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Abstract: In this paper, we analyze the longtime behavior of the wave equation with local Kelvin-Voigt
Damping. Through introducing proper class symbol and pseudo-diff-calculus, we obtain a Carleman
estimate, and then establish an estimate on the corresponding resolvent operator. As a result,
we show the logarithmic decay rate for energy of the system without any geometric assumption on
the subdomain on which the damping is effective.
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1. Introduction

In this paper, a wave equation with local Kelvin-Voigt damping is considered. More precisely,
we assume that the wave propagates through two segments consisting of an elastic and a Kelvin-Voigt
medium. The latter material is a viscoelastic material having the properties both of elasticity and
viscosity. We analyze long time behaviour of energy of solution of the system. Let Q C R be a
bounded domain with smooth boundary I' = 9(). Denote by 0,, the unit outward normal vector on
boundary I'. The PDE model is as follows.

yu(t,x) —div [Vy(t,x) +a(x)Vy(t,x)] =0 in (0,00) x Q,
y(t,x) =0 on (0,00)xT, 1)
y(0,x) =y°,  yi(0,x) =y in 0,

where the coefficient function a(-) € L!(Q) is non-negative and not identically null.
The natural energy of system (1) is

1
E0) = 5[ [ (195012 + 1yu(t) |2)ax]. @
A direct computation gives that
d
GE0 == [ a9y ax ©

Formula (3) shows that the only dissipative mechanism acting on the system is the viscoelastic
damping div [aVy;], which is only effective on supp a.
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To rewrite the system as an evolution equation, we set the energy space as
H = Hy(Q) x L*(Q), 4)

with norm

1Yl = [TV By + a2y Y = (1,32) €7, ©)

Define an unbounded operator A : D(A) C H — H by
AY = (y2,div (Vy1 +aVy)), VY = (y1,12) € D(A),

and
D(A) = {(yl,yz) €H : yp € Hy(Q),div (Vy; +aVyy)) € LZ(Q)}.

Let Y(t) = (y(f), y¢(t)). Then system (1) can be written as

d

SY() = AY(1), Y20, Y(0) = (o) ©)

It is known from Reference [1-3] that if supp a is non-empty, the operator A generates a contractive
Co semigroup et on H and iR C p(.A), the resolvent of .A. Consequently, the semigroup ¢! is strongly
stable. Moreover, if the entire medium is of the viscoelastic type (i.e., supp a = Q), the damping for
the wave equation not only induces exponential energy decay, but also restricts the spectrum of the
associated semigroup generator to a sector in the left half plane, and the associated semigroup is
analytic [4]. However, when the Kelvin-Voigt damping is local and the material coefficient a(-) is a
positive constant on supp a, the energy of system (1) does not decay exponentially for any geometry
of () and supp a [1,5]. The reason is that the strong damping leads to the reflection of waves at the
interface v = d(suppa) \ I', which then fails to be effectively damped because they do not enter the
region of damping [6-8]. It turns out that the viscoelastic damping does not follow the assumption
that the “geometric optics” condition implies exponential stability [9].

On the other hand, it has been proved that the properties of regularity and the stability of the
1-d system (1) depend on the continuousness of coefficient function a(-). More precisely, assume that
Q = (-1, 1) and a(x) behaviours like x* with « > 0 in suppa = [0,1]. Then the solution of (1) is
eventually differentiable for & > 1, exponentially stable for « > 1, polynomially stable of order 11— for
0 < a < 1, and polynomially stable of optimal decay rate 2 for « = 0 (see [10-13]).

For the higher dimensional system, the corresponding semigroup is exponentially stable when
a(-) € €%(Q) and suppa D T, polynomially stable of order % when a(-) = a9 > 0 on suppa and
supp a satisfies certain geometry conditions [14,15]. Then, a natural problem is—how about the decay
rate when () and supp a # @ is arbitrary? In this paper, we analyze the logarithmic decay properties
of the solution to (1) and obtain that the decay rate of system energy stays at a rate 1/ [log(t + 1)]8/5.
This result was recently improved by Burq [16].

The main result reads as follows.

Theorem 1. Suppose that the coefficient function a(-) € €5°(Q)) is non-negative and suppa C Q) is
non-empty. Then the energy of the solution of (1) decays at logarithmic speed. More precisely, one has that there
exists a positive constant C such that

C

tA
Y| <
HE OHH = [10g(t+1)]4k/5

HYO , VE>0, Yo=(yo,y1) € D(AX). @)

HD(Ak)

We shall prove Theorem 1 through the resolvent estimate [17]. The main idea is to introduce proper
operators, class of symbol and pseudo-diff-calculus. Then, a Carleman estimate on the subdomain far
away from the boundary will be proven. Combining these with a classical Carleman estimation up to
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the boundary, one can obtain the desired Carleman estimate and resolvent estimate. This method was
developed in References [18-23] and the references cited therein.

The rest of the paper is organized as follows—we present some preliminaries in Section 2.
Sections 3 and 4 are devoted to the proof of the Carleman estimate and the logarithmic stability
of system (1). Finally, some proofs of the classic result are given in Appendix A to complete the paper.

Throughout this paper, we use || - ||, (- | ) to denote the norm and inner product in L?(Q) if there
are no comments. When writing f < ¢ (or f 2 g), we mean that there exists a positive constant C such
that f < Cg (or f > Cg).

2. Preliminaries

We shall prove Theorem 1 by Weyl-Hormander calculus, which was introduced Hormander [24,25].
First, let’s define some definitions and results on the class of symbol and pseudo-diff-calculus.

2.1. Symbol and Symbolic Calculus

Let V be a bounded open set in R?. For any (x,&) € VxR, A € Rand T > 0, we introduce
the metric
g = §ug = Adx* +p%d%,  where pf = pu(7,8)* ="+ [{ %, ®)
and the weight
v=v(x,A) =1/1+ A2a(x)2. )
Note that g, #(X,E) = A | X|? + p~2(1,&) | E|? forall X, E € R?. Then we have the following

results. It’s proof is given in Appendix A for the sake of completeness.

Lemma 1. Assume that there exist positive constants C and A such that A > Ag and T > max{CA, 1}.
It holds

(i)  The metric g = gy defined by (8) is admissible, i.e., it is slowly varying and temperate.
(i) The weight v = v(x, A) defined by (9) is admissible, that is, it is g-continuous and g-temperate.

Definition 1 (Section 18.4.2 in [24]). Let the weight m(x, ) be admissible and the metric g be defined by (8).
Assume q(x,8, A, T) € ‘K‘”(Rd X Rd), where parameters A, T satisfy conditions in Lemma 1. q(x,&, A, T) isa
symbol in class S(m, g) if for all a, B € N there exist Cu,p independent of T and A such that

|8%05q(x,8,A,7) | < Cypm(x, &A1 (7, &)

Remark 1. (i) It is clear that u = \/T2+ | |2 € S(p, g) since |a§‘u(r,(§) | < =Bl forall p € RY.
(ii) Let v be the weight defined by (9). It is easy to get that Aa € S(v,g). In fact, if |a| > 2, it holds that
|0%(Aa(x)) | < Car < CoA1¥172y(x), where Cy > 0. For the case |a| = 1, it follows from (A1) that

N|—

|9 (Aa(x)) | < VE[a"]20 M (Aalx))

Note that | Aa(x)| < Cv?(x) for some C > 0. This together with the above inequality, we have that there
exists a positive constant C such that

|9%(Aa(x)) | < V2C ||d" /\21/( ).

Iz L=(0

(iii) It is known from Lemma 18.4.3 of [24] that if the metric g and weights my, my are admissible, symbols
a € S(my,g) and b € S(my,g), then ab € S(mymy,g). In particular, (Aa)ip* € S(viyk,g) for all
j, ke NU{0}.
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Definition 2. Let b € S(m, g) be a symbol and u € .7 (R?), we set
b(x, D, 7)u(x) = Op(b)u(x) := (2m)~4 /Rd e b(x, & 1) (E) dé.

It is known that Op(b) : .7(R%) — . (R?) is continuous and Op(b) can be uniquely extended
to .’ (R?) continuously. The following two lemmas are consequences of Theorem 18.5.4 and 18.5.10
in Reference [24].

Lemma 2. Let b € S(m, g) where m is an admissible weight and g is defined by (8). Then there exists ¢ €
S(m, g) such that Op(b)* = Op(c) and c¢(x, &) = b(x, &) + r(x, &) where the remainder r € S(/\%y’lm,g),

Lemma 3. Let b € S(my,g) and ¢ € S(my, g) where m; are admissible weights for j = 1,2 and g is defined
by (8). Then,

(i)  there exists d € S(mymy, ) such that Op(b) Op(c) = Op(d) and d(x,&) = b(x,&)c(x, &) +r(x, &)
where r € S(A%‘u’lmlmz,g).

(i) for commutator i[Op(b),Op(c)] = Op(f), it holds that f € S(A%y_lmlmz,g) and f(x,8) =
{b,c}(x,&) +r(x, &) where r € S(Au—>mymy, g).

The operators in S (174, ¢) act on Sobolev spaces adapted to the class of symbol. Letb € S(v/uk, g),
where y and g are defined by (8). Then there exists C > 0 such that

1Op(b)ut]l p2(ay < ClIV Op(*)ull 2y, ¥ u € 7 (RY).

By symbolic calculus, the above estimate is equivalent to Op (u~*v~/) Op(b) acts on L2(R?) since
the operators associated with symbol in S(1,¢) act on L?(R?). In particular, if b € S(v/y, g), then for
any A > Ap, 7 > max{CA, 1} and u € f(Rd), it holds that

10p(0)ut]l 12 (ray < CTI[V/ull 2 (ay + Cllv/ Dut]| 2 ga),
where C > 0 depends on Ap and C.

2.2. Commutator Estimate

In this subsection, we suppose that A = 1 since the symbol does not depend on A. The the metric
in (8) becomes
§=dx*>+pu2d¢, where y is defined by (8). (10)

To get the commutator estimate, we shall use the following Garding inequality [24].

Lemma 4. Let b € S(u?, §) be real valued. y and g are defined by (10). We assume there exists C > 0 such
that b(x, &, T) > Cka. Then there exists C > 0 such that

Re(Op(b)w |w) > Cl|Op(uF)wl?,  Vwe 7 (RY). (11)

Define the operator P(x,D,A) = D? + iADa(x)D — A2, where D? = Z}i:1 DJZ, D; = —iaxj
and Da(x)D = 27:1 Dja(x)D;. Introduce the weight function ¢ € € (RY;R). The associated

conjugate operator of P(x, D, A) is Py(x,D,A) = e"?P(x,D,A)e”"%. Then,

Py, = (D +itVe(x))* +iA(D +itVe(x))a(x)(D +itVe(x)) — A2
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By setting Qy = 3 (P + Py)and Q1 = % (Py — P;), we have Py = Q; +iQ1, where

Q2 = D? — 72|V ¢[? — AtDa(x)V(x) — AtV e(x)a(x)D — A2,

12
Q1 = 1DV g(x) + TV¢(x)D 4 ADa(x)D — At?a(x)|Ve|% (12

Definition 3. Let V be a bounded open set in RY. We say that the weight function ¢ € €% (R%;R) satisfies
the sub-ellipticity condition in V if |de | > 0in V and there exists constant C > 0,

Pp(x,8,7) =0, ¥(x,0) eVxRY, t>0 = {mpu}(xg1)>C([¢7+7)2  (13)
where py(x, ¢, T) = [ +iTVe(x) > = ap(x, & 1) +iqq(x,& 1) and a1, o are real valued.

Lemma 5 ([24]). Let V be a bounded open set in R? and p € € (R%; R) be such that | V| > 0in V. Then,
for v > 0 sufficiently large, ¢ = "V fulfills the sub-ellipticity property in V.

Lemma 6. Assume that ¢ satisfies the sub-ellipticity in Definition 3. For all w € %5°(Q), there exist
C1,Co > 0and 19 > 0 such that the following inequality holds for all T > T,

G170 wl)? + Cy 7| Dw|?
< (Op({&? = *Vo(x)? 21¢ - Vo(x) Hw | w) + Gt 1| Op(8® = T*Ve(x)?)wl?  (14)
+Cot 1 Op(27¢ - Vg (x))w]*.

The proof of Lemma 6 can be found in Appendix A.

3. Carleman Estimate

In this section, we shall prove the Carleman estimate by the tool introduced by Hérmander [24,25]
and called Weyl-Hormander calculus. It allows us to define proper operators, class of symbol and
pseudo-diff-calculus. Throughout this section, we denote by || - ||y, (- | -)v the norm and inner product
in L2(V) for V C Q, respectively.

Let the metric ¢ and weight v be defined by (8) and (9). Furthermore, due to the results in
Section 2.1, we know that D + itV ¢(x) is an operator with a symbol in S(y, g) class, Aaisin S(v, g),
and (1 +iAa(x))(¢ + itVe(x))?, the principal symbol of P, belongs to S(vu?, g). It follows from
Lemmas 2 and 3 that

Py = Op ((1+iAa(x)) (¢ +itVe(x))?) — A% + Rs
Q2 = Op(q2) —A* + Ry (15)
Ql = OP(‘h) + Rl/

where g, = |22 — 7|V (x)|? — 2Ata(x) - Vo(x), q1 = 278 - Vop(x) + Aa(x) (|g* — % V(x) ) and
the symbols of R; are in S(A%vy, Q) for j =1,2,3. It is clear that

[P0l = [[Q2olly + 1Qioll§ +2Re(Q20|iQi0)v. (16)

In what follows, several Carleman estimates are introduced. First, we give an estimation on the
subdomain which is far away from the boundary T'.

Theorem 2. Suppose ¢ satisfies sub-ellipticity condition on V. C Q. Then, there exist positive constants
C, Kand Ay, such that for every u € €5°(V), it holds

P (14 A2a(x)2) 2 ul} + ]| (1 + A%a(x)?) 2™ Dull} < Clle™Pul}, (17)
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where A > Ao and T > max{K|A[>/4, 1}.
Proof. We shall prove that (17) is equivalent to
1Pp0ly 2 7llv(x) Do} + T flv(x)l} (18)

First, assume (18) holds. Set v = ¢"?u. Then, Dv = ¢"?(Du — itVou) and e"?Du = Dv +itV¢u.
Then there exist positive constants cq, ¢y such that

c1 ([lv(x)Dolly +Tllv(x)olly) < [lv(x)e™Dully + Tllv(x)e™?ully

(19)
< o ([v(x)Dolly + Tlv(x)ollv).
Combining this with (18), we conclude that
Tv(x)e™ullf + Tllv(x)e™Dully, < (zllv(x)Dolff + Tllv(x)oll}) < [l Pully.
On the other hand, (17) implies that
©lv(x)e™ully + Tllv(x)e™Dully, < ||Pyoly-

Then, we proved (18) from the above estimate and (19).
Now we are going to prove (18). Note that

2Re(Q2v|iQ1v)v = (Q2v |iQ1v)v + (iQ1v| Q2v)v = (i[Q2, Q1lv [ v)v, (20)

where we denote by [Op(a), Op(b)] = Op(a) o Op(b) — Op(b) o Op(a) and Poisson bracket

{a, b}(x,&,7) = ¥ (agjaaij - axjaagjb)(x, ¢, 7). From symbolic calculus, the principal symbol
1<j<d

of i[Q2, Q1] is {42, 91} Due to the results in Section 2.1, we obtain that

i[Q2,Q1] = Op({92,91}) + Ry,

where {q2,41} € S(vzys‘/\%,g) and the symbol of Ry is in S(v2u2A, g).
A direct computation gives that

{2m} = (1+2()){E — PVg(x)2, 20 V() }
+ ({82 = PVe(x)2 Aa(x)} - Aa(x) {218V p(x), Aa(x)}) (€2 — PV p(x)?)

— 27EV g(x) (Aa(x){/\a(x),cfz — 2Ve(x)*} + {Aa(x),ZT(;‘.Vq)(x)}).

Sin
) (5.8) + A0 (5.2) = (1+ 2a()@ ~ Vp(0?), o1
1(58) ~ Ma(0)02(5,0) = 2.V ple) (1 + 122(2))
we have
(92,91}

= P(x){& - P?Ve(x)?, 218V e(x)}
+72 (1) (g2(%,€) + Aa()q1 (,8) ({27 = ™2V9(x)%, Aa(x)} — Aa(x) {27E.Vg(x), Aa(x)} )

—v2(x)(g1(%,€) — Aa(x)g2(x,©)) (Aa(x) {Aa(x), & = P Ve(x)2} + {Aa(x), 278V p(x)} ).
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Then, it follows from symbolic calculus that

Q2 Q1] = v(x)Op ({8 — ™*Vi(x)? 27E.Vg(x)} v (x)
+B1v 1 (x) Op (42(x,8) + Aa(x)q: (x,8) + A%) 22)
~Bav~}(x) Op (71(x,€) — Aa(x)q2(x,€) — Aa(x)) + Rs,

where the symbol of By is v—1(x) [{¢? — T*V¢(x)?, Aa(x)} — Aa(x){21¢.Vo(x), Aa(x)}] € S(A2vp,g),
the symbol of B, is vfl(x)[ a(x){Aa(x), & — ?Vo(x)?} + {Aa(x),2tE.Ve(x)}] € S(AZvp,g) and
the symbol of Rs is in S(Av2u?, g). We refer to Section 2.1 where the rules on symbolic calculus are

given and precise. Therefore, by the continuity of pseudo-differential operator, we have that forj =1, 2,
k=0,1and ¢ =1,2,

| (Biv(x)~ (Aa(x))*Qeo o)y |
— [ (v(x) " (Aa(x))*Qu | Bro) | < CllQullvBrolly 23)
(1/10)1 Qe + C'AT [v(x)oll} + C'Allv(x) Dol

| (ij’l(x)/\z()\a(x))kv

IN

v)y| < A2 (t|v(x)ollv + [v(x) Do) [v(x)vllv

(24)
< CAS27||v(x)v||3 + CAY 21 lv(x) Do|2,

and
| (Rsv| o)y | S AT |[v(x)ollf + Allv(x)Doll5. (25)

Letw = (1+ Aza(x)z)%v = vv in (14). We obtain
i flvollfy + il Dv(x)o) [}, < (Op({&? — T2 (%)%, 218V (x) Hro [vo)y
+Cr 1| Op (82 — Ve (x)*)vol, (26)
+Cot 1| Op(27¢.V(x))vo|f;, Ci, C2 > 0.

Since the symbol of [D, v(x)] is in S(A%v,g), we have
lv(x)Dol}, < ID(w(x)o)[I + I[D, v(x)]oll}; < ID(w(x)2)[} + CAllv(x)].
Consequently, for T > CA with C > 0 sufficiently large, it holds
Py + Tllv(x)Dolly, < 2 lv(x)olly + T D(v(x)o) |3 (27)
It follows from (26) and (27) that

Ci(Tllvolyy + Tlv(x)Dolff,) < (Op({&* — t?9(x)%,21¢.Vo(x) o vo)y
+Cr 1| Op (82 — TV (x)*)vol; (28)
+Cot 71| Op(27E. Vo (x))vo |3,
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Now we are going to estimate the terms || Op(¢% — >V ¢(x)?)vv||?, and || Op(27¢.Vg(x))vo||3.
It follows from (15) and (21) that

10p (&% — Vg (x)*)volf; + || Op(27¢. Vo (x))voll5,
|Op(v=2(g2 + Aa(x)g1)voll§; + || Op(v—2(q1 — Aa(x)g2)volF,
[v™1[Q2 + A% — Ry + Aa(x)(Q1 — Ry)]o|l%

+Hv[Q1 = Ri — Aa(x)(Q2 + A* = Ro) 0[5,

(29)

Combining this with the fact that the symbols of R]- are in S(/\%vy, g) for j = 1,2,3, we have that
there exists a positive constant C such that

10p(¢* — T*Vo(x)*)vollf, + || Op(27¢. Vo (x) volf5,
S L2 llQully + IRvollf, + IR0l + A%lo], (30)
S Lim121Qplls + AT [[voly, + AllvDoly, + A%o]l3.
From (28) and (30), we have that for T > CA, there exist positive constants C;, C; such that
C1(Tllv(x)oll}; + Tllv(x) Dolf5,)
< (0p({&* — T?9(x)?,21¢.Vo(x)})vo| vo)y (31)
+C2((1/7) Zjm QoI + Atllvollf + [[vDollf, + A%[lo]5).
On the other hand, due to (22)—(24), we have that there exists a positive constant C’ such that
(Op({2? — T?¢(x)%, 270 .V (x) v | v0),,
< (i[Q, Qilv|v)v + (1/4) Lja 2 1Q0lIF + C' (AT?[lv(x)o]l3, (32)

+A]|v(x)Dv||%/ + )LS/ZTHV(JC)UH%/ + A5/2T’1Hv(x)DvH%,).

Finally, by (31) and (32), one can choose T > K |/\|5/ 4 with K sufficiently large and T > 1 with 1
sufficiently large, such that for some C > 0,

C(Pllv(x)oly + tllv(x)Doll) < (i[Q2, Qilo| o)y + (1/2) Tiz1 2 [1Q0lI3- .
+er®[[v(x)o|§; + exllv(x) Dolf},,
where ¢ > 0 is arbitrary. Choosing € small with respect C;, using (16), (20) and (33), we obtain
C1T|lv(x)o]l§ + Crellv(x) Dol +(1/2)[|Quolly + (1/2) Qo] (34)

< (i[Q2, Qilv,v) + | QuolI% + 1Q20ll§, = [IPyoll3,

this implies (18). O

Remark 2. The estimates on the previous terms impose the assumption T > K|A|%/%. The other remainder
terms only impose the condition T > CA. This condition is related with the principal normal condition. Indeed
for a complex operator, with symbol p1 + ip, where py, po are both real valued, the Carleman estimate is
only true if {p1, pa} = 0on p1 = po = 0. Here the symbol of operator before conjugaison by weight is
&2 — A2 4+ i\a(x)&?, and the Poisson bracket is {&2 — A%, Aa(x)&} = 2A(&.a'(x))&2. We can estimate this
term, uniformly in a neighborhood of a(x) = 0, by CAaz (x) | &|3. This explanation does not justify the power
|A1>/4 found at the end of computations but shows the difficulties.
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Since there is higher order term div(a(x)Vy;) in system (1), it is necessary to deal with the term
div(a(x)Vf) for f € H'(Q) when proving the resolvent estimate. The following result is analogue to
the work by [26] .

Theorem 3. Suppose ¢ satisfies sub-ellipticity condition on V- C Q. Then, there exist C,K > 0, Ag > 0, such
that for all u € €5° (V) satisfying

d
Pu =go+ Zax].gj, where g; € L2(V), j=0,1,---,d, (35)

j=0

it holds

d
1 1
T|[(1+ /\za(x)z)?e“”u||%2(v) + (1 + Aza(x)z)iewDuH%z(v) <C 2 ||eT"’g]-||%2(V), (36)
j=0

where A > Ag and T > max{K|A|*/%, 1}.

Proof. First, from (15), we have D? = Q; + S, and AaD? = Q; + S; where S; and S, have symbols in
S(tvu,g) if T 2 A. It follows that

ID?]1? < [1Qaolf* + 7 (z?||v(x)2 ]| + [|v(x) Do||?),

(37)
[AaD?0|* < [1Qio]1? + 7 (T2[|v(x)]|> + [lv(x) Do|1?).
Using the fact that ||v(x)D?v||? < 2(||D?v]|2 + ||AaD?v||?), (34), we obtain
Plv()o]® + tlv(x)Dol? + T Hv(x) D*o* < || Pyol® (38)

Let w and x be in €5°(Q)) such that x = 1 on a neighborhood of supp w. From (27), we obtain

tllv(x)w|? + 7 lv(x)Dw|? < Tllv(x)w]? + 77 D(v(x)w) >

a , _ (39)
S ) Op(pYv(x)xwl|? + 1| D*Op (1 vxwl?,

where the last estimate is obtained by Fourier transform and by the inequality

L Ik

T+|§‘2< +
(4 [¢1%)

T Y24+ |2

From the results in Section 2.1, we have Op(u~')vx = vx Op(u~') + Ry, where R has a symbol
in S(y’zv)\%,g), and D?Op(u~')vxy = vD?xOp(p~') + Ry, where R, has a symbol in S(UA%,g).
Then, it follows from (39) that

tlv(@)w|? + 77 v(x)Dw|* < T lv(x)x Op(p~Hw|* + 7 lvD*x Op (™ H)wl|* + Aflv(x)w]>
For T > max{CA, 1} with C large enough, one has the following result from the above inequality.
tlv(@)wl? + 77 |v(x)Dw|? < Pllv(x)x Op(r Hwl? + = [vD*x Op(u~Hw|. (40)
Now, we apply (38) to v = x Op(x~!)w to have

v (x)x Op(u~)w|]* + Tllv(x) Dx Op(u~)w|]* + 7~ |[v(x) D2x Op (] |?
S 1PoxOp(u)wlf?.
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[hus, combining this with (40) yields
lv(x)wlf* + 7 |lv(x) Dw|* < || (r Hwl? (41)
Tllv(x)w||” + 7 [[v(x) Dw||= S [[Ppx Op(p " )w||~.

Finally, note that P, has a symbol in S(vy?, g). Consequently, Pyx Op(p~1) = Op(u~1)Ppx + R,
where R has a symbol in S (1/)&%, g). Then, we can deduce from (41) that

tlv()wl? + v v(x)Dw|| < | Op(u~ 1) Pyw]| + Aljvew]|?.

When 7 > CA, with C large enough, the error term ||1//\% w||? can be absorbed by the left hand
side. Hence,

tllv(x)wl|* + 7 v(x)Dw|| < | Op (i) Pyw]|*. (42)

For w = ¢"™?u, we have

d
.2 (0, (e"78)) — 78;0x,9)-

d
Pyw = e"PPu = e"?go+ Y e™0y,gj = e"go +
i=1 j=1

]

Obviously, one has that || Op(u~1)Pyw||* < Z;?:o [e™?g; |2. Combining this with (42), we obtain
Theorem 3. [

Remark 3. Since a(-) is non-negative and not identically null, there exists 6 > 0 such that {x € Q : a(x) >
0} # @. We introduce several sets as follows.

Wy = Q\ supp 4,

W =Q\ ({xeQ:a(x)>stu0O)),

W;=Q\O({xe€Q : a(x)>0}),

Wy=0\{xeQ:a(x)>4/2},

where O(T') means the neighborhood of T.
1t is known that there exists a function € €*(QY) such that [25]

(1) y¢(x)=0forx € QL.
(2) 9np(x) < 0forx € 9Q2.
(3) Viy(x) # 0 for x € Wy.

Let ¢ = €Y. It follows from Lemma 5 that ¢ satisfies the sub-ellipticity condition on x € Wy if y > 0is
sufficiently large. Then, in Theorem 2 and 3, one can choose V as Wj.

The following result can be obtained from the classical Carleman estimate up to the boundary [27]
(Proposition 2). Note that this estimate corresponds to the Laplacian with Dirichlet boundary condition.

Lemma 7. Suppose ¢ satisfies the sub-ellipticity condition on Wy. Then, there exist C,K > 0, Ag > 0,

such that for all u € € (Q) satisfying suppu C W3 and u = 0 on T, it holds that
Tlle™ul|? + 7[|e™Dul|* < C[le™(D? — A%)ul|?, (43)

where A > Ag and T > max{KA, 1}.
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Theorem 4. Suppose ¢ satisfies sub-ellipticity condition on Wy. Let u € € (Q) satisfy

d
Pu:fo—i—zaxjfj in Q,
j=1
u=20 on T,

where fj € L*(Q)), supp fo C Qand supp fj C {x € Q : a(x) > 0} for j = 1,--- ,d. Then, there exist
C,K >0, Ag > 0, such that for all A > Ag and T > max{K|A|>/4, 1}, it holds

d
THET(PL{HZ =+ T71||€T¢DMHZ S C( HeT(Pf].HZ +/\||ET(PM||%2({J(€Q/ u(x)Z&/Z}))’
j=0

where the positive constant ¢ is defined as in Remark 3.

Proof. Let x1, x2 € ¢ (Q) satisfy x1 and x» are supported on W3 and W, respectively. We assume
that x1 + x2 = 1 on Ws. In particular x; = 1 on a neighborhood of dQ2, and ), = 1 in a neighborhood
of the frontier of supp a.

Since Xlaxjf]- =0forj=1,---,d, wehave Pxiu = x1fo + [P, x1Ju, where [P, x1] is a first order
operator and supported on supp x1. By using xju instead of u in Lemma 7, we obtain

e xaul® + e Dxaul® < e xafoll® + e [P, xalul® (44)

On the other hand, it is clear that Pyou = x2fo + 27:1 (ax]. (x2fj) — f]-axsz) + [P, xo]u.
Since [P, x»] is a first order operator, we have that there exist ag, a1, - - -, az and by, by, - - -, by such
that [P, xo]u = apu + Zj»lzl axj(a]-u) + AZ?:l ij(bju), where a; and b; (j=0,1,---,d) are supported
ontheset{x € QO : 6 >a(x)>5/2} U(Q2\ suppa). Then, applying Theorem 3 with x,u instead of u,
we obtain

7)1+ A2a(x)%) 2™ yul|? + T Y| (1 + A%a(x)?) 2™ Dyaul|?

d
2 2 2
S Z(:) ||6T¢—f}|| + ”eT(Pu”LZ(Q\suppa) + /\HET(PuHLZ({XGQ:a(x)ZcS/Z})'
]:

Summing this estimate with (44) multiply by 72, using (1 + A%a(x)?) > 1, we obtain

d
Tle™ Gx + x2)ull? + T e DO+ x2)ull S Y e Fill? + e ulF2 0y suppa
j=0

+Alle™ulfy + T2 e™ [P, xa]ul .

{x€Q), a(x)>5/2})

As D(x1 + x2) is supported on {x € Q) : a(x) > 6/2}, x1+x2 =1onQ\ suppa, and [P, x1]
supported where X1 + x2 = 1, we have, for T sufficiently large

d
Tl s + x)ull + 7 e G+ 22)DulP S Y 1€ I + APl ceyragersssay
=0
Thenas x1 +x2 =1onQ\ {x € O : a(x) > §/2}, we obtain the statement of Theorem 4. [

4. Resolvent Estimate

In this section, we prove the main result. From Batty-Duyckaerts [17], the estimate of the energy
decay in Theorem 1 can be obtained through the following result.
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Theorem 5. There exists C > 0, such that for every v € R with A large, we have
. — 5/4
H(A— ir) 1”5(7{) < CeCIMT, (45)

Let A be a real number such that | A | is large. Consider the resolvent equation:

F=(A—iM)X, where X = (y1,y2) € D(A), F=(fi, f2) €H, (46)
which yields
div (V]/] + aVyz) + /\Zyl = l/\fl +f2, in Q,
Y2 =iAy1 + f1 in Q, (47)
vilr=0.

In what follows, we shall prove the solution to (46) satisfies Theorem 5. As a result, the logarithmic
decay of (7) is arrived at. The proof is divided into two lemmas.

Lemma 8. Let 7 > Oand x € €5°({x € Q : a(x) > n}) be real valued functions, there exists C > 0
such that

Ixvall < CUIVYAl2(gxea:a@y>qy) T IAlE1@Q) + 1202 0))
where v, satisfies (47).
Proof. By (47), one has that y; satisfies
div (Vy1 +iAaVyy) + A2y = iAfi + fo — divaV . (48)

Multiplying this equation by x¥,, and integrating on (), we obtain,

— [ ViV T —id | a() Ty (3T dx + A2 |

(49)
=i fo AXPTAx + [ oX°T1dx + [ a(x)V AV (X7, )dx.

Since V(x%y;) = x*V¥,; + 27;xVx, we have

’ / )V V(x }ll)dx‘ S IDT2 (e a( sy + XDVl 2 ((xeq:at>n)) 50)
< 2|‘D]/1||%2({xegza(x)>,7}) +1/8][xy1 H2
Substituting (50) into (49), we obtain
Pl S @I+ IS Pagecr.aoy + A28l 2

+A2 /4l P+ AP+ A‘Z\Isz2 +2(1+ A D) fillin g (51)

Then, the proof is finished. O

Lemma 9. For every y1, f1 and f, satisfying (47), there exists C > 0 such that

[ al 9w 1%dx < C(UAilR ) + AN+ 1RDI ).
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Proof. From (47), multiplying by ¥,, we have

/Q (div (Vy1 + aVya) + A%y ), dx = /Q(i/\fl + f2)y,dx.

Replacing y, by f1 4+ iAy; and integrating by parts, we have

ST VI 22 [ = eV idg + ) VT = [ (A + L)

Consequently,

J =0+ 1) [Ty |24 22 g 2ldx = [ 0V VT, + (AR + )7 )

Taking the imaginary part, we obtain

/Qa|Vy1 1 2dx = —A’lIm/Q[anl-Vﬁ—f— (iAfi + fo)Ti]dx

Using the Cauchy-Schwarz inequality in the above equality, one has

1
Jatvu Pax < (A1 ([ al9v12dx) il + 1A (A TIAT+ IR0
<1/4 [ alVyr P+ A2 AR + AT UALIAD+ L&D Il

Thus, we obtain the result. [

Proof of Theorem 5. In Lemma 8, taking x(x) = 1is a(x) > 2y, we have

Hylan ({xeQ:a(x)>24}) (IIVyllle ({xeQ:a(x)>p}) T HleHl(Q + ||f2||%2(0))-

It follows from Lemma 9 that

VY1l T2 rcnr.ageysyy < CUAIR Q) + UAT+ 1D Iy1l)-

Both inequalities imply

19112 grecrsamoany < CUAIR@y + 1lBay + (AT ILDIv). 52)

Applying Theorem 4 to y; satisfying (48), we obtain

d
Tle™yi|? + 7 e Dyall? < A2[le™ fl]? + e fal|? + ) lle™Pa0x fu|?
j=1
2
+ M yllT2(xeqa)=s/20)
Let ¢; = minyecq ¢(x) and c; = maxyeq ¢(x), we conclude from the above inequality that
7|y, > + 7127 Dyy |12
(53)
S A2 ZCZTHfl H + EZCZTHfZHZ + /\EZCZTH]/l HHl({XEQ a(x)>6/2})"

Substituting (52) with # = 6/2 into (53), we obtain

|y || + TP Dy |2 S A2 fillF ) + T ILIP + (LA + 20D Nyl
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Let c3 = 2(c2 — ¢1) + 1. For T > max{K|A|?>/4, 1}, One has
ly1 1 + 1Dy l1? S €Tl fillEn ) + €TI0 + e LA+ 12Dy -

Using eS7([|fill + 2Dyl < ellyall* + e 'e®3T([| fill + [If2])* in the above estimate,
we conclude that

lyil? + IDy1l? < 27N fillfn ) + 4TI f21%,

|5/4

which gives the desired result taking 7 = K| A with K large enough. O

5. Conclusions

It is known that the stability property of the wave equation system with local viscoelastic damping
depends on both continuousness and geometry of the support set of the damping function. In this
paper, we obtain the logarithmic decay of a wave equation system with local Kelvin-Voigt damping,
where the damping function is smooth and its support is an arbitrary non-empty subset. The approach
is based on Batty-Duyckaerts’ result that the resolvent estimate (45) implies the logarithmic decay
of the semigroup. Through introducing proper operators, class of symbol and pseudo-diff-calculus,
we obtain a Carleman estimate on the subdomain far away from the boundary. Combining these with
a classical Carleman estimate up to the boundary, we arrive at the desired Carleman estimate and
resolvent estimate.
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Appendix A

In this Appendix, we shall prove Lemmas 1 and 6. First, we claim that for a compactly supported
and nonnegative function a € €2(Q), the following inequality holds:

|d'(x)]? < 2a(x)]|d"|lo, ¥V x€EQ. (A1)

In fact, from the following identity

1
a(x+h) =a(x)+a (x)h+ / (1—t)a" (x +th)h*dt, Vh € R,
0

one can get

1
a(x) +a'(x)h+ 5 [|a"||o | 1] * > 0.
Leth = ya'(x), where y € R and x € Q) are arbitrary. It follows from the above inequality that
1
a(x)+ |a'(x) [Py + Slla" |l |d'(x) |?y* >0, VxeQ yeR.

Then,
' (x) |* = 2a(x)[|a"||oo | @' (x) | < 0,

and (A1) is proved.
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Proof of Lemma 1. (i) From Definition 18.4.1 in [24], the metric g, s defined by (8) is slowly varying
if there exist 6 > 0 and C > 0 such that

Sve(y—x,m — &) < dimplies g, (X, E) < Cgrs(X,E), Vx,y,&1 X, E€RY,

where the constants ¢ and C are independent on the parameters A and 7.
Suppose 0 < 6 < 1/4 and

Soe(y—x,—8) =Aly—x|*+(T+|&|*) " |n-2g|* <o

Then, we have
4GP < TH2(G-n|P+2y]?

T +20(T+ [E]2) +2[n ]2

A

This implies that 2 + | &|2 < 4(7? + | 7]2). Consequently,

- 1) = 1 1) - -
gun(X,E) = A X2+ (T + 7171 E|? S/\IX|2+;(T2+ 15197 E? < gre(X,E).
Therefore, g is slowly varying.

For a given metric gy ¢, the associated metric g7 - is defined by g7 . = (T2 + | &|?)dx? + A~ 1dg2.
The metric g, ¢ is temperate if there exist C > 0 and N > 0, such that

- —_ N —_
82(X,B) < Cgyy(X,E)(1+85:(x—y,&—n) ", Vxy&nXEcR, (A2)

where the constants C and N are independent on the parameters A and 7 (Definition 18.5.1 in [24]).
For the metric ¢ = g,z defined by (8), (A2) is equivalent to

MXP+ (451D E?

(A3)
1= _ N
< CAXPHE+ ) HER) A+ (2 + [ [x—y 2 +AT (%)
First, assume that T2 + | 77|% < 4(7? + | &|?). It follows that
(4 12 <c@+ 1) (a+Aat g2, c>0 N>o0. (Ad)
Then it is easy to obtain (A3) from (A4).
Secondly, consider the case 2 + |7 |2 > 4(t> + |&|?). Then
lnl >2[¢l, |yl > V3T, (A5)
and 3 3
1 3 3
[1&—7] >§|’7| >7T>7C)\~ (A6)

It follows from (A5) and (A6) that

_ V3 V3
ATHE=n 2> SmClE—n] > = Clyl.

Consequently,

_ 2 3 3
(LA =12 > = CP |2 > ZC3(|y |2 +372),
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This together with 72 + | & |2 > 1 yields that there exists a positive constant C such that (A4)
holds with N = 2.

(i) It is known from Definition 18.4.2 in [24] that a weight v(x) is g-continuous if there exist
6 > 0and C > 0 such that

8xe(y—x,m— ) <6 implies Cilv(x) <v(y) <Cv(x), Vx,y,éne€ R,

where the constants § and C are independent on the parameters A and 7. Since the weight v(x) defined
by (9) does not depend on ¢, the above condition is reduced to

Alx—y|? <6 implies C™lv(x) < v(y) < Cv(x), VxyeR
The weight v(x) is g-temperate if there exist C > 0 and N > 0 such that

v(y) < Cv(x)(1+ g5, (x—ye—n)", Yxy&neR, (A7)

where the constants C and N do not depend on the parameters A and 7 (18.5.1 in [24]). The weight v(x)
is admissible if it is g-continuous and g-temperate. When a weight is admissible, all the powers of this
weight are g-continuous and g-temperate. Therefore, it suffice to prove that 1 4+ Aa(x) is admissible.

Lets € [0,t] and t € [0,1]. Define f(s) = Aa(x +s(y — x)) and F(t) = SUPc[o,4 f(s) where
x, y € Qsatisfying A | x —y |2 < 4. Itis clear that f'(s) = Aa’(x +s(y — x)) (y — x). Combining this
with (A1) yields

)] <Ala(xts(y—2))] [y~ x| <2Alla" |3 lalx+s(y — )]} [y —x].

Consequently,

1 L 1
sup | f'(s)| <2A2|[a" |G F(t)2 |y —x].
s€[0,f]

Since f(t) < f(0) +t sup,co | f'(s) |, F is non-decreasing and A | x — | 2 < §, we obtain that
forallt € [0,1],

() < F(0)+ CAZE(1)2 |y — x| < f(0) + CVEF(t)2 < £(0) + CV3F(a)2,

1
where C = 2||a"||% and « € [t,1]. Note that f(0) = F(0). It follows that

Nl

F(a) = sup f(t) < F(0) + CV/oF(a)2.
te[0,a]

This yields
1
1+ F(a) <14+F(0) +CVé(1+F(a))? <1+ F(0) +CV5(1+ F(a)). (A8)
By choosing ¢ sufficiently small such that Cv/d < 1/2, one can deduce from (A8) that
1+ F(a) <2(1+F(0)), Vaelt1].

In particular, we have
1+ Aa(y) <2(14 Aa(x)).

The above inequality remains true if we exchange x and y. Therefore, the weight 1 + Aa(x) is
g-continuous.
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On the other hand, note that 1 + Aa(x) is independent to ¢. Then, to obtain the weight 1 + Aa(x)
is o-temperate, it is sufficient to prove that

1+ Aa(y) < C(L+2Aa(x))(1+ 72 [x —y [N, (A9)

In fact, it is clear that 14 Aa(y) < 1+ A(a(x) + C|x —y|) where C = ||a’||o. Therefore, there
exists positive constant C' = CC~! such that

1+ Aa(y) < (14 2a(0))(1+CT|x—y]) < (1+Aa(x)) 2+ 2(C'T|x =y | )?)2.

Thus, we obtain (A9) with N = %, C=2max{1, C'}. O

Proof of Lemma 6. In what follows, we use the symbolic calculus with A = 1 since the symbol does
not depend on A. First, by homogeneity in (¢, T), compactness arguments and sub-ellipticity condition,
we claim that there exist constants C, § > 0 such that

Cl128- Vo) |2+ 72 (122 = Vo)) ?] + {I2? - T[Ve(()I%, 28 Vo(x)} > du*.  (A10)
The proof of (A10) is classical. In fact, set
K={(x&T) eRIXRIxR : x€Q, |&|2+12=1, T >0},
and for (x,&,7) € K, x>0,

G(x,¢,t,x) =«[|28-Vo(x) |2+ p 2 (18] = T IVe(x)[*) ] + {&* - T*|Vo(x)?, 28 Vo(x)}.

If pp = 0 for (x,,7) € K, then [2Z-Vo(x)|?+u2([Z]> — t*[Ve(x)|?)? = 0. it is clear
that there exists a positive constant ¢ such that (A10) holds due to the fact that ¢ is sub-elliptic.
When [2Z - Vo(x)|?+u 2 (|¢]> — t[Ve(x)|?)? > 0, there exists a positive constant ks, such
that G(x,&,7,x) > 0 for every x > kyz . since {¢% — T2|Ve(x)|?, 2¢ - Vo(x)} is bounded on K.
By continuity of G(x, ¢, T,x), there exists a neighborhood of (x,¢, ), denoted by V, ¢, such that
G(x,&,t,x) > 0forall (x,{,7) € Vygr and kK > kyg. Since K is compact, there exist finite sets
Vi = Vx].,gjlfj and corresponding constants Kj = Kx.&5 (i=1,2,---,n),such that K C U?:lvj and
G(x,¢,t,x) > 0forall (x,¢,7) € Viand x > x;. Letk = max{K]- :j=1,2,---,n}. It follows that
G(x,¢,7,&) > 0forall (x,¢,7) € K and « > &. Finally, using the compactness of K again, we conclude
that there exists § > 0 such that G(x, ¢, 7,&) > 6. Thus, (A10) is reached since g is a homogeneous
function of degree 2 with respect to variables (&, 7).

By Gérding inequality (11), there exists a constant C > 0 such that, for T > 75 where 1
sufficiently large,

CllOop(mw|®> < Re(Op (22 Ve(x)|2+p 2 (|2]> - T2 Ve(x)[*)?
(A11)
+{[Z) = T*[Vo((x)|?, 22 Vo(x)}w |w).

Now we are going to estimate the terms TOp(|2Z - Vo(x)|?) and tOp(p2(|¢]* —
2|V (x)[*)2). Firstly, it follows from Lemma 3 that

T 10p(|27¢- Vo (x) |?) = 71 Op(27¢ - V(x)) " Op(27¢ - Vp(x)) + TOp(r1), (A12)
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where r1 € S(u, §) and § is defined by (10). Therefore, for any € > 0, there exists a positive constant Cg

such that
|(z7'Op(|27¢ - Vo(x) | 2w | w)|

T Op(27¢ - Vo (x)w|* + 7| (Op(r)w | w) | (A13)
71 Op(278 - Vp(x))w|? +e7]| Op ()] + CetJw]|*.

IN

A

Substituting (A13) into (A11) and choosing € small enough, we have
Ct| Op(w)w|
< Re(Op (u 2 (122~ Vo(x)P)2 + T{|¢f — IV 28 Vo(x)})w [w)  (Ald)
+77H|Op (278 - Ve (x))wl|? + CetfJw]?.
Secondly, by symbolic calculus, we have that
TOp(p 2 (& = T[Ve(x)]*) %) = TOp(r0) Op([Z]* — *| Vo (x)[?) + T Op(r2), (A15)

where 79(x, &) = u=2(|¢|?> — T?|Ve(x)|?) € S(1,%) and 12 € S(u,§). Therefore, for all ¢ > 0, there
exists C, > 0 such that

| (tOp(r0) Op (> — T*| Vo (x)[*)w | w) |

Cer 1| Op(r0) Op(I¢[* — Vo (x)[*)w|]* + eT’|w]|? (Al6)
Cer 1 Op(IG)* — Vo (x)[*)w|* + e |Jw]|*.

IN

IN

We choose ¢ small enough and combine (A15) and (A16) with (A14) to get

Cl| Op(p)w]®
< Re(t{[gP IV, 2 - Vo(x)})w [w) + Cer™! | Op(IE)2 — 2 Vo(x) Rwl?  (A17)
+771[0p(27¢ - Vo(x))w|]? + Ce(T + e7) [[w]|2.
Finally, it is clear that there exist positive constant C such that
2 Jw| + Dl < Ctl| Op(p)e| (A18)

Thus, we obtain (14) by using (A17) and (A18), choosing & small enough and letting T > 19
big enough. 0O
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