+1
i−1,k+1) (2.12b)

+
2∆tG

∆x(2εG+ Λ̄k+ 1
2
)
(p
−,n+ 1

2
i,k − p+,n+ 1

2
i−1,k+1).

Finally, the resulting numerical scheme is given by (2.10)–(2.11) when G > 0, or (2.10)–(2.12) when
G < 0. We mention that (2.11) and (2.12) are implicit but can be easily solved by inverting a 2-by-2
matrix.

The following Lemma gives some properties for this scheme:

Lemma 2.1 Let us assume that ∆y = |G|∆x, and that Λ ≥ Λmin > 0. Let (p±,ni,k )i,k,n be a sequence
defined thanks to scheme (2.10)–(2.11) when G > 0, or (2.10)–(2.12) when G < 0. Then, under the
condition

∆t ≤ 1

2
Λmin∆x2, (2.13)

the scheme is positive.

Proof. It is well-known that the implicit upwind scheme (2.10) is positive. For the second step,
we perform the computations for G > 0, the case G < 0 being similar. From (2.11), we deduce by
inverting the system(

1 +
2∆t

ε∆x

)
p+,n+1
i,k =

(
1 +

∆t

ε∆x

)
p

+,n+ 1
2

i,k +
∆t

ε∆x
p
−,n+ 1

2
i,k

+
2∆t(∆t+ ε∆x)G

ε∆x2(2εG+ Λ̄k− 1
2
)
(p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k )

+
2∆t2G

ε∆x2(2εG+ Λ̄k+ 1
2
)
(p
−,n+ 1

2
i+1,k+1 − p

+,n+ 1
2

i,k ),

and (
1 +

2∆t

ε∆x

)
p−,n+1
i,k =

(
1 +

∆t

ε∆x

)
p
−,n+ 1

2
i,k +

∆t

ε∆x
p

+,n+ 1
2

i,k

+
2∆t2G

ε∆x2(2εG+ Λ̄k− 1
2
)
(p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k )

+
2∆t(∆t+ ε∆x)G

ε∆x2(2εG+ Λ̄k+ 1
2
)
(p

+,n+ 1
2

i+1,k+1 − p
−,n+ 1

2
i,k ).

Then, this scheme is positive provided all coefficients are positive, which is equivalent to, for all
k ∈ {−K, . . . ,K},

2∆tG

∆x(2εG+ Λ̄k+ 1
2
)
≤ min

{
∆t

∆t+ ε∆x
,
∆t+ ε∆x

∆t

}
=

∆t

∆t+ ε∆x
.
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Since we have by definition Λ̄k+ 1
2

=
∫ yk+1

yk
Λ(y) dy ≥ Λmin∆y, then the above inequality is satisfied

for any k provided
2G

∆x(2εG+ Λmin∆y)
≤ 1

∆t+ ε∆x
,

which is equivalent to (2.13) by recalling that ∆y = G∆x for G > 0.

2.3 Asymptotic scheme

In order to verify the consistency of the scheme at the diffusive limit, we perform the limit ε→ 0 in
the above numerical scheme (2.10)–(2.11) when G > 0 (the case G < 0 being done in a similar way).

Lemma 2.2 Let the sequence (p
±,n+ 1

2
i,k )i,k,n be computed thanks to scheme (2.10). When ε→ 0, we

have p
±,n+ 1

2
i,k → p̄±,ni δk=0, where p̄±,ni :=

K∑
k=−K

p±,ni,k .

Proof. Letting ε → 0 into equation (2.10a), we deduce that J
±,n+ 1

2

i,k+ 1
2

= J
±,n+ 1

2

i,k− 1
2

, and for k = 0, we

have by definition (2.10b) J
±,n+ 1

2

i, 1
2

= 0 = J
±,n+ 1

2

i,− 1
2

. Then, for any i ∈ Z, k ∈ {−K, . . . ,K}, n ∈ N,

the limit satisfies (yk)
+p
±,n+ 1

2
i,k = (yk+1)−p

±,n+ 1
2

i,k+1 . We deduce that for k 6= 0, we have p
±,n+ 1

2
i,k = 0.

Thus, for any i ∈ Z, k ∈ {−K, . . . ,K}, n ∈ N, there exists a quantity, denoted p̄
±,n+ 1

2
i , such

that p
+,n+ 1

2
i,k = p̄

±,n+ 1
2

i δk=0. Finally, thanks to the no-flux boundary conditions, we deduce that

p̄
±,n+ 1

2
i =

∑
k p
±,n+ 1

2
i,k =

∑
k p
±,n
i,k =: p̄±,ni .

We may now pass to the limit into equation (2.11). We have

Lemma 2.3 Formally, when ε → 0 the sequence (p±,ni,k )i,k,n computed thanks to equations (2.10)–

(2.11) converges towards 1
2ρ
n
i δk=0, where the sequence (ρni )i,n solves the numerical scheme

ρn+1
i = ρni +

∆tG

∆x

(
1

Λ̄ 1
2

ρni−1 −
1

Λ̄− 1
2

ρni +
1

Λ̄− 1
2

ρni+1 −
1

Λ̄ 1
2

ρni

)
. (2.14)

This scheme is consistent with the Keller-Segel equation (2.7).

Proof. We first observe that when ε → 0 into (2.11), we have p+,n+1
i,k = p−,n+1

i,k . Hence, for any

n ≥ 1, using also Lemma 2.2, we get that lim
ε→0

p
+,n+ 1

2
i,k = lim

ε→0
p
−,n+ 1

2
i,k = p̄ni δk=0.

Moreover, adding the two equations (2.11a) and (2.11b) after a change of index, we get

p+,n+1
i,k + p−,n+1

i,k = p
+,n+ 1

2
i,k + p

−,n+ 1
2

i,k

+
2∆tG

∆x

(
1

2εG+ Λ̄k− 1
2

(p
+,n+ 1

2
i−1,k−1 − p

−,n+ 1
2

i,k ) +
1

2εG+ Λ̄k+ 1
2

(p
−,n+ 1

2
i+1,k+1 − p

+,n+ 1
2

i,k )

)
.
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Passing into the limit ε→ 0, we get, thanks to Lemma 2.2,

(p̄n+1
i + p̄n+1

i )δk=0 = (p̄ni + p̄ni,k)δk=0

+
2∆tG

∆x

(
1

Λ̄k− 1
2

(p̄ni−1δk=1 − p̄ni δk=0) +
1

Λ̄k+ 1
2

(p̄−,ni+1δk=−1 − p̄+,n
i δk=0)

)
.

We denote by ρni :=
K∑

k=−K
(p+,n
i,k + p−,ni,k ) = 2p̄ni . By summing over k the latter identity, we obtain

(2.14).

We now verify that the limiting scheme (2.14) is consistent with the Keller-Segel equation (2.7).

Recalling that Λ̄ 1
2

=
∫ ∆y

0 Λ(y) dy, we approximate thanks to a trapezoidal rule Λ̄ 1
2
' Λ(0)+Λ(∆y)

2 ∆y '
Λ(0)∆y + 1

2∆y2Λ′(0). Then,

1

Λ̄ 1
2

' 1

Λ(0)∆y(1 + 1
2∆yΛ′(0)

Λ(0) )
' 1

Λ(0)∆y

(
1− 1

2
∆y

Λ′(0)

Λ(0)

)
.

By the same token we deduce,

1
¯Λ− 1

2

' 1

Λ(0)∆y

(
1 +

1

2
∆y

Λ′(0)

Λ(0)

)
.

Injecting this approximation into (2.14), recalling the relation ∆y = |G|∆x, we deduce

ρn+1
i ' ρni +

∆t

∆x2Λ(0)

(
ρni−1 − 2ρni + ρni+1

)
+

∆tGΛ′(0)

2∆x(Λ(0))2

(
ρni+1 − ρni−1

)
. (2.15)

This is a finite difference centered discretization of the Keller-Segel equation (2.7).

3 Hyperbolic scaling

3.1 System at hyberbolic scaling

In this part, we take σ = λ0 = 1, τ = ε into (1.4). The system at hyperbolic scaling reads

∂tp
± ± ∂xp± +

1

ε
∂y((±G− y)p±) = ±Λ(y)

2
(p− − p+). (3.16)

Formally, when ε → 0, we obtain ∂y((±G − y)p±) = 0. Then, we deduce that p+(t, x, y) →
f+(t, x)δy=G and p+(t, x, y)→ f−(t, x)δy=−G as ε→ 0. Then, integrating (3.16) over y, we deduce

∂tf
± ± ∂xf± = ±1

2

(
Λ(−G)f− − Λ(G)f+

)
. (3.17)

We recover the two stream kinetic system for chemotaxis.
In order to discretize equation (3.16), we proceed in two steps :
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• In a first step, we discretize the transport equation

∂tp
± +

1

ε
∂y((±G− y)p±) = 0.

As above we use an implicit upwind scheme, which reads, for any n ∈ N, i ∈ Z and k ∈
{−K, . . . ,K},

p
±,n+ 1

2
i,k = p±,ni,k −

∆t

ε∆y

(
J
±,n+ 1

2

i,k+ 1
2

− J±,n+ 1
2

i,k− 1
2

)
, (3.18a)

J
±,n+ 1

2

i,k+ 1
2

= (±G− yk)+p
±,n+ 1

2
i,k − (±G− yk+1)−p

±,n+ 1
2

i,k+1 . (3.18b)

We impose no-flux boundary conditions : J
±,n+ 1

2

i,K+ 1
2

= J
±,n+ 1

2

i,−K− 1
2

= 0, for any i ∈ Z.

• In the second step, we discretize

∂tp
± ± ∂xp± = ±Λ(y)

2
(p− − p+). (3.19)

Using a well-balanced scheme, in the spirit of [7, 8], we get, for any n ∈ N, i ∈ Z and
k ∈ {−K, . . . ,K},

p+,n+1
i,k = p

+,n+ 1
2

i,k − ∆t

∆x
(p

+,n+ 1
2

i,k − p−,n+ 1
2

i,k ) +
∆t

∆x(1 + 1
2Λ(yk)∆x)

(p
+,n+ 1

2
i−1,k − p

−,n+ 1
2

i,k ) (3.20a)

p−,n+1
i−1,k = p

−,n+ 1
2

i−1,k +
∆t

∆x
(p

+,n+ 1
2

i−1,k − p
−,n+ 1

2
i−1,k ) +

∆t

∆x(1 + 1
2Λ(yk)∆x)

(p
−,n+ 1

2
i,k − p+,n+ 1

2
i−1,k ). (3.20b)

It is well-known that the numerical scheme (3.20) is stable and consistent with (3.19) provided
a CFL condition is satisfied:

Lemma 3.1 Let us assume that the following CFL condition ∆t ≤ ∆x holds and Λ is a nonnegative
function. Then the scheme (3.18)–(3.20) is positive and conservative.

Proof. Indeed, scheme (3.18) is clearly positive and conservative. For (3.20), it may be rewritten

p+,n+1
i,k = p

+,n+ 1
2

i,k

(
1− ∆t

∆x

)
+

∆t

∆x

(
1− 1

1 + 1
2Λ(yk)∆x

)
p
−,n+ 1

2
i,k +

∆t

∆x(1 + 1
2Λ(yk)∆x)

p
+,n+ 1

2
i−1,k

p−,n+1
i−1,k = p

−,n+ 1
2

i−1,k

(
1− ∆t

∆x

)
+

∆t

∆x

(
1− 1

1 + 1
2Λ(yk)∆x

)
p
−,n+ 1

2
i−1,k +

∆t

∆x(1 + 1
2Λ(yk)∆x)

p
−,n+ 1

2
i,k .

Then, since Λ is nonnegative, it is clear that all coefficients are positive under the CFL condition.

3.2 Asymptotic limit

We verify the behaviour of the scheme when ε→ 0.
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Lemma 3.2 Let the sequence (p
±,n+ 1

2
i,k )i,k,n be computed thanks to scheme (3.18). When ε→ 0, we

have p
±,n+ 1

2
i,k → p̄±,ni δk=±K , where p̄±,ni =

K∑
k=−K

p±,ni,k .

Moreover, the sequence (p̄±,ni )i,k,n satisfies the numerical scheme

p̄+,n+1
i = p̄+,n

i − ∆t

∆x
(p̄+,n
i − p̄−,ni ) +

∆t

∆x(1 + 1
2Λ(G)∆x)

p̄+,n
i−1 −

∆t

∆x(1 + 1
2Λ(−G)∆x)

p̄−,ni , (3.21a)

p̄−,n+1
i−1 = p̄+,n

i−1 +
∆t

∆x
(p̄+,n
i−1 − p̄

−,n
i−1) +

∆t

∆x(1 + 1
2Λ(−G)∆x)

p̄−,ni − ∆t

∆x(1 + 1
2Λ(G)∆x)

p̄+,n
i−1. (3.21b)

This is a consistent discretization of the kinetic equation (3.17).

Proof. Letting ε → 0 in (3.18a), we deduce that at the limit we have, for any k ∈ {−K, . . . ,K},
J
±,n+ 1

2

i,k+ 1
2

= J
±,n+ 1

2

i,k− 1
2

= 0, where the latter equality is a consequence of the no-flux boundary condition.

Then, for any i, k, n, the limit satisfies

(±G− yk)+p
±,n+ 1

2
i,k = (±G− yk+1)−p

±,n+ 1
2

i,k+1 .

If G > 0, we choose k + 1 = K and deduce that 0 = p
+,n+ 1

2
i,K−1 . By induction 0 = p

+,n+ 1
2

i,k for any

k ≤ K − 1. For k = −K, we deduce that 0 = p
−,n+ 1

2
i,−K+1, by induction, 0 = p

−,n+ 1
2

i,k for any k ≥ −K.

If G < 0, by taking k + 1 = K, we get 0 = p
−,n+ 1

2
i,K−1 . By induction, we deduce 0 = p

−,n+ 1
2

i,k for any

k ∈ {−K, . . . ,K}. For k = −K, we get 0 = p
+,n+ 1

2
i,−K+1. Hence, 0 = p

+,n+ 1
2

i,k for any k ∈ {−K, . . . ,K}.

Moreover, summing over k the equation (3.18a), we deduce that
∑K

k=−K p
±,n+ 1

2
i,k =

∑K
k=−K p

±,n
i,k .

Hence, summing (3.20a) and (3.20b) over k, we obtain the scheme (3.21). In order to verify the
consistency with the kinetic equation (3.17), we recall the expansion

1

1 + 1
2Λ(±G)∆x

= 1− 1

2
Λ(±G)∆x+ o(∆x).

Injecting this expression into (3.21a), we obtain

p̄+,n+1
i = p̄+,n

i − ∆t

∆x

(
p̄+,n
i − p̄+,n

i−1 +
1

2
Λ(G)∆xp̄+,n

i−1 −
1

2
Λ(−G)∆xp̄−,ni + o(∆x)

)
= p̄+,n

i − ∆t

∆x
(p̄+,n
i − p̄+,n

i−1)− ∆t

2

(
Λ(G)p̄+,n

i−1 − Λ(−G)p̄−,ni

)
+ o(∆t).

This is consistent with the equation for f+ in (3.17). We proceed in the same way with (3.21b).

3.3 A remark on the extension of this latter scheme to the diffusive regime

In this subsection, we underline the importance of a careful use of the splitting approach to recover
the good asymptotic limit. Indeed, a natural extension of the scheme used in previous section to the
diffusive regime will not provide a consistent scheme at the diffusive limit. In order to justify this
affirmation, let us consider the following numerical scheme:
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• We use the same upwind scheme as above for a first time step (3.18a)–(3.18b).

• In the second step, we discretize by a uniform scheme the equation

ε2∂tp
± ± ε∂xp± = ±Λ(y)

2
(p− − p+).

Using an asymptotic preserving well-balanced scheme, in the spirit of [7, 8], we get

p+,n+1
i,k = p

+,n+ 1
2

i,k − ∆t

ε∆x
(p+,n+1
i,k − p−,n+1

i,k ) (3.22)

+
∆t

∆x(ε+ 1
2Λ(yk)∆x)

(p
+,n+ 1

2
i−1,k − p

−,n+ 1
2

i,k )

p−,n+1
i−1,k = p

−,n+ 1
2

i−1,k +
∆t

ε∆x
(p+,n+1
i−1,k − p

−,n+1
i−1,k ) (3.23)

+
∆t

∆x(ε+ 1
2Λ(yk)∆x)

(p
−,n+ 1

2
i,k − p+,n+ 1

2
i−1,k ).

Since this scheme is uniformly accurate with respect to ε, we may pass to the limit ε → 0.
After straightforward computations, we get from (3.22)–(3.23)

p+,n+1
i,k =

ε∆x+ ∆t

ε∆x+ 2∆t
A
n+ 1

2

i− 1
2
,k

+
∆t

ε∆x+ 2∆t
B
n+ 1

2

i+ 1
2
,k

p−,n+1
i,k =

∆t

ε∆x+ 2∆t
A
n+ 1

2

i− 1
2
,k

+
ε∆x+ ∆t

ε∆x+ 2∆t
B
n+ 1

2

i+ 1
2
,k

A
n+ 1

2

i− 1
2
,k

= p
+,n+ 1

2
i,k +

∆t

∆x(ε+ 1
2Λ(yk)∆x)

(p
+,n+ 1

2
i−1,k − p

−,n+ 1
2

i,k )

B
n+ 1

2

i+ 1
2
,k

= p
−,n+ 1

2
i,k +

∆t

∆x(ε+ 1
2Λ(yk)∆x)

(p
−,n+ 1

2
i+1,k − p

+,n+ 1
2

i,k ).

As a first observation, we notice that when ε→ 0, we have

lim
ε→0

p+,n+1
i,k = lim

ε→0

1

2
(A

n+ 1
2

i− 1
2
,k

+B
n+ 1

2

i+ 1
2
,k

) = lim
ε→0

p−,n+1
i,k .

We deduce that for any n ∈ N∗, we have limε→0 p
+,n
i,k = limε→0 p

−,n
i,k .

Moreover, by adding the first two equalities in the above numerical scheme, we get

p+,n+1
i,k + p−,n+1

i,k = A
n+ 1

2

i− 1
2
,k

+B
n+ 1

2

i+ 1
2
,k

Let us define the macroscopic density ρni :=
∑K

k=−K(p+,n
i,k + p−,ni,k ). Then, we have clearly

ρn+1
i =

K∑
k=−K

(
A
n+ 1

2

i− 1
2
,k

+B
n+ 1

2

i+ 1
2
,k

)
.

We pass to the limit ε → 0 in the latter numerical scheme. We recall that from Lemma 3.2

(ii), we have p
±,n+ 1

2
i,k → p̄±,ni δk=±K where p̄±,ni =

∑K
k=−K p

±,n
i,k . Hence, passing into the limit,

we obtain

A
n+ 1

2

i− 1
2
,k
→
(
p̄+,n
i +

2∆t

Λ(G)∆x2
p̄+,n
i−1

)
δk=K −

2∆t

Λ(−G)∆x2
p̄−,ni δk=−K

B
n+ 1

2

i+ 1
2
,k
→
(
p̄−,ni +

2∆t

Λ(−G)∆x2
p̄−,ni+1

)
δk=−K −

2∆t

Λ(G)∆x2
p̄+,n
i δk=K .
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Summing over k, and denoting ρ̄ni = limε→0 ρ
n
i , we arrive to the limiting scheme

ρ̄n+1
i = ρ̄ni +

2∆t

∆x2

(
1

Λ(G)
(p̄+,n
i−1 − p̄

+,n
i ) +

1

Λ(−G)
(p̄−,ni+1 − p̄

−,n
i )

)
.

With the fact that p̄+,n
i = p̄−,ni = 1

2 ρ̄
n
i , we get

ρ̄n+1
i = ρ̄ni +

∆t

∆x2

(
1

Λ(G)
(ρ̄ni−1 − ρ̄ni ) +

1

Λ(−G)
(ρ̄ni+1 − ρ̄ni )

)
.

This latter scheme is obviously not consistent with the Keller-Segel equation (2.7).

4 Numerical results

4.1 Problem

In order to illustrate our theoretical results, we carry out numerical computations for the following
problem. Let us consider the one dimensional space x ∈ [0, 1] with mirror boundary conditions,

p+(t, x = 0, y) = p−(t, x = 0, y), p−(t, x = 1, y) = p+(t, x = 1, y).

These boundary conditions impose that the net mass flux at the boundary is zero; i.e.,

J =

∫
R

(p+ − p−)dy = 0, at x = 0, 1.

As the initial condition, we consider

p±(t = 0, x, y) =


1
G , |y| ≤ |G|2 ,

0, |y| > |G|
2 ,

for any x ∈ [0, 1]. Hereafter we only consider the case where G > 0.
For this problem, the steady state solutions in the diffusive and hyperbolic limits are explicitly

calculated as below :

Steady state in the diffusive limit. Let us consider the Keller-Segel system (2.7), which is ob-
tained in the continuum limit at the diffusive scaling. We first recall that this equation is
conservative, implying that

∫ L
0 p̄0(t, x) dx = M for all positive time t. The steady states verify

∂x

(
1

Λ(0)
∂xp̄0 +Gp̄0

Λ′(0)

Λ(0)2

)
= 0.

Since the flux in the diffusive scaling is given by (2.6), the no flux boundary conditions give

∂xp̄0 +Gp̄0
Λ′(0)

Λ(0)
= 0.

By integrating the above equation and using the mass conservation, we obtain

p̄0(x) =
GΛ′(0)M

Λ(0)
(

1− e−
GΛ′(0)
Λ(0)

L
)e−GΛ′(0)

Λ(0)
x
. (4.24)
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Steady state in the hyperbolic limit. For the two-stream kinetic equation in the hyperbolic
limit (3.17), the steady state can be explicitly computed. Indeed, it should satisfy :

∂xf
± =

1

2
(Λ(−G)f− − Λ(G)f+), (4.25)

complemented with no-flux boundary conditions. By subtracting the above equations, we
obtain ∂x(f+− f−) = 0. Thus f+− f− is constant, which is 0 thanks to the no-flux boundary
conditions. Therefore, f+ = f− = f , injecting into (4.25), it gives

∂xf =
1

2
(Λ(−G)− Λ(G))f.

Integrating,

f(x) = Ae
1
2

(Λ(−G)−Λ(G))x.

The constant A is computed thanks to the conservation of the mass : M =
∫ L

0 f(x) dx. Finally,
we have

f(x) =
(Λ(−G)− Λ(G))M

2(e
1
2

(Λ(−G)−Λ(G))L − 1)
e

1
2

(Λ(−G)−Λ(G))x. (4.26)

4.2 Numerical results for scheme (2.10)–(2.11)

The asymptotic preserving (AP-diff) scheme (2.10)–(2.11) is implemented for the problem in Section
4.1. Although this scheme is implicit, it can be implemented very efficiently. The computational
procedure is described in Appendix 1. We carry out the numerical computations for various values
of λ0 and illustrate the validity of the AP-diff scheme by comparing the numerical results to those
obtained by a MC method, which is explained in Appendix 2, and the analytical solution (4.24). We
also investigate the accuracy of the AP-diff scheme by comparing the numerical results for different
mesh systems.

For the response function Λ(y), we consider

Λ(y) = 1− χ arctan(y), (4.27)

where χ is the modulation amplitude. In the following computations, unless otherwise stated, the
parameters G = 1 and χ = 0.5 are fixed.

Figure 1 shows the time dynamics of population density ρ for different values of λ0. In Figure 1(a)
and 1(b), the results of the AP-diff scheme are compared with those obtained by the MC method.

Although the AP-diff scheme and MC method are different types of numerical methods, both
methods provide consistent numerical results. The distributions in the internal state y obtained by
the AP-diff and MC methods are also compared in Figure 2. It is seen that even for the distribution
functions both results coincide with each other. We also observe that the y-profile becomes narrower
and more symmetric as λ0 increases. This observation is consistent with the asymptotic behavior
for small ε = λ−1

0 , where we know that p± concentrate at y = 0 in the continuum limit, i.e.
p±(t, x, y)→ p0(t, x)δy=0 as ε→ 0 (see Section 2.1).

However, when ε is too small, MC method may not be implemented efficiently. Then in Figure
1(c), the result of the AP-diff scheme for λ0 = 108 is compared with the KS equation (2.15), which
is the continuum limit equation when ε → 0 of the two stream kinetic model at diffusive scaling.
Remarkably, this comparison illustrates the asymptotic preserving nature of the AP-diff scheme.

Furthermore, Table 1 shows the numerical accuracy of the AP-diff scheme for different values of
λ0. It is seen that the AP-diff scheme is uniformly accurate and efficient irrespective of the parameter
value of λ0. Even for the small mesh system I = 50, the maximum relative error of the population
density ρ, i.e., the error in the norm L∞ divided by the local population density, is estimated less
than 0.1%.
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Figure 1: Time dynamics of ρ for different values of λ0; i.e., λ0 = 10 in (a), λ0 = 103 in (b), and
λ0 = 108 in (c). The solid lines show the results obtained by the AP-diff scheme (2.10)– (2.11). The
squared symbols show the results obtained by the MC method in (a) and (b) and those obtained by
the finite-difference scheme of KS equation (2.15) in (c).
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Figure 2: Figures (a) and (b) show p+(y) and p−(y), respectively, for different values of ε = λ−1
0 .

The solid lines show the results obtained by the AP-diff scheme while the plots with squared symbols
show the results obtained by the MC method.

Table 1: Numerical accuracy of the AP-diff scheme for different values of λ0. The maximum relative
errors, i.e. the error in the norm L∞ divided by the local population density, between the steady-
state profiles of ρ obtained for two different mesh systems (I,I ′) are shown. The mesh size is set as
∆x=∆y=1/I and the time-step size is set as ∆t = 0.1∆x2. Read as 4.9e-4=4.9×10−4

Mesh (I,I ′) λ0 = 10 λ0 = 102 λ0 = 103 λ0 = 108

(50,200) 4.7e-4 6.7e-4 5.5e-4 4.1e-5
(100,200) 1.7e-4 2.4e-4 1.9e-4 8.1e-6
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4.3 Numerical results for the second scheme (3.18)–(3.20)

In this Section, we consider the scheme (3.18)–(3.20), denoted AP-hyp scheme in the following, for
the problem in Section 4.1 at the hyperbolic scaling (3.16). We carry out numerical computations
for various values of τ and λ0 and compare the results with those obtained by the MC method and
the analytical solution in the limit τ → 0, (4.26).

Figure 3 displays the time dynamics of population density ρ for different values of τ when
λ0 = 10 is fixed. In each figure, the results obtained by the AP-hyp scheme are compared with
those obtained by the MC method. It is clearly seen that the both methods can provide consistent
results. Furthermore, in figure (c), the steady-state profiles obtained by the AP-hyp and MC schemes
are compared with the analytical solution in the asymptotic limit τ → 0 (4.26). This comparison
illustrate the validity of the AP-hyp scheme when τ → 0.

The distributions in the internal state y obtained by AP-hyp and MC methods are compared in
Figure 4. It is seen that both methods can provide consistent results. It is also seen that the profile is
completely different from that obtained at the diffusive scaling (see Fig. 2). As described in Section
3, in the hyperbolic scaling, the distribution functions p± concentrates at y = ±G, respectively,
when τ → 0. Figure 4 illustrates that the AP-hyp scheme reproduces this asymptotic behavior.
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Figure 3: Time dynamics of ρ for different adaptation time τ ; i.e., (a) τ=0.1, (b) τ=0.01 , and
(c) τ = 10−8. The parameter λ0 = 10.0 is fixed. The solid lines show the results obtained by the
AP-hyp scheme while the squared symbols show those obtained by the MC method. In figure (c),
the dashed line shows the analytical result in the limit τ → 0 calculated by Eq. (4.26).

Table 2 shows the numerical accuracy of the AP-hyp scheme. Compared with Table 1, it is seen
that the AP-hyp scheme is less accurate than the AP-diff scheme for τ = 1. However, the AP-hyp
scheme keeps the accuracy even for a very small τ at λ0 = 10.

When λ0 is large, the accuracy of the AP-hyp scheme significantly falls at small values of τ . This
is because the spatial profile of ρ becomes exponential for small values of τ when λ0 is large. Indeed,
the analytical solution for τ → 0 (4.26) indicates that the mass is concentrated at x = 1 when λ0

is large. Figure 5 illustrates that the spatial profile of ρ becomes exponential when τ is small at
λ0 = 100. The growth rate is inversely proportional to τ .

4.4 Comparison of two schemes

In Section 4.2 we have implemented the AP-diff scheme for the two-stream kinetic system at diffusive
scaling, where the parameter τ = 1 is fixed. In this Section, in order to treat the variation of
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Figure 4: Figures (a) and (b) show the results for τ=0.1 and τ=0.01, respectively. The parameters
λ0 = 10 is fixed. The solid lines show the results of the AP-hyp scheme while the symbols show the
results of the MC method.

Table 2: Numerical accuracy of the AP-hyp scheme (3.18) and (3.20) for different values of τ at
λ0=10 and 100. The maximum relative errors, i.e. the error in the norm L∞ divided by the local
population density, between the spatial profiles of ρ obtained in two different mesh systems (I,I ′)
are shown. The mesh size ∆y is set as ∆y = ∆x. See also the caption in Table 1.

Mesh λ0 = 10 λ0 = 100
(I,I ′) τ=1.0 τ=0.1 τ=0.01 τ=10−8 τ = 1.0 τ = 0.1 τ=0.02

(200,800) 3.1e-3 2.0e-2 5.9e-2 5.6e-2 1.0e-2 1.0e-1 –
(400,800) 1.0e-3 6.7e-3 1.9e-2 1.9e-2 3.5e-3 3.4e-2 3.3e-1
(800,1600) – – – – – – 1.6e-1
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Figure 5: Spatial profiles of population density ρ for different values of τ . The parameter λ0 = 100
is fixed. The solid lines show the results of the AP-hyp scheme and the symbols show the results of
the MC method.

Table 3: Numerical accuracy of the AP-diff scheme for different values of τ at λ0=10 and 100. The
maximum relative errors between the spatial profiles of ρ obtained in two different mesh systems
(I,I ′) are shown. The mesh size ∆y is set as ∆y = |G|

τ ∆x. See also the caption in Table 1.

Mesh λ0 = 10 λ0 = 100
(I,I ′) τ = 0.1 τ = 0.01 τ = 0.1 τ = 0.02

(200,800) 8.9e-3 – 2.8e-2 –
(400,800) 3.0e-3 6.8e-2 9.4e-3 1.7e-1
(800,1600) – 3.5e-3 – 8.6e-2
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Figure 6: Comparison of the y distribution obtained by the AP-diff scheme (solid lines) and that
obtained by the hyperbolic scheme (dashed lines). Figure (a) and (b) show the results for τ = 0.1
and τ = 0.01, respectively, at λ0 = 10.

parameter τ explicitely, we slightly modify the AP-diff scheme as following. We replace ∆y with
τ∆y in (2.10) and G with G/τ in (2.11) and (2.12). The relation between x- and y- mesh intervals

is rewritten as ∆y = |G|
τ ∆x while the CFL condition (2.13) remains unchanged. Thus, when the

parameter τ is small, the mesh size in y space, ∆y becomes more coarsened than that in x space.
Although the diffusive scaling is not appropriate unless the parameter τ is sufficiently larger

than λ−1
0 , we implement the modified AP-diff scheme for some small values of τ and investigate the

applicability of the AP-diff scheme for small τ by comparing the results with those obtained by the
AP-hyp scheme (3.18) and (3.20).

It should be noted that the AP-diff scheme is conservative when the condition p±i,K = p±i,−K = 0
for any i ∈ {0, . . . , I} is satisfied (see Appendix 3). Indeed, this condition is satisfied at the diffusive
scaling since the internal state y is concentrated at y = 0 (See Fig. 2). However, as it is observed
in Fig. 4, the internal state y is biased at y = ±G when τ is small. Thus, when we implement the
modified AP-diff scheme for a small value of τ , we need to extend the domain of y in order to satisfy
the mass conservation. In the following computations, we set the domain of y as −3G ≤ y ≤ 3G for
τ = 0.02 and −4G ≤ y ≤ 4G for τ = 0.01 and divide the domain into the uniform mesh system with
∆y = |G|

τ ∆x.
Table 3 shows the accuracy of the modified AP-diff method when the parameter τ varies. Com-

pared to Table 2, it is found that the AP-diff scheme is more accurate than the AP-hyp scheme
except for the case with τ = 0.01 and λ0 = 10. We also confirmed that the spatial profiles of ρ
obtained by the AP-diff scheme and by the AP-hyp scheme coincide with each other within the
numerical accuracy. Thus, these results confirm that the AP-diff scheme can accurately reproduce
the macroscopic density ρ even for the case where the parameter τ is as small as λ−1

0 .
However, very interestingly, the distribution of the internal state y obtained by the AP-diff

scheme is quite different from those obtained by the AP-hyp and MC methods. This illustrate the
remark in Subsection 3.3. Figure 6 shows the distribution of the internal state y at x = 0.5 obtained
by the AP scheme. The distribution of y obtained by the AP-hyp and MC methods for the same
parameter values is shown in Fig. 2. In Figs. 6 (a) and (b), the results obtained by the AP-hyp
scheme are also shown for comparison. The distributions of y obtained by the AP scheme also have
peaks at y = ±G. However, the profiles are much more diffusive than those obtained by the AP-hyp
scheme.
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5 Conclusion

This paper deals with the numerical discretization of a two-stream kinetic model for bacterial chemo-
taxis with internal state. We have proposed two schemes depending on the scaling parameters :
AP-diff for the model at diffusive scaling, AP-hyp at hyperbolic scaling. Theses scheme have the
property to be consistent with the asymptotic limit, which is the so-called asymptotic preserving
property. In numerical parts, we implemented both AP-diff and AP-hyp schemes. Numerical con-
vergence of the schemes is evaluated in detail by comparing the results obtained for different meshes.
We also compare the numerical results obtained by the AP-diff and AP-hyp schemes to those ob-
tained by a MC method and some analytical results in order to confirm the validity and consistency
of the proposed schemes.

These numerical results confirm that the AP-diff scheme is uniformly accurate and efficient with
respect to the variation of the tumbling frequency λ0 at the diffusive scaling. From the comparisons
between the AP-diff scheme and MC method, the consistency between the two methods is clearly
observed. Remarkably, the asymptotic preserving nature of the AP-diff scheme is clearly illustrated
by comparing the result obtained at a very small λ−1

0 , i.e., λ−1
0 = 10−8, to the numerical solution of

the KS equation.
The AP-hyp scheme is robust with respect to the variation of the parameter value τ . Even when

the parameter τ is very small, i.e., τ = 10−8, the AP-hyp scheme can keep the numerical accuracy.
The consistency of the AP-hyp scheme and MC method is also confirmed in the time dynamics of
the macroscopic density and the distribution function of the internal sate at steady state.

Finally, we also compare the AP-diff scheme and the AP-hyp scheme after a slight modification
of the original AP-diff scheme to treat the variation in τ . Although the AP-diff scheme loses the
asymptotic preserving property when the parameter τ is comparable to or smaller than λ−1

0 , it
accurately reproduces the macroscopic density for moderately small values of τ , where τ is still
larger than λ−1

0 . However, interestingly, the distribution function of the internal state obtained by
the AP-diff scheme is quite different from that obtained by the AP-hyp scheme and MC method
for moderately small values of τ . This interesting observation illustrates the mismatch of the time
splitting strategy and the asymptotic behavior of the solution. The importance of a careful strategy
in the time splitting approach is discussed in detail in §3.3.

In summary, we conclude that the AP-diff scheme is very accurate and efficient at the diffusive
scaling even in the continuum limit. Even when the parameter τ is moderately small, the AP-diff
scheme can accurately reproduce the macroscopic density while it cannot reproduce the distribution
function of the internal state. The AP-hyp scheme is valid in the variation of the parameter value τ .
It can reproduce the hyperbolic limit behavior both in the macroscopic density and the distribution
function of the internal state.
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Appendix

1 Computational Procedure of the AP scheme

The well-balanced and asymptotic preserving (AP) scheme (2.10)-(2.12) is implemented efficiently

by the following procedure. In the first step (2.10), p
±,n+ 1

2
i,k for k ∈ {−K, · · · ,−1} are calculated by

using the only lower tridiagonal matrix as

p
±,n+ 1

2
i,−K = p±,ni,−K/

(
1 +

∆tG

ε∆y

)
,

and, for k ∈ {−K + 1, · · · ,−1},

p
±,n+ 1

2
i,k =

ε∆yp±,ni,k −∆tyk−1p
±,n+ 1

2
i,k−1

ε∆y −∆tyk
.

By the same token, p
±,n+ 1

2
i,k for k ∈ {1, · · · ,K} are calculated by using the only upper tridiagonal

matrix. Then, p
±,n+ 1

2
i,0 is calculated as

p
±,n+ 1

2
i,0 +

∆t

ε∆y

(
y1p
±,n+ 1

2
i,1 − y−1p

±,n+ 1
2

i,−1

)
= p±,ni,0 .

In the second step (2.11), by inverting the 2-by-2 matrix, we can explicitly calculate p±,n+1
i,k for

i ∈ {1, · · · , I − 1} and k ∈ {−K, · · · ,K} from(
1 +

2∆t

ε∆x

)
p+,n+1
i,k =

(
1 +

∆t

ε∆x

)
p

+,n+ 1
2

i,k +
∆t

ε∆x
p
−,n+ 1

2
i,k

+
2∆t(∆t+ ε∆x)G

ε∆x2(2εG+ Λ̄k− 1
2
)
(p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k )

+
2∆t2G

ε∆x2(2εG+ Λ̄k+ 1
2
)
(p
−,n+ 1

2
i+1,k+1 − p

+,n+ 1
2

i,k ),

and (
1 +

2∆t

ε∆x

)
p−,n+1
i,k =

(
1 +

∆t

ε∆x

)
p
−,n+ 1

2
i,k +

∆t

ε∆x
p

+,n+ 1
2

i,k

+
2∆t2G

ε∆x2(2εG+ Λ̄k− 1
2
)
(p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k )

+
2∆t(∆t+ ε∆x)G

ε∆x2(2εG+ Λ̄k+ 1
2
)
(p

+,n+ 1
2

i+1,k+1 − p
−,n+ 1

2
i,k ).

Hereafter, we set p
±,n+ 1

2
i,K+1 = p

±,n+ 1
2

i,−K−1 = 0, which is equivalent with the non-flux condition J
±,n+ 1

2

i,K+ 1
2

=

J
±,n+ 1

2

i,−K− 1
2

= 0, for any i. By using the boundary conditions p−,n+1
I,k = p+,n+1

I,k and p+,n+1
0,k = p−,n+1

0,k in

(2.11a) and (2.11b), respectively, we can compute

p+,n+1
I,k = p

+,n+ 1
2

I,k +
2∆tG

∆x(2εG+ Λ̄k− 1
2
)
(p

+,n+ 1
2

I−1,k−1 − p
−,n+ 1

2
I,k ),
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p−,n+1
0,k = p

−,n+ 1
2

0,k +
2∆tG

∆x(2εG+ Λ̄k+ 1
2
)
(p
−,n+ 1

2
1,k+1 − p

+,n+ 1
2

0,k ),

for any k.

2 Monte Carlo Method

We have extended a Monte Carlo (MC) code of the classical velocity-jump kinetic equation proposed
in [20, 27] to treat the internal state y. The procedure of the MC method is described below. Here,
we consider (1.4) in one-dimensional space x ∈ [0, 1] and the same boundary condition in (4.1).

1. The initial states of each MC particle, i.e., the position x0
(`), velocity v0

(`), and internal state

y0
(`) at the time step n = 0 are stochastically determined according to the initial distribution

function p±,0(x, y). Hereafter, the superscript n represents the time step and the subscript `
represents the index of each MC particle.

2. Given the position, velocity, and internal state of the lth MC particle at time step n, the
position and internal state of the MC particle is advanced in the time-step size ∆t as

xn+1
(`) = xn(`) + vn(`)∆t,

yn+1
(`) =

τyn(`) + ∆tGvn(`)

τ + ∆t
.

3. The particle which moves beyond the boundary at x = 0 (or x = 1), say the l′th particle at
x = xn+1

(`′) < 0 (or x = xn+1
(`′) > 1), is relocated at x = −xn+1

(`′) (or x = 2− xn+1
(`′) ) with changing

the sign of the velocity as v = −vn+1
(`′) . This process corresponds to the no-flux boundary

conditions.

4. Tumbling of each particle is decided by the probability λ0Λ(yn+1
(`) )∆t/2. The particles, which

are decided to make tumble, change the sign of the velocities, vn+1
(`) = −vn(`), while other

particles stay the velocities unchanged.

5. Return to the second process (2).

The macroscopic population density in each lattice site x ∈ [i∆x, (i+ 1)∆x] (i = 0, · · · , I − 1) is
calculated as

ρni =
1

Np∆x

Np∑
`=1

∫ (i+1)∆x

i∆x
δ(x− xn(`))dx,

where Np is the total particle number.
In §4, the time step size ∆t = 10−4 and the total particle number Np ' 1.2×106 are used except

the cases for λ0 = 104. For λ0 = 104, we set ∆t = 1× 10−5.

3 Note on the mass conservation for the AP-diff scheme

In this part, we consider the mass conservation for the AP-diff scheme.
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Lemma A.1 Let us consider the AP-diff scheme (2.10)–(2.11) when G > 0 (the case G < 0 be-

ing similar) complemented with the no-flux boundary conditions J
±,n+ 1

2

i,K+ 1
2

= J
±,n+ 1

2

i,−K− 1
2

= 0 which are

equivalent to

p
±,n+ 1

2
i,K+1 = p

±,n+ 1
2

i,−K−1 = 0, (A.1)

and with reflection boundary conditions

p+,n
0,k = p−,n0,k , p−,nI,k = p+,n

I,k . (A.2)

Then, if we assume moreover that p+,n
i,K = p−,ni,−K = 0 for any i ∈ {0, . . . , I}, we get that the

AP-diff scheme is conservative.

Proof. We define the local density by

ρi =
K∑

k=−K

(
p+
i,k + p−i,k

)
and the total mass M , calculated by the trapezoidal law,

M =
ρ0 + ρI

2
+

I−1∑
i=1

ρi.

Let p̄±,ni =
∑K

k=−K p
±,n
i,k , and p̄

±,n+ 1
2

i =
∑K

k=−K p
±,n+ 1

2
i,k , we obtain, from (2.10a) with the no-flux

boundary conditions, p̄
±,n+ 1

2
i = p̄±,ni .

By summing up (2.11a) and (2.11b) w.r.t. k, we obtain, respectively,

p̄+,n+1
i = p̄

+,n+ 1
2

i − ∆t

ε∆x

(
p̄+,n+1
i − p̄−,n+1

i

)
+

K∑
k=−K

ak− 1
2

(
p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k

)

= p̄
+,n+ 1

2
i − ∆t

ε∆x

(
p̄+,n+1
i − p̄−,n+1

i

)
+

K∑
k=−K+1

ak− 1
2

(
p

+,n+ 1
2

i−1,k−1 − p
−,n+ 1

2
i,k

)
− a−K− 1

2
p
−,n+ 1

2
i,−K ,

(A.3a)

where ak− 1
2

= 2∆tG
∆x(2εG+Λ̄

k− 1
2

)
, and

p̄−,n+1
i = p̄

−,n+ 1
2

i +
∆t

ε∆x

(
p̄+,n+1
i − p̄−,n+1

i

)
+

K∑
k=−K

ak+ 1
2

(
p
−,n+ 1

2
i+1,k+1 − p

+,n+ 1
2

i,k

)
,

= p̄
−,n+ 1

2
i +

∆t

ε∆x

(
p̄+,n+1
i − p̄−,n+1

i

)
+

K∑
k=−K+1

ak− 1
2

(
p
−,n+ 1

2
i+1,k − p

+,n+ 1
2

i,k−1

)
− aK+ 1

2
p

+,n+ 1
2

i,K ,

(A.3b)

where we use (A.1). Thus, by summing up the above equations, we have

ρn+1
i = ρni +

K∑
k=−K+1

ak− 1
2

(
p

+,n+ 1
2

i−1,k−1 − p
+,n+ 1

2
i,k−1 + p

−,n+ 1
2

i+1,k − p
−,n+ 1

2
i,k

)
− a−K− 1

2
p
−,n+ 1

2
i,−K − aK+ 1

2
p

+,n+ 1
2

i,K ,
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and by further summing up for i = 1 to i = I − 1, we have

I−1∑
i=1

ρn+1
i =

I−1∑
i=1

ρni +
K∑

k=−K+1

ak− 1
2

(
p

+,n+ 1
2

0,k−1 − p
+,n+ 1

2
I−1,k−1 + p

−,n+ 1
2

I,k − p−,n+ 1
2

1,k

)

−
I−1∑
i=1

(
a−K− 1

2
p
−,n+ 1

2
i,−K + aK+ 1

2
p

+,n+ 1
2

i,K

)
.

(A.4)

On the other hand, ρI and ρ0 are calculated, respectively, from (A.3b) and (A.3a) as

ρn+1
I

2
=
ρnI
2

+
K∑

k=−K+1

ak− 1
2

(
p

+,n+ 1
2

I−1,k−1 − p
−,n+ 1

2
I,k

)
− a−K− 1

2
p
−,n+ 1

2
I,−K , (A.5)

ρn+1
0

2
=
ρn0
2

+
K∑

k=−K+1

ak− 1
2

(
p
−,n+ 1

2
1,k − p+,n+ 1

2
0,k−1

)
− aK+ 1

2
p

+,n+ 1
2

0,K , (A.6)

where we use the reflection condition (A.2).
From (A.4)–(A.6), we obtain

Mn+1 = Mn −

(
a−K− 1

2

I∑
i=1

p
−,n+ 1

2
i,−K + aK+ 1

2

I−1∑
i=0

p
+,n+ 1

2
i,K

)
.

Since ak− 1
2
> 0, the condition for the mass conservation reads p+,n

i,K = p−,ni,−K = 0, for any i ∈
{0, . . . , I}.
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