Worst Exponential Decay Rate for Degenerate Gradient flows subject to persistent excitation - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2021

Worst Exponential Decay Rate for Degenerate Gradient flows subject to persistent excitation

Résumé

In this paper we estimate the worst rate of exponential decay of degenerate gradient flows (x) over dot = -Sx, issued from adaptive control theory. Under persistent excitation assumptions on the positive semidefinite matrix S, we provide upper bounds for this rate of decay consistent with previously known lower bounds and analogous stability results for more general classes of persistently excited signals. The strategy of proof consists in relating the worst decay rate to optimal control questions and studying in detail their solutions. As a by-product of our analysis, we also obtain estimates for the worst L-2-gain of the time-varying linear control systems (x) over dot = -cc(inverted perpendicular) x + u, where the signal c is persistently excited, thus solving an open problem posed by Rantzer in 1999.
Fichier principal
Vignette du fichier
2006.02935.pdf (397.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02792435 , version 1 (25-04-2024)

Identifiants

Citer

Paolo Mason, Yacine Chitour, Dario Prandi. Worst Exponential Decay Rate for Degenerate Gradient flows subject to persistent excitation. SIAM Journal on Control and Optimization, 2021, 59 (4), pp.3040-3067. ⟨10.1137/20M1343427⟩. ⟨hal-02792435⟩
122 Consultations
71 Téléchargements

Altmetric

Partager

More