Logarithmic decay of wave equation with Kelvin-Voigt Damping
Résumé
In this paper, we analyze the longtime behavior of the wave equation with local Kelvin-Voigt Damping. Through introducing proper class symbol and pseudo-diff-calculus, we obtain a Carleman estimate, and then establish an estimate on the corresponding resolvent operator. As a result, we show the logarithmic decay rate for energy of the system without any geometric assumption on the subdomain on which the damping is effective.
Domaines
Mathématiques [math]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |