
HAL Id: hal-02844102
https://hal.science/hal-02844102v1

Submitted on 7 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Logarithmic decay of wave equation with Kelvin-Voigt
Damping

Luc Robbiano, Qiong Zhang

To cite this version:
Luc Robbiano, Qiong Zhang. Logarithmic decay of wave equation with Kelvin-Voigt Damping. Math-
ematics , 2020, 8 (5), �10.3390/MATH8050715�. �hal-02844102�

https://hal.science/hal-02844102v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


mathematics

Article

Logarithmic Decay of Wave Equation with
Kelvin-Voigt Damping

Luc Robbiano 1 and Qiong Zhang 2,*
1 Laboratoire de Mathématiques Appliquées, UMR 8100 du CNRS, Université Paris–Saclay (site UVSQ),

45 avenue des Etats Unis, 78035 Versailles, France; luc.robbiano@uvsq.fr
2 School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology,

Beijing 100081, China
* Correspondence: zhangqiong@bit.edu.cn

Received: 2 April 2020; Accepted: 25 April 2020; Published: 3 May 2020
����������
�������

Abstract: In this paper, we analyze the longtime behavior of the wave equation with local Kelvin-Voigt
Damping. Through introducing proper class symbol and pseudo-diff-calculus, we obtain a Carleman
estimate, and then establish an estimate on the corresponding resolvent operator. As a result,
we show the logarithmic decay rate for energy of the system without any geometric assumption on
the subdomain on which the damping is effective.
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1. Introduction

In this paper, a wave equation with local Kelvin-Voigt damping is considered. More precisely,
we assume that the wave propagates through two segments consisting of an elastic and a Kelvin-Voigt
medium. The latter material is a viscoelastic material having the properties both of elasticity and
viscosity. We analyze long time behaviour of energy of solution of the system. Let Ω ⊂ Rd be a
bounded domain with smooth boundary Γ = ∂Ω. Denote by ∂n the unit outward normal vector on
boundary Γ. The PDE model is as follows.

ytt(t, x)− div [∇y(t, x) + a(x)∇yt(t, x)] = 0 in (0, ∞)×Ω,

y(t, x) = 0 on (0, ∞)× Γ,

y(0, x) = y0, yt(0, x) = y1 in Ω,

(1)

where the coefficient function a(·) ∈ L1(Ω) is non-negative and not identically null.
The natural energy of system (1) is

E(t) =
1
2

[ ∫
Ω

(
| ∇y(t) | 2 + | yt(t) | 2

)
dx
]
. (2)

A direct computation gives that

d
dt

E(t) = −
∫

supp a
a(x) | ∇yt(t) | 2dx. (3)

Formula (3) shows that the only dissipative mechanism acting on the system is the viscoelastic
damping div [a∇yt], which is only effective on supp a.
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To rewrite the system as an evolution equation, we set the energy space as

H = H1
0(Ω)× L2(Ω), (4)

with norm
‖Y‖H =

√
‖∇y1‖2

L2(Ω)
+ ‖y2‖2

L2(Ω)
, ∀ Y =

(
y1, y2

)
∈ H, (5)

Define an unbounded operator A : D(A) ⊂ H → H by

AY =
(
y2, div (∇y1 + a∇y2)

)
, ∀ Y =

(
y1, y2

)
∈ D(A),

and
D(A) =

{(
y1, y2

)
∈ H : y2 ∈ H1

0(Ω), div (∇y1 + a∇y2)
)
∈ L2(Ω)

}
.

Let Y(t) = (y(t), yt(t)). Then system (1) can be written as

d
dt

Y(t) = AY(t), ∀ t ≥ 0, Y(0) = (y0, y1). (6)

It is known from Reference [1–3] that if supp a is non-empty, the operatorA generates a contractive
C0 semigroup etA onH and iR ⊂ ρ(A), the resolvent ofA. Consequently, the semigroup etA is strongly
stable. Moreover, if the entire medium is of the viscoelastic type (i.e., supp a = Ω), the damping for
the wave equation not only induces exponential energy decay, but also restricts the spectrum of the
associated semigroup generator to a sector in the left half plane, and the associated semigroup is
analytic [4]. However, when the Kelvin-Voigt damping is local and the material coefficient a(·) is a
positive constant on supp a, the energy of system (1) does not decay exponentially for any geometry
of Ω and supp a [1,5]. The reason is that the strong damping leads to the reflection of waves at the
interface γ

.
= ∂(supp a) \ Γ, which then fails to be effectively damped because they do not enter the

region of damping [6–8]. It turns out that the viscoelastic damping does not follow the assumption
that the “geometric optics” condition implies exponential stability [9].

On the other hand, it has been proved that the properties of regularity and the stability of the
1-d system (1) depend on the continuousness of coefficient function a(·). More precisely, assume that
Ω = (−1, 1) and a(x) behaviours like xα with α > 0 in supp a = [0, 1]. Then the solution of (1) is
eventually differentiable for α > 1, exponentially stable for α ≥ 1, polynomially stable of order 1

1−α for
0 < α < 1, and polynomially stable of optimal decay rate 2 for α = 0 (see [10–13]).

For the higher dimensional system, the corresponding semigroup is exponentially stable when
a(·) ∈ C 2(Ω) and supp a ⊃ Γ, polynomially stable of order 1

2 when a(·) ≡ a0 > 0 on supp a and
supp a satisfies certain geometry conditions [14,15]. Then, a natural problem is—how about the decay
rate when Ω and supp a 6= ∅ is arbitrary? In this paper, we analyze the logarithmic decay properties
of the solution to (1) and obtain that the decay rate of system energy stays at a rate 1/[log(t + 1)]8/5.
This result was recently improved by Burq [16].

The main result reads as follows.

Theorem 1. Suppose that the coefficient function a(·) ∈ C ∞
0 (Ω) is non-negative and supp a ⊂ Ω is

non-empty. Then the energy of the solution of (1) decays at logarithmic speed. More precisely, one has that there
exists a positive constant C such that

‖etAY0‖H ≤
C

[log(t + 1)]4k/5

∥∥∥Y0

∥∥∥
D(Ak)

, ∀ t > 0, Y0 = (y0, y1) ∈ D(Ak). (7)

We shall prove Theorem 1 through the resolvent estimate [17]. The main idea is to introduce proper
operators, class of symbol and pseudo-diff-calculus. Then, a Carleman estimate on the subdomain far
away from the boundary will be proven. Combining these with a classical Carleman estimation up to
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the boundary, one can obtain the desired Carleman estimate and resolvent estimate. This method was
developed in References [18–23] and the references cited therein.

The rest of the paper is organized as follows—we present some preliminaries in Section 2.
Sections 3 and 4 are devoted to the proof of the Carleman estimate and the logarithmic stability
of system (1). Finally, some proofs of the classic result are given in Appendix A to complete the paper.

Throughout this paper, we use ‖ · ‖, (· | ·) to denote the norm and inner product in L2(Ω) if there
are no comments. When writing f . g (or f & g), we mean that there exists a positive constant C such
that f ≤ Cg (or f ≥ Cg).

2. Preliminaries

We shall prove Theorem 1 by Weyl-Hörmander calculus, which was introduced Hörmander [24,25].
First, let’s define some definitions and results on the class of symbol and pseudo-diff-calculus.

2.1. Symbol and Symbolic Calculus

Let V be a bounded open set in Rd. For any (x, ξ) ∈ V ×Rd, λ ∈ R and τ > 0, we introduce
the metric

g = gx,ξ = λdx2 + µ−2dξ2, where µ2 = µ(τ, ξ)2 = τ2 + | ξ | 2, (8)

and the weight

ν = ν(x, λ) =
√

1 + λ2a(x)2. (9)

Note that gx,ξ(X, Ξ) = λ |X | 2 + µ−2(τ, ξ) |Ξ | 2 for all X, Ξ ∈ Rd. Then we have the following
results. It’s proof is given in Appendix A for the sake of completeness.

Lemma 1. Assume that there exist positive constants C and λ0 such that λ ≥ λ0 and τ ≥ max{ Cλ, 1 }.
It holds

(i) The metric g = gx,ξ defined by (8) is admissible, i.e., it is slowly varying and temperate.
(ii) The weight ν = ν(x, λ) defined by (9) is admissible, that is, it is g-continuous and g-temperate.

Definition 1 (Section 18.4.2 in [24]). Let the weight m(x, ξ) be admissible and the metric g be defined by (8).
Assume q(x, ξ, λ, τ) ∈ C ∞(Rd ×Rd), where parameters λ, τ satisfy conditions in Lemma 1. q(x, ξ, λ, τ) is a
symbol in class S(m, g) if for all α, β ∈ Nd there exist Cα,β independent of τ and λ such that

| ∂α
x∂

β
ξ q(x, ξ, λ, τ) | ≤ Cα,βm(x, ξ)λ | α | /2µ(τ, ξ)− | β | .

Remark 1. (i) It is clear that µ =
√

τ2 + | ξ | 2 ∈ S(µ, g) since | ∂β
ξ µ(τ, ξ) | . µ1− | β | for all β ∈ Rd.

(ii) Let ν be the weight defined by (9). It is easy to get that λa ∈ S(ν, g). In fact, if | α | ≥ 2, it holds that
| ∂α

x(λa(x)) | ≤ Cαλ ≤ Cαλ | α | /2ν(x), where Cα > 0. For the case | α | = 1, it follows from (A1) that

| ∂α
x(λa(x)) | ≤

√
2 ‖a′′‖

1
2
L∞(Ω)

λ
1
2
(
λa(x)

) 1
2

Note that | λa(x) | < Cν2(x) for some C > 0. This together with the above inequality, we have that there
exists a positive constant C such that

| ∂α
x(λa(x)) | <

√
2C ‖a′′‖

1
2
L∞(Ω)

λ
1
2 ν(x).

(iii) It is known from Lemma 18.4.3 of [24] that if the metric g and weights m1, m2 are admissible, symbols
a ∈ S(m1, g) and b ∈ S(m2, g), then ab ∈ S(m1m2, g). In particular, (λa)jµk ∈ S(νjµk, g) for all
j, k ∈ N∪ {0}.



Mathematics 2020, 8, 715 4 of 19

Definition 2. Let b ∈ S(m, g) be a symbol and u ∈ S (Rd), we set

b(x, D, τ)u(x) = Op(b)u(x) := (2π)−d
∫
Rd

eix·ξ b(x, ξ, τ) û(ξ) dξ.

It is known that Op(b) : S (Rd)→ S (Rd) is continuous and Op(b) can be uniquely extended
to S ′(Rd) continuously. The following two lemmas are consequences of Theorem 18.5.4 and 18.5.10
in Reference [24].

Lemma 2. Let b ∈ S(m, g) where m is an admissible weight and g is defined by (8). Then there exists c ∈
S(m, g) such that Op(b)∗ = Op(c) and c(x, ξ) = b(x, ξ) + r(x, ξ) where the remainder r ∈ S(λ

1
2 µ−1m, g).

Lemma 3. Let b ∈ S(m1, g) and c ∈ S(m2, g) where mj are admissible weights for j = 1, 2 and g is defined
by (8). Then,

(i) there exists d ∈ S(m1m2, g) such that Op(b)Op(c) = Op(d) and d(x, ξ) = b(x, ξ)c(x, ξ) + r(x, ξ)

where r ∈ S(λ
1
2 µ−1m1m2, g).

(ii) for commutator i[Op(b), Op(c)] = Op( f ), it holds that f ∈ S(λ
1
2 µ−1m1m2, g) and f (x, ξ) =

{b, c}(x, ξ) + r(x, ξ) where r ∈ S(λµ−2m1m2, g).

The operators in S(νjµk, g) act on Sobolev spaces adapted to the class of symbol. Let b ∈ S(νjµk, g),
where µ and g are defined by (8). Then there exists C > 0 such that

‖Op(b)u‖L2(Rd) ≤ C‖νj Op(µk)u‖L2(Rd), ∀ u ∈ S (Rd).

By symbolic calculus, the above estimate is equivalent to Op(µ−kν−j)Op(b) acts on L2(Rd) since
the operators associated with symbol in S(1, g) act on L2(Rd). In particular, if b ∈ S(νjµ, g), then for
any λ ≥ λ0, τ ≥ max{ Cλ, 1 } and u ∈ S (Rd), it holds that

‖Op(b)u‖L2(Rd) ≤ Cτ‖νju‖L2(Rd) + C‖νjDu‖L2(Rd),

where C > 0 depends on λ0 and C.

2.2. Commutator Estimate

In this subsection, we suppose that λ = 1 since the symbol does not depend on λ. The the metric
in (8) becomes

g̃ = dx2 + µ−2dξ2, where µ is defined by (8). (10)

To get the commutator estimate, we shall use the following Gårding inequality [24].

Lemma 4. Let b ∈ S(µ2k, g̃) be real valued. µ and g̃ are defined by (10). We assume there exists C > 0 such
that b(x, ξ, τ) ≥ Cµ2k. Then there exists C̃ > 0 such that

Re(Op(b)w |w) ≥ C̃‖Op(µk)w‖2, ∀ w ∈ S (Rd). (11)

Define the operator P(x, D, λ) = D2 + iλDa(x)D − λ2, where D2 = ∑d
j=1 D2

j , Dj = −i∂xj

and Da(x)D = ∑d
j=1 Dja(x)Dj. Introduce the weight function ϕ ∈ C ∞(Rd;R). The associated

conjugate operator of P(x, D, λ) is Pϕ(x, D, λ) = eτϕP(x, D, λ)e−τϕ. Then,

Pϕ = (D + iτ∇ϕ(x))2 + iλ(D + iτ∇ϕ(x))a(x)(D + iτ∇ϕ(x))− λ2.
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By setting Q2 = 1
2 (Pϕ + P∗ϕ) and Q1 = 1

2i (Pϕ − P∗ϕ), we have Pϕ = Q2 + iQ1, where

Q2 = D2 − τ2|∇ϕ|2 − λτDa(x)∇ϕ(x)− λτ∇ϕ(x)a(x)D− λ2,

Q1 = τD∇ϕ(x) + τ∇ϕ(x)D + λDa(x)D− λτ2a(x)|∇ϕ|2.
(12)

Definition 3. Let V be a bounded open set in Rd. We say that the weight function ϕ ∈ C ∞(Rd;R) satisfies
the sub-ellipticity condition in V if | dϕ | > 0 in V and there exists constant C > 0,

pϕ(x, ξ, τ) = 0, ∀ (x, ξ) ∈ V ×Rd, τ > 0 ⇒ {q2,q1}(x, ξ, τ) ≥ C( | ξ |2 + τ2)3/2, (13)

where pϕ(x, ξ, τ) = |ξ + iτ∇ϕ(x)|2 = q2(x, ξ, τ) + iq1(x, ξ, τ) and q1, q2 are real valued.

Lemma 5 ([24]). Let V be a bounded open set in Rd and ψ ∈ C ∞(Rd;R) be such that | ∇ψ | > 0 in V. Then,
for γ > 0 sufficiently large, ϕ = eγψ fulfills the sub-ellipticity property in V.

Lemma 6. Assume that ϕ satisfies the sub-ellipticity in Definition 3. For all w ∈ C ∞
0 (Ω), there exist

C1, C2 > 0 and τ0 > 0 such that the following inequality holds for all τ ≥ τ0,

C1τ3‖w‖2 + C1τ‖Dw‖2

≤
(

Op({ξ2 − τ2∇ϕ(x)2, 2τξ · ∇ϕ(x)})w | w
)
+ C2τ−1‖Op(ξ2 − τ2∇ϕ(x)2)w‖2

+C2τ−1‖Op(2τξ · ∇ϕ(x))w‖2.

(14)

The proof of Lemma 6 can be found in Appendix A.

3. Carleman Estimate

In this section, we shall prove the Carleman estimate by the tool introduced by Hörmander [24,25]
and called Weyl-Hörmander calculus. It allows us to define proper operators, class of symbol and
pseudo-diff-calculus. Throughout this section, we denote by ‖ · ‖V , (· | ·)V the norm and inner product
in L2(V) for V ⊂ Ω, respectively.

Let the metric g and weight ν be defined by (8) and (9). Furthermore, due to the results in
Section 2.1, we know that D + iτ∇ϕ(x) is an operator with a symbol in S(µ, g) class, λa is in S(ν, g),
and (1 + iλa(x))(ξ + iτ∇ϕ(x))2, the principal symbol of Pϕ belongs to S(νµ2, g). It follows from
Lemmas 2 and 3 that

Pϕ = Op
(
(1 + iλa(x))(ξ + iτ∇ϕ(x))2)− λ2 + R3

Q2 = Op(q2)− λ2 + R2

Q1 = Op(q1) + R1,
(15)

where q2 = |ξ|2 − τ2|∇ϕ(x)|2 − 2λτa(x)ξ · ∇ϕ(x), q1 = 2τξ · ∇ϕ(x) + λa(x)(|ξ|2 − τ2|∇ϕ(x)|2) and
the symbols of Rj are in S(λ

1
2 νµ, g) for j = 1, 2, 3. It is clear that

‖Pϕv‖2
V = ‖Q2v‖2

V + ‖Q1v‖2
V + 2 Re(Q2v | iQ1v)V . (16)

In what follows, several Carleman estimates are introduced. First, we give an estimation on the
subdomain which is far away from the boundary Γ.

Theorem 2. Suppose ϕ satisfies sub-ellipticity condition on V ⊂ Ω. Then, there exist positive constants
C, K̃ and λ0, such that for every u ∈ C ∞

0 (V), it holds

τ3‖(1 + λ2a(x)2)
1
2 eτϕu‖2

V + τ‖(1 + λ2a(x)2)
1
2 eτϕDu‖2

V ≤ C‖eτϕPu‖2
V , (17)
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where λ ≥ λ0 and τ ≥ max{K̃|λ|5/4, 1}.

Proof. We shall prove that (17) is equivalent to

‖Pϕv‖2
V & τ‖ν(x)Dv‖2

V + τ3‖ν(x)v‖2
V . (18)

First, assume (18) holds. Set v = eτϕu. Then, Dv = eτϕ(Du− iτ∇ϕ u) and eτϕDu = Dv + iτ∇ϕ v.
Then there exist positive constants c1, c2 such that

c1
(
‖ ν(x)Dv‖V + τ‖ν(x)v‖V

)
≤ ‖ν(x)eτϕDu‖V + τ‖ν(x)eτϕu‖V

≤ c2
(
‖ν(x)Dv‖V + τ‖ν(x)v‖V

)
.

(19)

Combining this with (18), we conclude that

τ3‖ν(x)eτϕu‖2
V + τ‖ν(x)eτϕDu‖2

V . (τ‖ν(x)Dv‖2
V + τ3‖ν(x)v‖2

V) . ‖eτϕPu‖2
V .

On the other hand, (17) implies that

τ3‖ν(x)eτϕu‖2
V + τ‖ν(x)eτϕDu‖2

V . ‖Pϕv‖2
V .

Then, we proved (18) from the above estimate and (19).
Now we are going to prove (18). Note that

2 Re(Q2v | iQ1v)V = (Q2v | iQ1v)V + (iQ1v |Q2v)V = (i[Q2, Q1]v | v)V , (20)

where we denote by [Op(a), Op(b)] = Op(a) ◦ Op(b) − Op(b) ◦ Op(a) and Poisson bracket
{a, b}(x, ξ, τ) = ∑

1≤j≤d
(∂ξ j a∂xj b − ∂xj a∂ξ j b)(x, ξ, τ). From symbolic calculus, the principal symbol

of i[Q2, Q1] is {q2, q1}. Due to the results in Section 2.1, we obtain that

i[Q2, Q1] = Op({q2, q1}) + R4,

where {q2, q1} ∈ S(ν2µ3λ
1
2 , g) and the symbol of R4 is in S(ν2µ2λ, g).

A direct computation gives that

{q2, q1} = (1 + a2(x)λ2){ξ2 − τ2∇ϕ(x)2, 2τξ.∇ϕ(x)}

+
(
{ξ2 − τ2∇ϕ(x)2, λa(x)} − λa(x){2τξ.∇ϕ(x), λa(x)}

)
(ξ2 − τ2∇ϕ(x)2)

− 2τξ.∇ϕ(x)
(

λa(x){λa(x), ξ2 − τ2∇ϕ(x)2}+ {λa(x), 2τξ.∇ϕ(x)}
)

.

Since
q2(x, ξ) + λa(x)q1(x, ξ) = (1 + λ2a(x)2)(ξ2 − τ2∇ϕ(x)2),
q1(x, ξ)− λa(x)q2(x, ξ) = 2τξ.∇ϕ(x)(1 + λ2a2(x)),

(21)

we have

{q2, q1}

= ν2(x)
{

ξ2 − τ2∇ϕ(x)2, 2τξ.∇ϕ(x)
}

+ν−2(x)(q2(x, ξ) + λa(x)q1(x, ξ))
(
{ξ2 − τ2∇ϕ(x)2, λa(x)} − λa(x){2τξ.∇ϕ(x), λa(x)}

)
−ν−2(x)(q1(x, ξ)− λa(x)q2(x, ξ))

(
λa(x){λa(x), ξ2 − τ2∇ϕ(x)2}+ {λa(x), 2τξ.∇ϕ(x)}

)
.
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Then, it follows from symbolic calculus that

i[Q2, Q1] = ν(x)Op
(
{ξ2 − τ2∇ϕ(x)2, 2τξ.∇ϕ(x)}

)
ν(x)

+B1ν−1(x)Op
(

q2(x, ξ) + λa(x)q1(x, ξ) + λ2
)

−B2ν−1(x)Op
(

q1(x, ξ)− λa(x)q2(x, ξ)− λ3a(x)
)
+ R5,

(22)

where the symbol of B1 is ν−1(x)
[
{ξ2 − τ2∇ϕ(x)2, λa(x)} − λa(x){2τξ.∇ϕ(x), λa(x)}

]
∈ S(λ

1
2 νµ, g),

the symbol of B2 is ν−1(x)
[
λa(x){λa(x), ξ2 − τ2∇ϕ(x)2}+ {λa(x), 2τξ.∇ϕ(x)}

]
∈ S(λ

1
2 νµ, g) and

the symbol of R5 is in S(λν2µ2, g). We refer to Section 2.1 where the rules on symbolic calculus are
given and precise. Therefore, by the continuity of pseudo-differential operator, we have that for j = 1, 2,
k = 0, 1 and ` = 1, 2,

| (Bjν(x)−1(λa(x))kQ`v | v)V |

= | (ν(x)−1(λa(x))kQ`v | B∗j v) | ≤ C‖Q`v‖V‖B∗j v‖V

≤ (1/10)‖Q`v‖2
V + C′λτ2‖ν(x)v‖2

V + C′λ‖ν(x)Dv‖2
V ,

(23)

| (Bjν
−1(x)λ2(λa(x))kv | v)V | ≤ Cλ5/2(τ‖ν(x)v‖V + ‖ν(x)Dv‖V

)
‖ν(x)v‖V

≤ Cλ5/2τ‖ν(x)v‖2
V + Cλ5/2τ−1‖ν(x)Dv‖2

V ,
(24)

and
| (R5v | v)V | . λτ2‖ν(x)v‖2

V + λ‖ν(x)Dv‖2
V . (25)

Let w = (1 + λ2a(x)2)
1
2 v = νv in (14). We obtain

C1τ3‖νv‖2
V + C1τ‖D(ν(x)v)‖2

V ≤ (Op({ξ2 − τ2 ϕ(x)2, 2τξ.∇ϕ(x)})νv | νv)V

+C2τ−1‖Op(ξ2 − τ2∇ϕ(x)2)νv‖2
V

+C2τ−1‖Op(2τξ.∇ϕ(x))νv‖2
V , C1, C2 > 0.

(26)

Since the symbol of [D, ν(x)] is in S(λ
1
2 ν, g), we have

‖ν(x)Dv‖2
V ≤ ‖D(ν(x)v)‖2

V + ‖[D, ν(x)]v‖2
V ≤ ‖D(ν(x)v)‖2

V + Cλ‖ν(x)v‖2
V .

Consequently, for τ ≥ Cλ with C > 0 sufficiently large, it holds

τ3‖ν(x)v‖2
V + τ‖ν(x)Dv‖2

V . τ3‖ν(x)v‖2
V + τ‖D(ν(x)v)‖2

V . (27)

It follows from (26) and (27) that

C1
(
τ3‖νv‖2

V + τ‖ν(x)Dv‖2
V
)
≤ (Op({ξ2 − τ2 ϕ(x)2, 2τξ.∇ϕ(x)})νv | νv)V

+C2τ−1‖Op(ξ2 − τ2∇ϕ(x)2)νv‖2
V

+C2τ−1‖Op(2τξ.∇ϕ(x))νv‖2
V .

(28)
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Now we are going to estimate the terms ‖Op(ξ2 − τ2∇ϕ(x)2)νv‖2
V and ‖Op(2τξ.∇ϕ(x))νv‖2

V .
It follows from (15) and (21) that

‖Op(ξ2 − τ2∇ϕ(x)2)νv‖2
V + ‖Op(2τξ.∇ϕ(x))νv‖2

V

= ‖Op(ν−2(q2 + λa(x)q1)νv‖2
V + ‖Op(ν−2(q1 − λa(x)q2)νv‖2

V

= ‖ν−1[Q2 + λ2 − R2 + λa(x)(Q1 − R1)
]
v‖2

V

+‖ν−1[Q1 − R1 − λa(x)(Q2 + λ2 − R2)
]
v‖2

V .

(29)

Combining this with the fact that the symbols of Rj are in S(λ
1
2 νµ, g) for j = 1, 2, 3, we have that

there exists a positive constant C such that

‖Op(ξ2 − τ2∇ϕ(x)2)νv‖2
V + ‖Op(2τξ.∇ϕ(x))νv‖2

V

. ∑j=1,2 ‖Qjv‖2
V + ‖R1v‖2

V + ‖R2v‖2
V + λ4‖v‖2

V

. ∑j=1,2 ‖Qjv‖2
V + λτ2‖νv‖2

V + λ‖νDv‖2
V + λ4‖v‖2

V .

(30)

From (28) and (30), we have that for τ ≥ Cλ, there exist positive constants C1, C2 such that

C1
(
τ3‖ν(x)v‖2

V + τ‖ν(x)Dv‖2
V
)

≤ (Op({ξ2 − τ2 ϕ(x)2, 2τξ.∇ϕ(x)})νv | νv)V

+C2
(
(1/τ)∑j=1,2 ‖Qjv‖2

V + λτ‖νv‖2
V + ‖νDv‖2

V + λ3‖v‖2
V
)
.

(31)

On the other hand, due to (22)–(24), we have that there exists a positive constant C′ such that(
Op({ξ2 − τ2 ϕ(x)2, 2τξ.∇ϕ(x)})νv | νv

)
V

≤ (i[Q2, Q1]v | v)V + (1/4)∑j=1,2 ‖Qjv‖2
V + C′

(
λτ2‖ν(x)v‖2

V

+λ‖ν(x)Dv‖2
V + λ5/2τ‖ν(x)v‖2

V + λ5/2τ−1‖ν(x)Dv‖2
V
)
.

(32)

Finally, by (31) and (32), one can choose τ ≥ K̃|λ|5/4 with K̃ sufficiently large and τ ≥ τ0 with τ0

sufficiently large, such that for some C > 0,

C
(
τ3‖ν(x)v‖2

V + τ‖ν(x)Dv‖2
V
)
≤ (i[Q2, Q1]v | v)V + (1/2)∑j=1,2 ‖Qjv‖2

V .

+ετ3‖ν(x)v‖2
V + ετ‖ν(x)Dv‖2

V ,
(33)

where ε > 0 is arbitrary. Choosing ε small with respect C1, using (16), (20) and (33), we obtain

C1τ3‖ν(x)v‖2
V + C1τ‖ν(x)Dv‖2

V +(1/2)‖Q1v‖2
V + (1/2)‖Q2v‖2

V
≤ (i[Q2, Q1]v, v) + ‖Q1v‖2

V + ‖Q2v‖2
V = ‖Pϕv‖2

V ,
(34)

this implies (18).

Remark 2. The estimates on the previous terms impose the assumption τ ≥ K̃|λ|5/4. The other remainder
terms only impose the condition τ ≥ Cλ. This condition is related with the principal normal condition. Indeed
for a complex operator, with symbol p1 + ip2 where p1, p2 are both real valued, the Carleman estimate is
only true if {p1, p2} = 0 on p1 = p2 = 0. Here the symbol of operator before conjugaison by weight is
ξ2 − λ2 + iλa(x)ξ2, and the Poisson bracket is {ξ2 − λ2, λa(x)ξ2} = 2λ(ξ.a′(x))ξ2. We can estimate this
term, uniformly in a neighborhood of a(x) = 0, by Cλa

1
2 (x) | ξ | 3. This explanation does not justify the power

|λ|5/4 found at the end of computations but shows the difficulties.
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Since there is higher order term div(a(x)∇yt) in system (1), it is necessary to deal with the term
div(a(x)∇ f ) for f ∈ H1(Ω) when proving the resolvent estimate. The following result is analogue to
the work by [26] .

Theorem 3. Suppose ϕ satisfies sub-ellipticity condition on V ⊂ Ω. Then, there exist C, K̃ > 0, λ0 > 0, such
that for all u ∈ C ∞

0 (V) satisfying

Pu = g0 +
d

∑
j=0

∂xj gj, where gj ∈ L2(V), j = 0, 1, · · · , d, (35)

it holds

τ‖(1 + λ2a(x)2)
1
2 eτϕu‖2

L2(V) + τ−1‖(1 + λ2a(x)2)
1
2 eτϕDu‖2

L2(V) ≤ C
d

∑
j=0
‖eτϕgj‖2

L2(V), (36)

where λ ≥ λ0 and τ ≥ max{K̃|λ|5/4, 1}.

Proof. First, from (15), we have D2 = Q2 + S2 and λaD2 = Q1 + S1 where S1 and S2 have symbols in
S(τνµ, g) if τ & λ. It follows that

‖D2v‖2 . ‖Q2v‖2 + τ2(τ2‖ν(x)v‖2 + ‖ν(x)Dv‖2),

‖λaD2v‖2 . ‖Q1v‖2 + τ2(τ2‖ν(x)v‖2 + ‖ν(x)Dv‖2).
(37)

Using the fact that ‖ν(x)D2v‖2 ≤ 2(‖D2v‖2 + ‖λaD2v‖2), (34), we obtain

τ3‖ν(x)v‖2 + τ‖ν(x)Dv‖2 + τ−1‖ν(x)D2v‖2 . ‖Pϕv‖2. (38)

Let w and χ be in C ∞
0 (Ω) such that χ = 1 on a neighborhood of supp w. From (27), we obtain

τ‖ν(x)w‖2 + τ−1‖ν(x)Dw‖2 . τ‖ν(x)w‖2 + τ−1‖D(ν(x)w)‖2

. τ3‖Op(µ−1)ν(x)χw‖2 + τ−1‖D2 Op(µ−1)νχw‖2,
(39)

where the last estimate is obtained by Fourier transform and by the inequality

τ +
| ξ | 2

τ
.

τ3

τ2 + | ξ | 2 +
| ξ | 4

τ(τ2 + | ξ | 2) .

From the results in Section 2.1, we have Op(µ−1)νχ = νχ Op(µ−1) + R1, where R1 has a symbol
in S(µ−2νλ

1
2 , g), and D2 Op(µ−1)νχ = νD2χ Op(µ−1) + R2, where R2 has a symbol in S(νλ

1
2 , g).

Then, it follows from (39) that

τ‖ν(x)w‖2 + τ−1‖ν(x)Dw‖2 . τ3‖ν(x)χ Op(µ−1)w‖2 + τ−1‖νD2χ Op(µ−1)w‖2 + λ‖ν(x)w‖2.

For τ ≥ max{Cλ, 1} with C large enough, one has the following result from the above inequality.

τ‖ν(x)w‖2 + τ−1‖ν(x)Dw‖2 . τ3‖ν(x)χ Op(µ−1)w‖2 + τ−1‖νD2χ Op(µ−1)w‖2. (40)

Now, we apply (38) to v = χ Op(µ−1)w to have

τ3‖ν(x)χ Op(µ−1)w‖2 + τ‖ν(x)Dχ Op(µ−1)w‖2 + τ−1‖ν(x)D2χ Op(µ−1)w‖2

. ‖Pϕχ Op(µ−1)w‖2.
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Thus, combining this with (40) yields

τ‖ν(x)w‖2 + τ−1‖ν(x)Dw‖2 . ‖Pϕχ Op(µ−1)w‖2. (41)

Finally, note that Pϕ has a symbol in S(νµ2, g). Consequently, Pϕχ Op(µ−1) = Op(µ−1)Pϕχ + R,

where R has a symbol in S(νλ
1
2 , g). Then, we can deduce from (41) that

τ‖ν(x)w‖2 + τ−1‖ν(x)Dw‖2 . ‖Op(µ−1)Pϕw‖2 + λ‖νw‖2.

When τ ≥ Cλ, with C large enough, the error term ‖νλ
1
2 w‖2 can be absorbed by the left hand

side. Hence,

τ‖ν(x)w‖2 + τ−1‖ν(x)Dw‖2 . ‖Op(µ−1)Pϕw‖2. (42)

For w = eτϕu, we have

Pϕw = eτϕPu = eτϕg0 +
d

∑
j=1

eτϕ∂xj gj = eτϕg0 +
d

∑
j=1

(
∂xj(e

τϕgj)− τgj∂xj ϕ
)
.

Obviously, one has that ‖Op(µ−1)Pϕw‖2 . ∑d
j=0 ‖eτϕgj‖2. Combining this with (42), we obtain

Theorem 3.

Remark 3. Since a(·) is non-negative and not identically null, there exists δ > 0 such that {x ∈ Ω : a(x) >
δ} 6= ∅. We introduce several sets as follows.

W1 = Ω \ supp a,

W2 = Ω \
(
{x ∈ Ω : a(x) > δ} ∪ O(Γ)

)
,

W3 = Ω \ O
(
{x ∈ Ω : a(x) ≥ 0}

)
,

W4 = Ω \ {x ∈ Ω : a(x) > δ/2},

where O(Γ) means the neighborhood of Γ.
It is known that there exists a function ψ ∈ C ∞(Ω) such that [25]

(1) ψ(x) = 0 for x ∈ ∂Ω.
(2) ∂nψ(x) < 0 for x ∈ ∂Ω.
(3) ∇ψ(x) 6= 0 for x ∈W1.

Let ϕ = eγψ. It follows from Lemma 5 that ϕ satisfies the sub-ellipticity condition on x ∈W2 if γ > 0 is
sufficiently large. Then, in Theorem 2 and 3, one can choose V as W2.

The following result can be obtained from the classical Carleman estimate up to the boundary [27]
(Proposition 2). Note that this estimate corresponds to the Laplacian with Dirichlet boundary condition.

Lemma 7. Suppose ϕ satisfies the sub-ellipticity condition on W4. Then, there exist C, K > 0, λ0 > 0,
such that for all u ∈ C ∞(Ω) satisfying supp u ⊂W3 and u = 0 on Γ, it holds that

τ3‖eτϕu‖2 + τ‖eτϕDu‖2 ≤ C‖eτϕ(D2 − λ2)u‖2, (43)

where λ ≥ λ0 and τ ≥ max{Kλ, 1}.
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Theorem 4. Suppose ϕ satisfies sub-ellipticity condition on W4. Let u ∈ C ∞(Ω) satisfy

Pu = f0 +
d

∑
j=1

∂xj f j in Ω,

u = 0 on Γ,

where f j ∈ L2(Ω), supp f0 ⊂ Ω and supp f j ⊂ {x ∈ Ω : a(x) ≥ 0} for j = 1, · · · , d. Then, there exist
C, K̃ > 0, λ0 > 0, such that for all λ ≥ λ0 and τ ≥ max{K̃|λ|5/4, 1}, it holds

τ‖eτϕu‖2 + τ−1‖eτϕDu‖2 ≤ C
( d

∑
j=0
‖eτϕ f j‖2 + λ‖eτϕu‖2

L2({x∈Ω, a(x)≥δ/2})

)
,

where the positive constant δ is defined as in Remark 3.

Proof. Let χ1, χ2 ∈ C ∞(Ω) satisfy χ1 and χ2 are supported on W3 and W2, respectively. We assume
that χ1 + χ2 = 1 on W3. In particular χ1 = 1 on a neighborhood of ∂Ω, and χ2 = 1 in a neighborhood
of the frontier of supp a.

Since χ1∂xj f j = 0 for j = 1, · · · , d, we have Pχ1u = χ1 f0 + [P, χ1]u, where [P, χ1] is a first order
operator and supported on supp χ1. By using χ1u instead of u in Lemma 7, we obtain

τ3‖eτϕχ1u‖2 + τ‖eτϕDχ1u‖2 . ‖eτϕχ1 f0‖2 + ‖eτϕ[P, χ1]u‖2. (44)

On the other hand, it is clear that Pχ2u = χ2 f0 + ∑d
j=1
(
∂xj(χ2 f j) − f j∂xj χ2

)
+ [P, χ2]u.

Since [P, χ2] is a first order operator, we have that there exist a0, a1, · · · , ad and b0, b1, · · · , bd such
that [P, χ2]u = a0u + ∑d

j=1 ∂xj(aju) + λ ∑d
j=1 ∂xj(bju), where aj and bj (j = 0, 1, · · · , d) are supported

on the set {x ∈ Ω : δ ≥ a(x) ≥ δ/2} ∪ (Ω \ supp a). Then, applying Theorem 3 with χ2u instead of u,
we obtain

τ‖(1 + λ2a(x)2)
1
2 eτϕχ2u‖2 + τ−1‖(1 + λ2a(x)2)

1
2 eτϕDχ2u‖2

.
d

∑
j=0
‖eτϕ f j‖2 + ‖eτϕu‖2

L2(Ω\supp a) + λ‖eτϕu‖2
L2({x∈Ω : a(x)≥δ/2}).

Summing this estimate with (44) multiply by τ−2, using (1 + λ2a(x)2) ≥ 1, we obtain

τ‖eτϕ(χ1 + χ2)u‖2 + τ−1‖eτϕD(χ1 + χ2)u‖2 .
d

∑
j=0
‖eτϕ f j‖2 + ‖eτϕu‖2

L2(Ω\supp a)

+ λ‖eτϕu‖2
L2({x∈Ω, a(x)≥δ/2}) + τ−2‖eτϕ[P, χ1]u‖2.

As D(χ1 + χ2) is supported on {x ∈ Ω : a(x) ≥ δ/2}, χ1 + χ2 = 1 on Ω \ supp a, and [P, χ1]

supported where χ1 + χ2 = 1, we have, for τ sufficiently large

τ‖eτϕ(χ1 + χ2)u‖2 + τ−1‖eτϕ(χ1 + χ2)Du‖2 .
d

∑
j=0
‖eτϕ f j‖2 + λ‖eτϕu‖2

L2({x∈Ω : a(x)≥δ/2}).

Then as χ1 + χ2 = 1 on Ω \ {x ∈ Ω : a(x) > δ/2}, we obtain the statement of Theorem 4.

4. Resolvent Estimate

In this section, we prove the main result. From Batty-Duyckaerts [17], the estimate of the energy
decay in Theorem 1 can be obtained through the following result.
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Theorem 5. There exists C > 0, such that for every ν ∈ R with λ large, we have∥∥∥(A− iλ)−1
∥∥∥
L(H)

≤ CeC | λ | 5/4
. (45)

Let λ be a real number such that | λ | is large. Consider the resolvent equation:

F = (A− iλ)X, where X =
(
y1, y2

)
∈ D(A), F =

(
f1, f2

)
∈ H, (46)

which yields 
div (∇y1 + a∇y2) + λ2y1 = iλ f1 + f2, in Ω,

y2 = iλy1 + f1 in Ω,

y1 | Γ = 0.

(47)

In what follows, we shall prove the solution to (46) satisfies Theorem 5. As a result, the logarithmic
decay of (7) is arrived at. The proof is divided into two lemmas.

Lemma 8. Let η > 0 and χ ∈ C ∞
0 ({x ∈ Ω : a(x) > η}) be real valued functions, there exists C > 0

such that

‖χy1‖ ≤ C(‖∇y1‖L2({x∈Ω : a(x)>η}) + ‖ f1‖H1(Ω) + ‖ f2‖L2(Ω)),

where y1, satisfies (47).

Proof. By (47), one has that y1 satisfies

div (∇y1 + iλa∇y1) + λ2y1 = iλ f1 + f2 − div a∇ f1. (48)

Multiplying this equation by χ2y1, and integrating on Ω, we obtain,

−
∫

Ω
∇y1∇(χ2y1)dx− iλ

∫
Ω

a(x)∇y1∇(χ2y1)dx + λ2‖χy1‖2

= iλ
∫

Ω f1χ2y1dx +
∫

Ω f2χ2y1dx +
∫

Ω a(x)∇ f1∇(χ2y1)dx.
(49)

Since ∇(χ2y1) = χ2∇y1 + 2y1χ∇χ, we have∣∣∣ ∫
Ω

a(x)∇y1∇(χ2y1)dx
∣∣∣ . ‖Dy1‖2

L2({x∈Ω : a(x)>η}) + ‖χy1‖‖Dy1‖L2({x∈Ω : a(x)>η})

≤ 2‖Dy1‖2
L2({x∈Ω : a(x)>η}) + 1/8‖χy1‖2.

(50)

Substituting (50) into (49), we obtain

λ2‖χy1‖2 . (2|λ|+ 1)‖Dy1‖2
L2({x∈Ω : a(x)>η}) + λ2/8‖χy1‖2

+λ2/4‖χy1‖2 + ‖ f1‖2 + λ−2‖ f2‖2 + 2(1 + λ−2)‖ f1‖2
H1(Ω)

+λ2/8‖χy1‖2 + ‖Dy1‖2
L2({x∈Ω : a(x)>η}).

(51)

Then, the proof is finished.

Lemma 9. For every y1, f1 and f2 satisfying (47), there exists C > 0 such that∫
Ω

a | ∇y1 | 2dx ≤ C
(
‖ f1‖2

H1(Ω) + (‖ f1‖+ ‖ f2‖)‖y1‖
)
.



Mathematics 2020, 8, 715 13 of 19

Proof. From (47), multiplying by y1, we have∫
Ω

(
div (∇y1 + a∇y2) + λ2y1

)
y1dx =

∫
Ω
(iλ f1 + f2)y1dx.

Replacing y2 by f1 + iλy1 and integrating by parts, we have∫
Ω
(−∇y1 · ∇y1 + λ2 | y1 | 2 − a∇(iλy1 + f1) · ∇y1)dx =

∫
Ω
(iλ f1 + f2)y1dx.

Consequently,∫
Ω
[−(iλa + 1) | ∇y1 | 2 + λ2 | y1 | 2]dx =

∫
Ω
[a∇ f1 · ∇y1 + (iλ f1 + f2)y1]dx.

Taking the imaginary part, we obtain∫
Ω

a | ∇y1 | 2dx = −λ−1 Im
∫

Ω
[a∇ f1 · ∇y1 + (iλ f1 + f2)y1]dx.

Using the Cauchy-Schwarz inequality in the above equality, one has

∫
Ω

a | ∇y1 | 2dx ≤ | λ |−1
( ∫

Ω
a | ∇y1 | 2dx

) 1
2 ‖ f1‖H1(Ω) + | λ |−1 ( | λ | ‖ f1‖+ ‖ f2‖)‖y1‖

≤ 1/4
∫

Ω
a | ∇y1 | 2dx + | λ |−2 ‖ f1‖2

H1(Ω) + | λ |
−1 ( | λ | ‖ f1‖+ ‖ f2‖)‖y1‖.

Thus, we obtain the result.

Proof of Theorem 5. In Lemma 8, taking χ(x) = 1 is a(x) ≥ 2η, we have

‖y1‖2
L2({x∈Ω : a(x)>2η}) ≤ C(‖∇y1‖2

L2({x∈Ω : a(x)>η}) + ‖ f1‖2
H1(Ω) + ‖ f2‖2

L2(Ω)).

It follows from Lemma 9 that

‖∇y1‖2
L2({x∈Ω : a(x)>η}) ≤ C

(
‖ f1‖2

H1(Ω) + (‖ f1‖+ ‖ f2‖)‖y1‖
)
.

Both inequalities imply

‖y1‖2
H1({x∈Ω : a(x)>2η}) ≤ C

(
‖ f1‖2

H1(Ω) + ‖ f2‖2
L2(Ω) + (‖ f1‖+ ‖ f2‖)‖y1‖

)
. (52)

Applying Theorem 4 to y1 satisfying (48), we obtain

τ‖eτϕy1‖2 + τ−1‖eτϕDy1‖2 . λ2‖eτϕ f1‖2 + ‖eτϕ f2‖2 +
d

∑
j=1
‖eτϕa ∂xj f1‖2

+ λ‖eτϕy1‖2
L2({x∈Ω : a(x)≥δ/2}).

Let c1 = minx∈Ω ϕ(x) and c2 = maxx∈Ω ϕ(x), we conclude from the above inequality that

e2c1ττ‖y1‖2 + τ−1e2c1τ‖Dy1‖2

. λ2e2c2τ‖ f1‖2
H1(Ω)

+ e2c2τ‖ f2‖2 + λe2c2τ‖y1‖2
H1({x∈Ω : a(x)≥δ/2}).

(53)

Substituting (52) with η = δ/2 into (53), we obtain

e2c1ττ‖y1‖2 + τ−1e2c1τ‖Dy1‖2 . λ2e2c2τ‖ f1‖2
H1(Ω) + e2c2τ‖ f2‖2 + e2c2τ(‖ f1‖+ ‖ f2‖)‖y1‖.
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Let c3 = 2(c2 − c1) + 1. For τ ≥ max{K̃|λ|5/4, 1}, One has

‖y1‖2 + ‖Dy1‖2 . ec3τ‖ f1‖2
H1(Ω) + ec3τ‖ f2‖2 + ec3τ(‖ f1‖+ ‖ f2‖)‖y1‖.

Using ec3τ(‖ f1‖ + ‖ f2‖)‖y1‖ ≤ ε‖y1‖2 + ε−1e2c3τ(‖ f1‖ + ‖ f2‖)2 in the above estimate,
we conclude that

‖y1‖2 + ‖Dy1‖2 . e2c3τ‖ f1‖2
H1(Ω) + e2c3τ‖ f2‖2,

which gives the desired result taking τ = K | λ | 5/4 with K large enough.

5. Conclusions

It is known that the stability property of the wave equation system with local viscoelastic damping
depends on both continuousness and geometry of the support set of the damping function. In this
paper, we obtain the logarithmic decay of a wave equation system with local Kelvin-Voigt damping,
where the damping function is smooth and its support is an arbitrary non-empty subset. The approach
is based on Batty-Duyckaerts’ result that the resolvent estimate (45) implies the logarithmic decay
of the semigroup. Through introducing proper operators, class of symbol and pseudo-diff-calculus,
we obtain a Carleman estimate on the subdomain far away from the boundary. Combining these with
a classical Carleman estimate up to the boundary, we arrive at the desired Carleman estimate and
resolvent estimate.
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Appendix A

In this Appendix, we shall prove Lemmas 1 and 6. First, we claim that for a compactly supported
and nonnegative function a ∈ C 2(Ω), the following inequality holds:

| a′(x) | 2 ≤ 2a(x)‖a′′‖∞, ∀ x ∈ Ω. (A1)

In fact, from the following identity

a(x + h) = a(x) + a′(x)h +
∫ 1

0
(1− t)a′′(x + th)h2dt, ∀ h ∈ R,

one can get

a(x) + a′(x)h +
1
2
‖a′′‖∞ | h | 2 ≥ 0.

Let h = y a′(x), where y ∈ R and x ∈ Ω are arbitrary. It follows from the above inequality that

a(x) + | a′(x) | 2y +
1
2
‖a′′‖∞ | a′(x) | 2y2 ≥ 0, ∀ x ∈ Ω, y ∈ R.

Then,
| a′(x) | 4 − 2a(x)‖a′′‖∞ | a′(x) | 2 ≤ 0,

and (A1) is proved.
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Proof of Lemma 1. (i) From Definition 18.4.1 in [24], the metric gx,ξ defined by (8) is slowly varying
if there exist δ > 0 and C > 0 such that

gx,ξ(y− x, η − ξ) ≤ δ implies gy,η(X, Ξ) ≤ Cgx,ξ(X, Ξ), ∀ x, y, ξ, η, X, Ξ ∈ Rd,

where the constants δ and C are independent on the parameters λ and τ.
Suppose 0 < δ ≤ 1/4 and

gx,ξ(y− x, η − ξ) = λ | y− x | 2 + (τ2 + | ξ | 2)−1 | η − ξ | 2 ≤ δ.

Then, we have
τ2 + | ξ | 2 ≤ τ2 + 2 | ξ − η | 2 + 2 | η | 2

≤ τ2 + 2δ(τ2 + | ξ | 2) + 2 | η | 2.

This implies that τ2 + | ξ | 2 ≤ 4(τ2 + | η | 2). Consequently,

gy,η(X, Ξ) = λ |X | 2 + (τ2 + | η | 2)−1 |Ξ | 2 ≤ λ |X | 2 + 1
4
(τ2 + | ξ | 2)−1 |Ξ | 2 ≤ gx,ξ(X, Ξ).

Therefore, g is slowly varying.
For a given metric gx,ξ , the associated metric gσ

x,ξ is defined by gσ
x,ξ = (τ2 + | ξ | 2)dx2 + λ−1dξ2.

The metric gx,ξ is temperate if there exist C > 0 and N > 0, such that

gx,ξ(X, Ξ) ≤ Cgy,η(X, Ξ)
(
1 + gσ

x,ξ(x− y, ξ − η)
)N , ∀ x, y, ξ, η, X, Ξ ∈ Rd, (A2)

where the constants C and N are independent on the parameters λ and τ (Definition 18.5.1 in [24]).
For the metric g = gx,ξ defined by (8), (A2) is equivalent to

λ |X | 2 + (τ2 + | ξ | 2)−1 |Ξ | 2

≤ C
(
λ |X | 2 + (τ2 + | η | 2)−1 |Ξ | 2

)(
1 + (τ2 + | ξ | 2) | x− y | 2 + λ−1 | ξ − η | 2

)N .
(A3)

First, assume that τ2 + | η | 2 ≤ 4(τ2 + | ξ | 2). It follows that

(τ2 + | η | 2) ≤ C(τ2 + | ξ | 2)
(
1 + λ−1 | ξ − η | 2

)N , C > 0, N > 0. (A4)

Then it is easy to obtain (A3) from (A4).
Secondly, consider the case τ2 + | η | 2 > 4(τ2 + | ξ | 2). Then

| η | > 2 | ξ |, | η | >
√

3τ, (A5)

and

| ξ − η | > 1
2
| η | >

√
3

2
τ >

√
3

2
Cλ. (A6)

It follows from (A5) and (A6) that

λ−1 | ξ − η | 2 >

√
3

2
C | ξ − η | >

√
3

4
C | η | .

Consequently,

(
1 + λ−1 | ξ − η | 2

)2
>

3
16
C2 | η | 2 >

3
32
C2( | η | 2 + 3τ2).
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This together with τ2 + | ξ | 2 ≥ 1 yields that there exists a positive constant C such that (A4)
holds with N = 2.

(ii) It is known from Definition 18.4.2 in [24] that a weight ν(x) is g-continuous if there exist
δ > 0 and C > 0 such that

gx,ξ(y− x, η − ξ) ≤ δ implies C−1ν(x) ≤ ν(y) ≤ Cν(x), ∀ x, y, ξ, η ∈ Rd.

where the constants δ and C are independent on the parameters λ and τ. Since the weight ν(x) defined
by (9) does not depend on ξ, the above condition is reduced to

λ | x− y | 2 ≤ δ implies C−1ν(x) ≤ ν(y) ≤ Cν(x), ∀ x, y ∈ Rd.

The weight ν(x) is g-temperate if there exist C > 0 and N > 0 such that

ν(y) ≤ Cν(x)
(
1 + gσ

y,η(x− y, ξ − η)
)N , ∀ x, y, ξ, η ∈ Rd, (A7)

where the constants C and N do not depend on the parameters λ and τ (18.5.1 in [24]). The weight ν(x)
is admissible if it is g-continuous and g-temperate. When a weight is admissible, all the powers of this
weight are g-continuous and g-temperate. Therefore, it suffice to prove that 1 + λa(x) is admissible.

Let s ∈ [0, t] and t ∈ [0, 1]. Define f (s) = λa(x + s(y − x)) and F(t) = sups∈[0,t] f (s) where
x, y ∈ Ω satisfying λ | x− y | 2 ≤ δ. It is clear that f ′(s) = λ a′(x + s(y− x)) (y− x). Combining this
with (A1) yields

| f ′(s) | ≤ λ | a′(x + s(y− x)) | | y− x | ≤ 2λ‖a′′‖
1
2
∞ [a(x + s(y− x))]

1
2 | y− x | .

Consequently,

sup
s∈[0,t]

| f ′(s) | ≤ 2λ
1
2 ‖a′′‖

1
2
∞ F(t)

1
2 | y− x | .

Since f (t) ≤ f (0) + t sups∈[0,t] | f ′(s) | , F is non-decreasing and λ | x− y | 2 ≤ δ, we obtain that
for all t ∈ [0, 1],

f (t) ≤ f (0) + Cλ
1
2 F(t)

1
2 | y− x | ≤ f (0) + C

√
δF(t)

1
2 ≤ f (0) + C

√
δF(α)

1
2 ,

where C = 2‖a′′‖
1
2
∞ and α ∈ [t, 1]. Note that f (0) = F(0). It follows that

F(α) = sup
t∈[0,α]

f (t) ≤ F(0) + C
√

δF(α)
1
2 .

This yields

1 + F(α) ≤ 1 + F(0) + C
√

δ
(
1 + F(α)

) 1
2 ≤ 1 + F(0) + C

√
δ
(
1 + F(α)

)
. (A8)

By choosing δ sufficiently small such that C
√

δ ≤ 1/2, one can deduce from (A8) that

1 + F(α) ≤ 2(1 + F(0)), ∀ α ∈ [t, 1].

In particular, we have
1 + λa(y) ≤ 2(1 + λa(x)).

The above inequality remains true if we exchange x and y. Therefore, the weight 1 + λa(x) is
g-continuous.
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On the other hand, note that 1 + λa(x) is independent to ξ. Then, to obtain the weight 1 + λa(x)
is σ-temperate, it is sufficient to prove that

1 + λa(y) ≤ C(1 + λa(x))(1 + τ2 | x− y | 2)N . (A9)

In fact, it is clear that 1 + λa(y) ≤ 1 + λ(a(x) + C | x− y | ) where C = ‖a′‖∞. Therefore, there
exists positive constant C′ = CC−1 such that

1 + λa(y) ≤ (1 + λa(x))(1 + C′τ | x− y | ) ≤ (1 + λa(x))(2 + 2(C′τ | x− y | )2)
1
2 .

Thus, we obtain (A9) with N = 1
2 , C = 2 max{1, C′}.

Proof of Lemma 6. In what follows, we use the symbolic calculus with λ = 1 since the symbol does
not depend on λ. First, by homogeneity in (ξ, τ), compactness arguments and sub-ellipticity condition,
we claim that there exist constants C, δ > 0 such that

C
[
| 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2]+ {|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

}
≥ δµ2. (A10)

The proof of (A10) is classical. In fact, set

K = {(x, ξ, τ) ∈ Rd ×Rd ×R : x ∈ Ω, | ξ | 2 + τ2 = 1, τ ≥ 0},

and for (x, ξ, τ) ∈ K, κ > 0,

G(x, ξ, τ, κ) = κ
[
| 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2]+ {ξ2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)}.

If pϕ = 0 for (x, ξ, τ) ∈ K, then | 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2 = 0. it is clear
that there exists a positive constant δ such that (A10) holds due to the fact that φ is sub-elliptic.
When | 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2 > 0, there exists a positive constant κx,ξ,τ such
that G(x, ξ, τ, κ) > 0 for every κ ≥ κx,ξ,τ since {ξ2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)} is bounded on K.
By continuity of G(x, ξ, τ, κ), there exists a neighborhood of (x, ξ, τ), denoted by Vx,ξ,τ , such that
G(x, ξ, τ, κ) > 0 for all (x, ξ, τ) ∈ Vx,ξ,τ and κ ≥ κx,ξ,τ . Since K is compact, there exist finite sets
Vj = Vxj ,ξ j ,τj and corresponding constants κj = κxj ,ξ j ,τj (i = 1, 2, · · · , n), such that K ⊂ ∪n

i=1Vj and
G(x, ξ, τ, κ) > 0 for all (x, ξ, τ) ∈ Vj and κ > κj. Let κ̃ = max{κj : j = 1, 2, · · · , n} . It follows that
G(x, ξ, τ, κ̃) > 0 for all (x, ξ, τ) ∈ K and κ ≥ κ̃. Finally, using the compactness of K again, we conclude
that there exists δ > 0 such that G(x, ξ, τ, κ̃) ≥ δ. Thus, (A10) is reached since g is a homogeneous
function of degree 2 with respect to variables (ξ, τ).

By Gårding inequality (11), there exists a constant C̃ > 0 such that, for τ ≥ τ0 where τ0

sufficiently large,

C̃‖Op(µ)w‖2 ≤ Re
(

Op
(
| 2ξ · ∇ϕ(x) | 2 + µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2

+
{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

})
w
∣∣w
)
.

(A11)

Now we are going to estimate the terms τ Op( | 2ξ · ∇ϕ(x) | 2) and τ Op(µ−2 ( |ξ|2 −
τ2|∇ϕ(x)|2 ) 2). Firstly, it follows from Lemma 3 that

τ−1 Op( | 2τξ · ∇ϕ(x) | 2) = τ−1 Op(2τξ · ∇ϕ(x))∗Op(2τξ · ∇ϕ(x)) + τ Op(r1), (A12)
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where r1 ∈ S(µ, g̃) and g̃ is defined by (10). Therefore, for any ε > 0, there exists a positive constant Cε

such that ∣∣(τ−1 Op( | 2τξ · ∇ϕ(x) | 2)w | w
)∣∣

≤ τ−1‖Op(2τξ · ∇ϕ(x))w‖2 + τ | (Op(r1)w |w) |

≤ τ−1‖Op(2τξ · ∇ϕ(x))w‖2 + ε τ‖Op(µ)w‖2 + Cετ‖w‖2.

(A13)

Substituting (A13) into (A11) and choosing ε small enough, we have

Cτ‖Op(µ)w‖2

≤ Re
(

Op
(
τµ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2 + τ

{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

})
w
∣∣w
)

+τ−1‖Op(2τξ · ∇ϕ(x))w‖2 + Cετ‖w‖2.

(A14)

Secondly, by symbolic calculus, we have that

τ Op(µ−2 ( |ξ|2 − τ2|∇ϕ(x)|2 ) 2) = τ Op(r0)Op(|ξ|2 − τ2|∇ϕ(x)|2) + τ Op(r2), (A15)

where r0(x, ξ) = µ−2(|ξ|2 − τ2|∇ϕ(x)|2) ∈ S(1, g̃) and r2 ∈ S(µ, g̃). Therefore, for all ε > 0, there
exists Cε > 0 such that

| (τ Op(r0)Op(|ξ|2 − τ2|∇ϕ(x)|2)w |w) |

≤ Cετ
−1‖Op(r0)Op(|ξ|2 − τ2|∇ϕ(x)|2)w‖2 + ετ3‖w‖2

≤ Cετ
−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)w‖2 + ετ3‖w‖2.

(A16)

We choose ε small enough and combine (A15) and (A16) with (A14) to get

Cτ‖Op(µ)w‖2

≤ Re
(
τ
{
|ξ|2 − τ2|∇ϕ(x)|2, 2ξ · ∇ϕ(x)

})
w
∣∣w
)
+ Cετ

−1‖Op(|ξ|2 − τ2|∇ϕ(x)|2)w‖2

+τ−1‖Op(2τξ · ∇ϕ(x))w‖2 + Cε(τ + ετ3)‖w‖2.

(A17)

Finally, it is clear that there exist positive constant C such that

τ3‖w‖2 + τ‖Dw‖2 ≤ Cτ‖Op(µ)w‖2. (A18)

Thus, we obtain (14) by using (A17) and (A18), choosing ε small enough and letting τ > τ0

big enough.

References

1. Chen, S.; Liu, K.; Liu, Z. Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping.
SIAM J. Appl. Math. 1998, 59, 651–668.

2. Liu, K.; Rao, B. Exponential stability for the wave equation with local Kelvin-Voigt damping. Z. Angew. Math.
Phys. 2006, 57, 419–432. [CrossRef]

3. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York,
NY, USA, 1983.

4. Huang, F. On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control
Optim. 1988, 26, 714–724. [CrossRef]

5. Zhang, Q. On the lack of exponential stability for an elastic-viscoelastic waves interaction system.
Nonlinear Anal. Real World Appl. 2017, 37, 387–411. [CrossRef]

6. Duyckaerts, T. Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface.
Asymptot. Anal. 2007, 51, 17–45.

http://dx.doi.org/10.1007/s00033-005-0029-2
http://dx.doi.org/10.1137/0326041
http://dx.doi.org/10.1016/j.nonrwa.2017.02.019


Mathematics 2020, 8, 715 19 of 19

7. Rauch, J.; Zhang, X.; Zuazua, E. Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures
Appl. 2005, 84, 407–470. [CrossRef]

8. Zhang, X.; Zuazua, E. Long time behavior of a coupled heat-wave system arising in fluid-structure interaction.
Arch. Rat. Mech. Anal. 2007, 184, 49–120. [CrossRef]

9. Bardos, C.; Lebeau, G.; Rauch, J. Sharp sufficient conditions for the observation, control and stabilization of
waves from the boundary. SIAM J. Control Optim. 1992, 30, 1024–1065. [CrossRef]

10. Liu, K.; Liu, Z.; Zhang, Q. Eventual differentiability of a string with local Kelvin-Voigt damping.
ESAIM Control. Optim. Caculus Var. 2017, 23, 443–454. [CrossRef]

11. Liu, Z.; Zhang, Q. Stability of a string with local Kelvin-Voigt damping and non-smooth coefficient at
interface. SIAM J. Control. Optim. 2016, 54, 1859–1871. [CrossRef]

12. Renardy, M. On localized Kelvin-Voigt damping. Z. Angew. Math. Mech. 2004, 84, 280–283. [CrossRef]
13. Zhang, Q. Exponential stability of an elastic string with local Kelvin-Voigt damping. Z. Angew. Math. Phys.

2010, 6, 1009–1015. [CrossRef]
14. Liu, Z.; Rao, B. Frequency domain characterization of rational decay rate for solution of linear evolution

euqations. Z. Angew. Math. Phys. 2005, 56, 630–644. [CrossRef]
15. Zhang, Q. Polynomial decay of an elastic/viscoelastic waves interaction system. Z. Angew. Math. Phys.

2018, 69, 88. [CrossRef]
16. Burq, N. Decays for Kelvin-Voigt damped wave equations I: The black box perturbative method. submitted.
17. Batty, C.; Duyckaerts, T. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ.

2008, 8, 765–780. [CrossRef]
18. Bellassoued, M. Distribution of resonances and decay rate of the local energy for the elastic wave equation.

Commun. Math. Phys. 2000, 215, 375–408. [CrossRef]
19. Bellassoued, M. Carleman estimates and distribution of resonances for the transparent obstacle and

application to the stabilization. Asymptot. Anal. 2003, 35, 257–279.
20. Bellassoued, M. Decay of solutions of the elastic wave equation with a localized dissipation. Ann. Fac. Sci.

Toulouse Math. 2003, 12, 267–301. [CrossRef]
21. Lebeau, G. Équation des ondes amortizes. In Algebraic and Geometric Methods in Mathematical Physics (Kaciveli,

1993), Volume 19 of Mathematical Physics Studies; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996.
22. Robbiano, L. Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal.

1995, 10, 95–115. [CrossRef]
23. Lebeau, G.; Robbiano, L. Stabilisation de l’équation des ondes par le bord. Duke Math. J. 1997, 86, 465–491.

[CrossRef]
24. Hörmander, L. The Analysis of Linear Partial Differential Operators; Springer: Berlin, Germany, 2003.
25. Le Rousseau, J.; Robbiano, L. Carleman estimate for elliptic operators with coefficients with jumps at an

interface in arbitrary dimension and application to the null controllability of linear parabolic equations.
Arch. Ration. Mech. Anal. 2010, 195, 953–990. [CrossRef]

26. Imanuvilov, O.Y.; Puel, J.-P. Global Carleman estimates for weak solutions of elliptic nonhomogeneous
Dirichlet problems. Int. Math. Res. Not. 2003, 16, 883–913. [CrossRef]

27. Lebeau, G.; Robbiano, L. Contrôle exact de l’équation de la chaleur. Comm. Partial. Differ. Equ.
1995, 20, 335–356. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.matpur.2004.09.006
http://dx.doi.org/10.1007/s00205-006-0020-x
http://dx.doi.org/10.1137/0330055
http://dx.doi.org/10.1051/cocv/2015055
http://dx.doi.org/10.1137/15M1049385
http://dx.doi.org/10.1002/zamm.200310100
http://dx.doi.org/10.1007/s00033-010-0064-5
http://dx.doi.org/10.1007/s00033-004-3073-4
http://dx.doi.org/10.1007/s00033-018-0981-2
http://dx.doi.org/10.1007/s00028-008-0424-1
http://dx.doi.org/10.1007/PL00005541
http://dx.doi.org/10.5802/afst.1049
http://dx.doi.org/10.3233/ASY-1995-10201
http://dx.doi.org/10.1215/S0012-7094-97-08614-2
http://dx.doi.org/10.1007/s00205-009-0242-9
http://dx.doi.org/10.1155/S107379280321117X
http://dx.doi.org/10.1080/03605309508821097
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Symbol and Symbolic Calculus
	Commutator Estimate

	Carleman Estimate
	Resolvent Estimate
	Conclusions
	
	References

