Analytic continuation of Bethe energies and application to the thermodynamic limit of the $SL(2,\mathbb{C})$ non-compact spin chains
Résumé
We consider the problem of analytically continuing energies computed with the Bethe ansatz, as posed by the study of non-compact integrable spin chains. By introducing an imaginary extensive twist in the Bethe equations, we show that one can expand the analytic continuation of energies in the scaling limit around another ‘pseudo-vacuum’ sitting at a negative number of Bethe roots, in the same way as around the usual pseudo-vacuum. We show that this method can be used to compute the energy levels of some states of the SL(2, ℂ) integrable spin chain in the infinite-volume limit, and as a proof of principle recover the ground-state value previously obtained in [1] (for the case of spins s = 0,$ \overline{s} $ = −1) by extrapolating results in small sizes. These results represent, as far as we know, the first (partial) description of the spectrum of SL(2, ℂ) non-compact spin chains in the thermodynamic limit.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |