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Abstract: We consider the problem of analytically continuing energies computed with the

Bethe ansatz, as posed by the study of non-compact integrable spin chains. By introducing

an imaginary extensive twist in the Bethe equations, we show that one can expand the

analytic continuation of energies in the scaling limit around another ‘pseudo-vacuum’ sitting

at a negative number of Bethe roots, in the same way as around the usual pseudo-vacuum.

We show that this method can be used to compute the energy levels of some states of

the SL(2,C) integrable spin chain in the infinite-volume limit, and as a proof of principle

recover the ground-state value previously obtained in [1] (for the case of spins s = 0, s̄ =

−1) by extrapolating results in small sizes. These results represent, as far as we know,

the first (partial) description of the spectrum of SL(2,C) non-compact spin chains in the

thermodynamic limit.
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1 Introduction

The SL(2,C) non-compact Heisenberg spin chains arose originally in high-energy physics

as model Hamiltonians for interacting quantum particles in a two-dimensional plane [2]

(QCD in the Regge limit). It was quickly realized [2, 3] that these spin chains are integrable

analogs of the well-known su(2) and spin-1/2 Heisenberg spin chains, where an infinite-

dimensional (or non-compact) irreducible representation of SL(2,C) sits at each site instead

of a finite-dimensional one.
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While the arsenal of the Quantum Inverse Scattering Method [4–8] is in principle

applicable to study these chains, tremendous difficulties are encountered in practice [1, 9–

11]. Explicit expressions for the eigenstates and energy levels exist only for two sites, and

even the determination of the ground-state energies for larger but still small sizes is notably

complicated [1, 3]. The infinite dimension of the Hilbert space is clearly a serious obstacle,

since one cannot diagonalize numerically the Hamiltonian in small sizes. This is in contrast

with finite-dimensional (compact) integrable spin chains where the Bethe ansatz not only

allows one to efficiently track and compute energy levels from small to very large system

sizes, but also provides a description of the energy levels in the infinite-size limit with

Bethe-root densities and Thermodynamic Bethe Ansatz (TBA). Consequently, although

the continuum limit of compact integrable su(2) spin chains is well-understood in terms

of Wess-Zumino-Witten (WZW) models [12], close to nothing is known on the continuum

limit of their non-compact SL(2,C) cousins.

The objective of this paper is to provide a (partial) description of the energy levels of the

non-compact SL(2,C) spin chain in the thermodynamic limit. Our approach relies on the

analytic continuation of energies computed with the Bethe ansatz in the thermodynamic

limit, to a negative number of Bethe roots, that is performed by the introduction of an

imaginary extensive twist. In the same way that energies can be expanded in convergent

series around the pseudo-vacuum defined by the absence of Bethe roots [13], the analytic

continuation of energies is found to be expandable as well around another ‘pseudo-vacuum’

sitting at an extensive negative number of Bethe roots. We explain that it permits to obtain

convergent series for the energy levels of a certain (but large) class of states in the SL(2,C)

spin chain. As a proof of principle, we recover the value of the ground state previously

deduced from finite-size extrapolation [1] in the case (see below) s = 0, s̄ = −1, this state

being identified here as being of minimal energy with respect to particle-hole excitations.

We note that non-compact spin chains, although relevant in and originating from the

context of high-energy physics, Yang-Mills theories and AdS-CFT correspondence [14–18],

also play a role in quantum and statistical physics. Some finite-dimensional statistical

mechanics models — such as the alternating six-vertex model, the antiferromagnetic Potts

model, or certain loop models — are described by non-compact field theories [19–27],

while other models are genuine infinite-dimensional spin chains or lattice models, such

as the quantum Toda chain [28, 29], the Chalker-Coddington model [30] or stochastic

particle processes [31]. Some of the models in the latter class can in turn be investigated

approximately through a series of finite-dimensional truncations [32, 33].

The paper is organized as follows. In section 2, we recall some properties of compact

integrable spin chains with su(2) symmetry, and present the SL(2,R) and SL(2,C) spin

chains as well as a review of their known properties relevant to our discussion. In section 3

we study the Bethe equations for the s = −1 Heisenberg spin chain when an imaginary

extensive twist ϕ is included, and show that one can write a large class of energy levels as

convergent series in e−2ϕ for ϕ→∞. In section 4 we exhibit a special state in the spectrum

whose energy (as well as its derivatives) can be exceptionally continued analytically. In

section 5 we explain that this special state plays the role of another ‘pseudo-vacuum’, i.e.,

that we can obtain from it series expansions for other eigenenergies in the spectrum.

– 2 –
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2 A reminder on spin chains with su(2) symmetry

2.1 Compact su(2) spin chains

We start with some reminders on spin chains with su(2) symmetry that are ‘compact’, i.e.,

whose on-site Hilbert space is finite-dimensional.

We consider a Hamiltonian HL for L particles that acts on a tensor product V ⊗L of L

copies of a vector space V . We recall that HL is integrable if it is built from an R-matrix

that satisfies the Yang-Baxter equation [5–8]

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) , (2.1)

and we refer to [34] for the details of this construction. su(2)-invariant solutions to (2.1)

are known for the situation where each V is an irreducible representation of su(2) [35, 36].

These representations are necessarily of spin s, with s being integer or half-integer, and

thus of finite dimension 2s+ 1. The solutions read explicitly [35, 36]

R(λ) =

2s∑

l=0

2s∏

k=l+1

λ− ik
λ+ ik

2s∏

j=0, 6=l

σσσ − xj
xl − xj

, (2.2)

with xj = j(j + 1)/2 − s(s + 1) and σσσ =
∑

α=x,y,z S
α ⊗ Sα, where Sx, Sy, Sz act in the

spin-s irreducible representation (irrep). The Hamiltonian reads then

HL =
L∑

i=1

f(σσσi,i+1) , (2.3)

with σσσi,i+1 =
∑

α=x,y,z S
α
i ⊗ Sαi+1, Sαi being a copy of Sα at site i with periodic boundary

conditions (we identify the sites L+ 1 ≡ 1), and1

f(x) = −2

2s∑

l=0

2s∑

k=l+1

1

k

2s∏

j=0, 6=l

x− xj
xl − xj

. (2.4)

For example, the case s = 1/2 of these formulae gives the well-known spin-1/2 Heisenberg

XXX spin chain [37] with Hamiltonian

HL = 2
L∑

i=1

(
Sxi S

x
i+1 + Syi S

y
i+1 + Szi S

z
i+1 −

1

4

)
. (2.5)

These spin chains are all solvable by the algebraic Bethe ansatz (ABA) [4, 36]. Their energy

levels read

E = −
N∑

k=1

2s

λ2
k + s2

, (2.6)

where λ1, . . . , λN is an (admissible [4, 38]) solution to the Bethe equations

(
λk + is

λk − is

)L
=

N∏

l=1, 6=k

λk − λl + i

λk − λl − i
. (2.7)

1We put a minus sign compared to [36] in order for the ground state to be anti-ferromagnetic.

– 3 –
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Since the Hamiltonian commutes with the generators of su(2), the eigenspaces can be

decomposed into spin-u irreps of su(2), with u a positive integer or half-integer. More

precisely, u is the value of
∑L

i=1 S
z
i on the highest-weight state of this irrep and is related

to N through u = sL−N , where N is the number of Bethe roots.

2.2 Non-compact SL(2,R) spin chains

Since all the irreps of su(2) are finite-dimensional, one has to consider representations of

more general groups in order to obtain ‘non-compact’ spin chains. The Lie group SL(2,R)

whose Lie algebra is su(2) provides the simplest examples of infinite-dimensional irreps.

Among these are the continuous series representations, labelled by a real spin s ∈ R,

and the discrete series representations, labelled by a spin s = 0,−1/2,−1,−3/2, . . . taking

non-positive integer or half-integer values2 (the case s = 0 being obtained as a ‘limit’) [39–

41]. In both cases the generators can be realized with differential operators

S+ ≡ Sx + iSy = z2∂z − 2sz , S− ≡ Sx − iSy = −∂z , Sz = z∂z − s (2.8)

that verify the usual relations

[S+, S−] = 2Sz , [Sz, S±] = ±S± . (2.9)

The space on which these generators act has been sometimes considered to be the

space of polynomials, although it lacks a Hilbert space structure [42]. A proper choice

of a Hilbert space is the set of analytic functions on the upper half-plane — or, up to a

conformal transformation, on the unit disk [43] — with a precise scalar product [41, 44].

The construction of an R-matrix for the foregoing values of s requires the continuation

of (2.2) to any real s. It can be rewritten as [35, 36]

R(λ) =
Γ(iλ− 2s)Γ(iλ+ 2s+ 1)

Γ(iλ− JJJ)Γ(iλ+ JJJ + 1)
, (2.10)

where JJJ satisfies

JJJ(JJJ + 1) = 2σσσ + 2s(s+ 1) . (2.11)

As for the function f(x), it can be rewritten as

f(σσσ) = ψ(JJJ + 1) + ψ(−JJJ)− ψ(2s+ 1)− ψ(−2s) , (2.12)

with ψ(x) = Γ′(x)/Γ(x).

The Hamiltonians thus defined

HL =

L∑

i=1

(ψ(JJJ i,i+1 + 1) + ψ(−JJJ i,i+1)− ψ(2s+ 1)− ψ(−2s)) , (2.13)

2The most common — but not systematic — convention in the literature has been to take the opposite

sign for the spin s = −s′, with s′ the spin in their convention, yielding a Casimir ∝ s′(1 − s′), and as a

result the left-hand side of the Bethe equations (2.7) would be inverted. We prefer to stick to the convention

where the Casimir is ∝ s(1 + s) and (2.7) unchanged.

– 4 –
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where JJJ satisfies

JJJ i,i+1(JJJ i,i+1 + 1) = 2σσσi,i+1 + 2s(s+ 1) , (2.14)

are called the non-compact SL(2,R) Heisenberg spin chain of spin s.3 Since s appears only

as a parameter (albeit a crucial one) in this case — in contrast with the su(2) case where

the spin determines the dimension of the space — these chains are sometimes referred to

generically as ‘the’ SL(2,R) spin chain. The same remark applies to the SL(2,C) spin

chains below. We note that this spin chain emerges in a QCD context in high-energy

physics [45–50].

The function Ω(z1, . . . , zL) = z2s
1 · · · z2s

L is a heighest-weight state, i.e., it satisfies

S+
i Ω = 0 and

∑L
i=1 S

z
i Ω = sLΩ, and is an eigenstate of the Hamiltonian.4 The ABA

can then be applied to obtain eigenstates with Ω acting as pseudo-vacuum [3, 42, 44].

The expression of energy levels and the Bethe equations are exactly the same as in the

finite-dimensional case, viz. (2.6) and (2.7) for s 6= 0, and with

u = Ls−N (2.15)

being the spin of the representation to which the state belongs, where N denotes the number

of Bethe roots. However, since s is negative the structure of the Bethe roots changes

dramatically [51–55]. Moreover, since N has to be obviously a non-negative integer, the

ABA construction can only provide eigenstates for which Ls− u is a non-negative integer,

and continuous series representations for a real arbitrary u cannot be obtained directly this

way [56].

Let us now comment on the special case s = 0. In this case the function Ω(z1, . . . , zL) =

z2s
1 · · · z2s

L is both heighest-weight and lowest-weight state and we cannot use it as a pseduo-

vacuum. However, as shown in [3], there is actually a one-to-one correspondence between

the transfer matrices of the spin s = 0 and s = −1 models. For each eigenstate ϕ̂(z1, . . . , zL)

of the s = −1 model the function ϕ(z1, . . . , zL) = (z1−z2)(z2−z3) · · · (zL−z1)ϕ̂(z1, . . . , zL)

is an eigenstate of the spin s = 0 model. Consequently, the energies of the s = 0 Hamilto-

nian read [3]

E = 2L+

N∑

k=1

2

λ2
k + 1

, (2.16)

where λ1, . . . , λN satisfy the s = −1 Bethe equations

(
λk − i
λk + i

)L
=

N∏

l=1, 6=k

λk − λl + i

λk − λl − i
, (2.17)

and u, the spin of the eigenstate, is related to N through u = −L − N [3]. We note

that (2.17) can be exactly interpreted as a set of spin s = 0 equations for which L roots

are imposed to be degenerate and equal to 0.

3There is minus sign difference with the definition of the Hamiltonian sometimes encountered in the

literature [3, 10], but in these papers the state with maximal energy was studied.
4As it stands, it is actually not normalizable with respect to the scalar product considered. However,

one can take a kind of Fourier transform of Ω(z1 − w, . . . , zL − w), seen as a function of w, and obtain a

normalizable vector with the same properties. We refer the reader to section 2.1 and appendix B of [44] for

the details of this construction.

– 5 –
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2.3 Non-compact SL(2,CCC) spin chains

Another Lie group whose Lie algebra is su(2) and which has infinite-dimensional irreps is

SL(2,C), the universal cover of the Lorentz group. This is the case that we study in this

article.

The only unitary irreps of SL(2,C) are infinite-dimensional [57] and are labelled by

two complex numbers s, s̄ that satisfy [41]

s+ s̄∗ + 1 = 0 , (2.18a)

2(s− s̄) ∈ Z . (2.18b)

The six generators of SL(2,C) can be represented by (2.8) and

S̄+ ≡ S̄x + iS̄y = z̄2∂z̄ − 2s̄z̄ , S̄− ≡ S̄x − iS̄y = −∂z̄ , S̄z = z̄∂z̄ − s̄ . (2.19)

The Hamiltonian of the non-compact SL(2,C) spin chain is then given by two copies

of that of the SL(2,R) spin chain

HL =

L∑

i=1

(ψ(JJJ i,i+1 + 1) + ψ(−JJJ i,i+1)− ψ(2s+ 1)− ψ(−2s))

+

L∑

i=1

(ψ(J̄JJ i,i+1 + 1) + ψ(−J̄JJ i,i+1)− ψ(2s̄+ 1)− ψ(−2s̄)) ,

(2.20)

where J̄JJ satisfies

J̄JJ i,i+1(J̄JJ i,i+1 + 1) = 2σ̄σσi,i+1 + 2s̄(s̄+ 1) . (2.21)

The Hamiltonian is Hermitian [9] and its two holomorphic and anti-holomorphic compo-

nents (the two SL(2,R) spin-chain copies) commute. The case (s, s̄) = (0,−1) has been

particularly studied because of its relation with QCD, from which the model actually orig-

inates [2, 3].5 This is the case that we will consider as well.

Although the Hamiltonian of the non-compact SL(2,C) spin chain is expressed as

a sum of two commuting Hamiltonians to which one can apply the ABA separately to

find eigenstates, this latter property does not hold for the total Hamiltonian. This can

be understood as follows. Since the Hamiltonian is SL(2,C)-invariant and Hermitian, its

eigenspaces can be decomposed into unitary irreps of SL(2,C), and labelled by two complex

numbers (u, ū) satisfying6

u+ ū∗ + 1 = 0 , (2.22a)

2(u− ū) ∈ Z . (2.22b)

Here, u is the value of
∑L

i=1 S
z
i on the highest-weight state of this representation, and ū is

the value of
∑L

i=1 S̄
z
i . Since the holomorphic and anti-holomorphic generators of SL(2,C)

5We note that ψ(−2s) + ψ(2s̄ + 1) is not divergent when (s, s̄) → (0,−1), although each individual

term is.
6The notation always adopted in the references is to define h = −u, h̄ = −ū. We decided to change the

notation in order to keep the same sign as in the compact case, and also because in the CFT context h is

used to denote the conformal weights of the operators, that we plan to study in another piece of work.

– 6 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
9

commute, this highest-weight state also has to be an eigenstate of the separate SL(2,R)

Hamiltonians with spin u and ū. Such an eigenstate can be constructed with the ABA only

if Ls−u and Ls̄− ū are non-negative integers. Because of the relations (2.18a) and (2.22a),

these two constraints can never be satisfied simultaneously. Hence no eigenstate of the

SL(2,C) spin chain can be built with the ABA.

The original attempts to work around this problem was based on the idea of rewriting

the Bethe equations in such a way that u can take any real value [3]. It is known [8] that

the Bethe equations (2.7) can be recast into so-called TQ relations

T (λ)Q(λ) = (λ− is)LQ(λ+ i) + (λ+ is)LQ(λ− i) , (2.23)

where T (λ) is a polynomial of degree L and Q(λ) a polynomial of degree N . In the case

L = 2 and s = −1, by inspecting the coefficients of λN+2, λN+1, λN in (2.23), one has to

have T (λ) = 2λ2 − (N + 2)(N + 1) = 2λ2 − u(u + 1), so that for an arbitrary u, (2.23)

with this value of T (λ) can be seen as a functional equation on Q(λ) (that needs not be

a polynomial anymore). This equation — and thus, the problem — can then be solved in

size L = 2 [3]. It was shown later that the corresponding eigenstate can be obtained more

directly [1, 9, 11].

The case L = 2 is however a bit special since in that case the sole value of u directly

fixes the state and T (λ), which can be seen from the fact that (2.7) at s = −1 and L = 2

has only one solution for each value of N , as follows from (3.6) hereafter. For L ≥ 3 this

is not true anymore, and additional conserved charges (other than the spin u) are needed

to label the states. Considerable work has been focused on obtaining the ground state of

the model for higher values of L [45, 58–60], up to L = 8 [1]. From these values it was

conjectured that the ground-state energy goes to 0 for L→∞ [1].

We can now state the ideas of this paper. Although one cannot use the ABA to build

the eigenstates, the fact that the Hamiltonian is a sum of two commuting SL(2,R) Hamil-

tonians implies that an SL(2,C) energy level at (u, ū) is necessarily a sum of two SL(2,R)

energies at u and 1 − u∗, and obtaining both requires continuing the solutions of Bethe

equations to a negative number of Bethe roots. Instead of analytically continuing the Bethe

or TQ relations in finite-size to reach arbitrary real values of u, we perform an analytic

continuation of the Bethe equations directly in the thermodynamic limit. This is done by

introducing an imaginary extensive twist ϕ in (2.7), which permits us to expand the energy

levels in e−2ϕ, yielding an expansion ‘dual’ to that of [13] (where the magnetization m was

used as an expansion parameter). We obtain that the energy levels can be expanded around

another ‘pseudo-vacuum’ so as to reach other states in the spectrum in the thermodynamic

limit. As a proof of principle, we recover in this paper the thermodynamic ground-state

value previously obtained by extrapolating the ground state from small sizes [1]. In our

case, this ground state is identified by being of minimal energy with respect to a certain

(but large) class of particle-hole excitations. Our approach provides, as far as we know, the

first description of the SL(2,C) non-compact spin chain in the thermodynamic limit. Our

study also reveals new insights on the analytic continuation of the energies in Bethe-ansatz

solvable models.

– 7 –
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3 Bethe equations with an imaginary extensive twist

3.1 Generalities

In a nutshell, our goal is to perform the analytic continuation of the energies of the spin

s = −1 chain

e ≡ E

L
=

1

L

N∑

k=1

2

λ2
k + 1

, (3.1)

where the λk satisfy the Bethe equations

(
λk − i
λk + i

)L
=

N∏

l=1, 6=k

λk − λl + i

λk − λl − i
, (3.2)

to any real (including negative) values of

m =
N

L
(3.3)

in the thermodynamic limit L → ∞. Once some energies (per site) of the SL(2,R) spin

chain at a given m in the thermodynamic limit, denoted here ei(m), are identified, one

obtains an energy level Ei,j(m) of the SL(2,C) spin chain as

Ei,j(m) = 2 + ei(m) + ej(−2−m) , (3.4)

with possibly some constraints on i, j. Indeed, ei(m) is the energy corresponding to the

sub-SL(2,R) Hamiltonian with s = −1 at magnetization m, whereas the other s̄ = 0 sub-

SL(2,R) Hamiltonian is then at magnetization m′ = −2−m in the thermodynamic limit,

since ū = −1 − u from (2.22a) with u = −L −mL and ū = −L −m′L from (2.15). The

state of the latter has thus a intensive energy 2 + ej(−2−m) because of (2.16).

The writing (3.4) emphasizes that there is not necessarily the same state for the two

sub-SL(2,R) spin chains.

Due to the fact that Ei,i(m) in (3.4) has an extremum at m = −1, we will look for

the ground state at m = −1. This is in agreement with the fact that in finite size L (for

example L = 2) the ground state is at u = −1/2 [1], meaning that u = ū and hence m = m′

in that case as well.

3.2 Structure of the solutions at zero twist

One can rewrite the Bethe equations (3.2) in the following form by taking their logarithm

1

π
arctanλk =

Ik
L
− 1

πL

N∑

l=1

arctan(λk − λl) , (3.5)

where the Ik (for L even: integer if N is odd, and half-integer if N is even) are called

Bethe numbers. These (half)-integers emerge from log(zz′) = log z+log z′+2iπn with n =

−1, 0, 1, valid for z, z′ two non-zero complex numbers. These Bethe equations have been

extensively studied previously: we give here only the properties that will be of importance

to our discussion. We will consider L even only.
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Proposition 1. The solutions to (3.5) with λk 6= λl if k 6= l, are all real and characterized

by the choice of N distinct (half-)integers Ik satisfying

− L+N − 1

2
< Ik <

L+N − 1

2
(3.6)

Proof. Let us show first that the equations (3.2) only have real solutions. The proof is

identical to that of the same property for the repulsive Lieb-Liniger model [55, 61], and

can be formulated as follows. Let us denote λ+ the root with the largest imaginary part.

The differences λ+−λl thus always have a positive or zero imaginary part. Since
∣∣∣λ+i
λ−i

∣∣∣ ≥ 1

if and only if =λ ≥ 0, we deduce from (3.2) for λk = λ+ that
∣∣∣λ+−iλ++i

∣∣∣ ≥ 1. From the same

inequality one infers thus that =λ+ ≤ 0, which means that the imaginary part of all the

roots are negative or zero. Doing the same reasoning with λ− the root with the smallest

imaginary part, one infers that the imaginary part of all the roots are positive or zero.

Hence all the roots are real.

Now, using |arctanx| < π/2 in (3.5), one directly obtains (3.6).

To show that with this constraint (3.6) a solution to (3.5) does exist and is unique, we

follow again [55, 61] and introduce

M(λ1, . . . , λN ) =
1

π

N∑

k=1

A(λk)−
1

L

N∑

k=1

λkIk +
1

2πL

∑

k,l

A(λk − λl) , (3.7)

where A(x) is the primitive of arctan(x) that vanishes at 0. The Bethe equations (3.5) are

exactly the stationary conditions ∂λkM(λ1, . . . , λN ) = 0 necessary for M to be minimal at

λ1, . . . , λN . To prove that this minimum exists and is unique, we show that M is strictly

convex. To that end, we consider vi a non-zero vector of size N and compute

∑

i,j

vivj∂λi∂λjM =
1

π

N∑

i=1

v2
i

1 + λ2
i

+
1

2πL

∑

i,j

(vi − vj)2

1 + (λi − λj)2
> 0 . (3.8)

This shows that the matrix ∂λi∂λjM is definite positive and hence M strictly convex.

Finally, to show that λk 6= λl requires the Bethe numbers to be distinct, let us sub-

tract (3.5) for k and l

1

π
arctanλk+

1

πL

N∑

j=1

arctan(λk−λj)−


 1

π
arctanλl +

1

πL

N∑

j=1

arctan(λl − λj)


 =

Ik − Il
L

.

(3.9)

Since the function x 7→ 1
π arctanx + 1

πL

∑N
j=1 arctan(x − λj) is strictly increasing for any

x, we conclude that λk > λl if and only if Ik > Il. Hence all the roots are distinct if and

only if all the Bethe numbers are distinct.

We remark that from inequality (3.6) one sees another property of these equations:

even in finite size L they admit an infinite quantity of solutions, since N can be taken as

large as desired, which reflects the non-compactness of the spin chain.
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The scaling limit L → ∞ of (3.5) is then taken as follows. We recall from (3.3) that

m = N/L. The filling function χm(x) is defined such that Lχm(x) dx is the number of

Bethe numbers I with x < I
L < x + dx for large L. The inverse of the counting function

z(x) is defined as the value of the roots λk such that their Bethe number verifies Ik/L→ x

for large L. Using (3.6) we can then rewrite the logarithmic Bethe equations (3.5) as

1

π
arctan z(x) = x− 1

π

∫ 1+m
2

− 1+m
2

arctan(z(x)− z(y))χm(y) dy . (3.10)

The possible filling functions χm(x) are exactly the functions that satisfy

∀x ∈
[
−1 +m

2
,

1 +m

2

]
: 0 ≤ χm(x) ≤ 1 , (3.11a)

∫ 1+m
2

− 1+m
2

χm(x) dx = m. (3.11b)

3.3 An expansion in terms of the twist

Our strategy is now to add an imaginary extensive twist ϕ ≥ 0 in the Bethe equations (3.2),

that become7
(
λk − i
λk + i

)L
= e−2ϕL

N∏

l=1, 6=k

λk − λl + i

λk − λl − i
, (3.12)

and to study the energy as a function of ϕ when expanded around ϕ→∞. The logarithmic

form of the Bethe equations with this twist is

1

π
arctanλk =

Ik
L

+
iϕ

π
− 1

πL

N∑

l=1

arctan(λk − λl) . (3.13)

This kind of imaginary twist has been studied in different contexts in the XXZ spin

chain [13, 62–64]. Our point is to show that it is actually suited for the convergent extrap-

olation from ϕ = +∞ down to ϕ = 0. We start our reasoning with the following

Proposition 2. When ϕ → ∞ at fixed L, the roots {λk} of a solution to (3.13) satisfy

{λk} ⊂ iN∗. There is necessarily a root that converges to i, and if there exists a root

converging to ni for n > 1 then there exists another root converging to (n− 1)i. Moreover,

all the roots converge to i if and only if all the Bethe numbers satisfy

− L

2
< Ik ≤

L

2
. (3.14)

Proof. First, let us show that no roots go to ∞ when ϕ → ∞. Indeed, let us denote K

the (possible empty) set of roots such that λk → ∞ when ϕ → ∞. Taking the product

of (3.12) for these λk, we obtain

∏

λk∈K

(
λk − i
λk + i

)L
= e−2ϕL|K|(−1)|K|

N∏

λk∈K,λl /∈K

λk − λl + i

λk − λl − i
. (3.15)

7We put a factor 2 in the exponent so that ϕ is the conjugate variable to m, see [62], and a minus sign

so that the expansion at ϕ→ +∞ leads to roots converging to +iN∗, see hereafter.
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The left-hand side goes to 1 when ϕ→∞, so one needs |K| = 0 in the right-hand side for

it to not vanish when ϕ→∞. Hence all the roots stay finite.

Now, in (3.12) if we consider λk the root with the smallest imaginary part, λk − λl − i
cannot vanish, so that when ϕ→∞ we must have λk → i for the left-hand side to vanish,

since all the roots stay finite when ϕ→∞. If we now consider an arbitrary λk, in the limit

ϕ → ∞ we must have either λk → i or there exists another λl such that λk − λl − i → 0.

Hence by recurrence we must have λk → ni with n > 0 an integer, and then λl → (n− 1)i.

Now, since −π/2 < < arctan z ≤ π/2 for all complex z, by taking the real part of (3.13)

we have

− L+N

2
≤ Ik ≤

L+N

2
. (3.16)

Let us consider then a solution for which all λk → i when ϕ→∞. Then we have for all l,

λk − λl → 0 and from the real part of (3.13), with again −π/2 < < arctan z ≤ π/2 for all

complex z, we obtain (3.14).

We admit the other direction of the equivalence, i.e., that if (3.14) is verified, then all

the roots converge to i, which is indeed observed numerically.

We will call first-level filling function a filling function χm(x) such that χm(x) = 0 for
1
2 < |x| < 1+m

2 , i.e., such that all the Bethe numbers satisfy (3.14) in the thermodynamic

limit. Then, according to proposition 2, when ϕ→∞ all the roots converge to i. Then we

have the following

Theorem 1. The energy Fχm(ϕ) as a function of ϕ, for a given first-level filling function

χm(x) at a given value of m > 0, can be expanded as

Fχm(ϕ) =
∑

b≥−1

e−2bϕfb(χm) , (3.17)

where the b’s are integers. The functions fb(χm) depend only on the moments Xa(χm) of

χm, defined for a integer by

Xa(χm) ≡
∫ 1+m

2

− 1+m
2

e2iπaxχm(x) dx = lim
L→∞

1

L

N∑

k=1

e2iπa
Ik
L , (3.18)

and can be computed recursively in terms of a finite number of Xa(χm) with only algebraic

manipulations.

In order to obtain this result, we show that the following ansatz for each Bethe root λk

λk = i+
∑

a,b≥1

e−2bϕe
2iπIk
L

acab , (3.19)

with cab coefficients that satisfy a yet-to-be-determined recurrence relation, solves the Bethe

equations. Note that the fact that λk → i when ϕ→∞ is consistent with the second part

of proposition 2, because we have assumed the filling function to be first-level. We will use

the convenient notation

c
[k]
ab =

∑

a1+...+ak=a
b1+...+bk=b

ca1b1ca2b2 · · · cakbk , (3.20)
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with the convention c
[0]
00 = 1. In (3.19) we can take a, b ≥ 0, if we set cab = 0 whenever

a = 0 or b = 0.

Proof. The ideas of the derivation are close to those used in [13]. We first notice the

identity

arctan(i+ x) =
log ix

2

2i
+

1

2i

∑

n≥1

(−x)n

n(2i)n
. (3.21)

Inserting the expansion (3.19) into (3.21) (with x = λk − i), we have

1

π
arctan(λi) = − ϕ

iπ
+
Ii
L

+
log ic11

2

2iπ
+

1

2iπ
log


1 +

∑

a,b≥0

e−2bϕe
2iπIi
L

ac̃ab




+
1

2iπ

∑

n≥1

(−1)n

n(2i)n

∑

a,b≥1

e−2bϕe
2iπIi
L

ac
[n]
ab

=
iϕ

π
+
Ii
L

+
log ic11

2

2iπ
− 1

2iπ

∑

n≥1

(−1)n

n

∑

a,b≥0

e−2bϕe
2iπIi
L

ac̃
[n]
ab

+
1

2iπ

∑

n≥1

(−1)n

n(2i)n

∑

a,b≥1

e−2bϕe
2iπIi
L

ac
[n]
ab ,

(3.22)

where we have set

c̃ab =





ca+1,b+1

c11
if (a, b) 6= (0, 0)

0 if (a, b) = (0, 0)
(3.23)

and with an identical definition for c̃
[k]
ab as in (3.20):

c̃
[k]
ab =

∑

a1+...+ak=a
b1+...+bk=b

c̃a1b1 c̃a2b2 · · · c̃akbk . (3.24)

We used that the Bethe numbers all satisfy −L/2 < Ik ≤ L/2 to write log e2iπIk/L =

2iπIk/L. The right-hand side of (3.5) can also be written in terms of the cab’s. We expand

arctanx around 0,

1

π
arctan(λi − λj) =

1

π

∑

n≥0

arctan(n)(0)

n!
(λi − λj)n , (3.25)

perform a binomial expansion

(λi − λj)n =

n∑

q=0

(
n

q

)
(−1)n−q(λi − i)q(λj − i)n−q (3.26)

and insert again (3.19), yielding

1

π
arctan(λi − λj) =

1

π

∑

n≥0

arctan(n)(0)

n!

n∑

q=0

(
n

q

)
(−1)n−q

×
∑

a1,b1≥1

e−2b1ϕe
2iπIi
L

a1c
[q]
a1b1

∑

a2,b2≥1

e−2b2ϕe
2iπIj
L

a2c
[n−q]
a2b2

.

(3.27)
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In this form, the sum over the roots λj can be expressed in the thermodynamic limit in

terms of the moments Xa(χm), using (3.18). It yields

1

L

∑

j

1

π
arctan(λi−λj) =

1

π

∑

n≥0

arctan(n)(0)

n!

n∑

q=0

(
n

q

)
(−1)n−q

×
∑

a1,b1≥1

e−2b1ϕe
2iπIi
L

a1c
[q]
a1b1

∑

a2,b2≥1

e−2b2ϕXa2(χm)c
[n−q]
a2b2

+O(L−1) .

(3.28)

Plugging these expressions into the logarithmic form of the Bethe equations (3.12), we

obtain

log ic11
2

2iπ
− 1

2iπ

∑

a,b≥0

e−2bϕe
2iπIi
L

a
∑

n≥1

(−1)n

n
c̃

[n]
ab

=
∑

a,b≥1

e−2bϕe
2iπIi
L

a


−

∑

n≥0

n∑

q=0

∑

a2,b1,b2≥1
b1+b2=b

arctan(n)(0)

n!π

(
n

q

)
(−1)n−qc[q]

ab1
c

[n−q]
a2b2

Xa2(χm)

+
∑

n≥1

(−1)n+1

n(2i)n+1π
c

[n]
ab


 .

(3.29)

We see now that we can solve this equation if we impose the initial condition

c11 = −2i (3.30)

that cancels out the first term of (3.29), as well as requiring the recurrence relation

c̃ab
2iπ

= −
∑

n≥0

n∑

q=0

∑

a2,b1,b2≥1
b1+b2=b

arctan(n)(0)

n!π

(
n

q

)
(−1)n−qc[q]

ab1
c

[n−q]
a2b2

Xa2(χm)

+
∑

n≥1

(−1)n+1

n(2i)n+1π
c

[n]
ab +

1

2iπ

∑

n≥2

(−1)n

n
c̃

[n]
ab . (3.31)

For this to make sense, we first have to make sure that the sums on the right-hand

side are finite, namely that the sums over n and a2 truncate. To this end, let us prove by

recurrence on b that cab = 0 for all a > b. For b = 1 this follows from (3.31) with b = 0

(recall c̃a0 =
ca+1,1

c1,1
) by recurrence on a: it is true for c1,0 = 0, and the right-hand side only

involves ca′,0 for 1 ≤ a′ ≤ a. We assume now it is true for all b′ until and including b, and

consider (3.31) for a > b. First, we have c
[n]
ab = 0 for all n ≥ 1, since in c

[n]
ab there must be a

term ca′b′ with a′ > b′ for the sum over a′ to be strictly larger than the sum over b′. Since

b1 ≤ b in (3.31), we also conclude that c
[q]
ab1

= 0. We also have c̃
[n]
ab = 0 for n ≥ 2, since it

involves only c̃a′b′ for b′ < b, and at least one a′ has to be larger than b′ for their sum to

be strictly larger than b in c̃
[n]
ab . Hence c̃ab = 0, which concludes our recurrence. From this
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it follows that the sums over n, a2 are always finite sums, since c
[n]
ab is zero for n or a large

enough, and c̃
[n]
ab is zero for n large enough.

Now, let us check that (3.31) is indeed a recurrence relation for cab. The right-hand

side of (3.31) depends on ca′b′ for a′ ≤ a + 1 and b′ ≤ b + 1, with at least b′ < b + 1 or

a′ < a+ 1. Indeed c
[k]
a′b′ depends only on ca′′b′′ with a′′ ≤ a′ − (k− 1) and b′′ ≤ b′ − (k− 1),

because ca′′b′′ = 0 if a′′ = 0 or b′′ = 0; and c̃
[k]
a′b′ depends only on c̃a′′b′′ with a′′ ≤ a′

and b′′ ≤ b′, with at least a′′ < a′ or b′′ < b′, because c̃00 = 0. Hence (3.31) is indeed a

recurrence relation for cab.

We can now express the energy (3.1) in terms of these cab. Indeed, differentiating (3.21)

that we evaluate at λk − i with the representation (3.19) for λk, we have

2

λ2
k + 1

=
e2ϕe−

2iπIk
L

ic11

1

1 +
∑

a,b≥0 e
−2bϕe

2iπIk
L

ac̃ab
+

1

2

∑

a,b≥1

e−2bϕe
2iπIk
L

a
∑

n≥0

c
[n]
ab

(−2i)n

=
1

ic11

∑

a,b≥−1

e−2bϕe
2iπIk
L

a
∑

n≥0

(−1)nc̃
[n]
a+1,b+1 +

1

2

∑

a,b≥1

e−2bϕe
2iπIk
L

a
∑

n≥0

c
[n]
ab

(−2i)n
.

(3.32)

After summing over λk, we obtain the representation (3.17) for the energy Fχm(ϕ) with

fb(χm) =
∑

n≥0

∑

a≥−1

Xa(χm)

(
(−1)n

ic11
c̃

[n]
a+1,b+1 +

c
[n]
ab

2(−2i)n

)
. (3.33)

Because cab = 0 for a > b as proven before, the sum over a in (3.33) is truncated after

b + 1, and the sum over n is finite as well. Hence (3.33) is indeed a finite expression, and

this concludes the proof of our claim.

For example, we have the first terms (where we recall that the Xa are the moments

defined in (3.18))

Fχm(ϕ) = e2ϕX−1

2

+X0 + 2X2
0 − 2X1X−1

+ e−2ϕ

[(
1

2
− 2X0 − 4X2

0

)
X1 − 4X−1X

2
1 + 2(1 + 4X0)X−1X2

]

+O(e−4ϕ) .

(3.34)

We refer the reader to appendix A for a numerical code that computes the values of the

expansion coefficients (3.33).

3.4 Examples of root configurations and numerical checks

Let us give some examples of root configurations. The simplest choice of a filling function

satisfying (3.11) is

χ(1)
m (x) =

{
1 if −m/2 < x < m/2 ,

0 otherwise .
(3.35)
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This corresponds to the ‘standard’ root configuration where all the Bethe roots are symmet-

ric and closely packed around the origin, and appears to be relatively often the ground-state

configuration for various spin chains [65]. For this reason we will sometimes denote by ‘free

energy’ the energy of this state as a function of the magnetization m. With the expres-

sion (3.1) for the energy, however, it is natural to expect (because of the sign) that it will,

in the case of interest here, rather maximise the energy at m > 0 fixed. The corresponding

moments are

Xa(χ
(1)
m ) =




m if a = 0 ,

sin(πam)
πa otherwise .

(3.36)

In figure 1 we show a sketch of this root configuration. At the top, we indicated in red where

the roots λk lie on the black line
[
−1+m

2 , 1+m
2

]
. At the bottom, we indicated in red where

the quantities e2iπλk lie on the unit circle. In the right panel, we compare the numerical

solutions of the Bethe equations to the series in e−2ϕ within their radius of convergence as

a function of ϕ.

Another example of a root configuration is described by the filling function

χ(2)
m (x) =





1 if 1/2−m/2 < x < 1/2 ,

1 if − 1/2 < x < −1/2 +m/2 ,

0 otherwise .

(3.37)

The corresponding moments read

Xa(χ
(2)
m ) =




m if a = 0 ,

(−1)a sin(πam)
πa otherwise .

(3.38)

In figure 2 we show a sketch of this root configuration with the same conventions as before.

Yet another example of a root configuration is defined by the filling function

χ(3)
m (x) =





1 if −m/4 < x < m/4 ,

1 if 1/2−m/2 < x < 1/2−m/4 ,
1 if − 1/2 +m/4 < x < −1/2 +m/2 ,

0 otherwise .

(3.39)

The moments read

Xa(χ
(3)
m ) =




m if a = 0 ,

sin(πam/2)
πa + (−1)a

πa

(
sin(πam)− sin(πam/2)

)
otherwise .

(3.40)

In figure 3 we show a sketch of this root configuration with the same conventions as before.

Evaluating the moments at m = −1, we obtain in figure 4 the continuation of the

energies of these states as a series in e−2ϕ for ϕ → ∞. However, these series are not

convergent at ϕ = 0. We recall that one can solve the Bethe equations numerically only at

m > 0, whence the absence of numerical red points in figure 4.
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0 5 · 10−2 0.1 0.15 0.2 0.25

1

2

3

4

5

6

e−2ϕ
F
χ
(1

)
m
(ϕ

)

Figure 1. Left: sketch of the root configuration (red) and the vacancies (black), on the real axis

(top) and on the unit circle in the form e2iπλk (bottom). Right: F
χ
(1)
m

(ϕ) as a function of e−2ϕ, with

m = 0.25 (bottom) and m = 0.75 (top), using twenty terms of (3.17) within its radius of convergence

(blue) and solving numerically the Bethe equations in size L = 200 and L = 100 respectively (red).

The radius of convergence is estimated numerically from the fact that the partial sums are stable

within it.

5 · 10−2 0.1 0.15 0.2 0.25
−10

−8

−6

−4

−2

0

e−2ϕ

F
χ
(2

)
m
(ϕ

)

Figure 2. Left: sketch of the root configuration (red) and the vacancies (black), on the real axis

(top) and on the unit circle in the form e2iπλk (bottom). Right: F
χ
(2)
m

(ϕ) as a function of e−2ϕ, with

m = 0.25 (lower curve at the top right corner) and m = 0.5 (upper curve at the top right corner),

using twenty terms of (3.17) within its radius of convergence (blue) and solving numerically the

Bethe equations in size L = 240 and L = 144 (red).

A few remarks are in order to summarize these three test cases. First, we notice that

the agreement between the series expansion (within its radius of convergence) and the

numerical resolution of the Bethe equations (for sizes L � 1 close to the thermodynamic
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3 · 10−2 6 · 10−2 9 · 10−2 0.12
0

1

2

3

e−2ϕ
F
χ
(2

)
m
(ϕ

)

Figure 3. Left: sketch of the root configuration (red) and the vacancies (black), on the real axis

(top) and on the unit circle in the form e2iπλk (bottom). Right: F
χ
(3)
m

(ϕ) as a function of e−2ϕ, with

m = 0.25 (bottom) and m = 0.5 (top), using twenty terms of (3.17) (blue) and solving numerically

the Bethe equations in size L = 240 and L = 144 (red).

3 · 10−2 6 · 10−2 9 · 10−2 0.12

−10

−5

0
1

e−2ϕ

Figure 4. The series for F
χ
(i)
m

(ϕ) as a function of e−2ϕ, evaluated at m = −1, for i = 1, 2 (top, the

two curves are superimposed) and i = 3 (bottom).

limit) is excellent, with the deviation between the two methods being invisible on the scale

of the figures over the whole range of (convergent) e−2ϕ values. Second, we observe that

F
χ
(1)
m

(ϕ) > F
χ
(3)
m

(ϕ) > F
χ
(2)
m

(ϕ) for all ϕ; however, this ordering is not verified anymore at

m = −1, which indicates that one cannot infer the root configuration of the ground state

at m = −1 from the ordering of the states at m > 0. Third, the series considered in the

previous examples are in general not convergent down to ϕ = 0, so that in this form they

are not well suited for determining analytic continuation of energies at ϕ = 0. And lastly,

– 17 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
9

the root configurations (3.35) and (3.37) are evidently special since their energy seems to

be independent of ϕ — we will come back to this fact in section 4.

3.5 Comparison with a dual series expansion

We can also give the following additional check for the energy given by the filling function

χ
(1)
m (3.35). In [13] we gave a way to compute recursively the coefficients gb(ϕ) of the

energy F
χ
(1)
m

(ϕ),

F
χ
(1)
m

(ϕ) =
∑

b≥0

gb(ϕ)mb , (3.41)

with gb(ϕ) having an explicit dependence on ϕ. This kind of expansion is in a sense dual

to the one in (3.17): it is an expansion in m around 0 with ‘resummed’ ϕ-dependent

coefficients, whereas (3.17) is an expansion in e−2ϕ around ϕ → ∞ with ‘resummed’ m-

dependent coefficients. In the case of the filling function χ
(1)
m of (3.35) we have from (3.34)

and (3.36) on the one hand, and from [13] on the other hand, the respective expansions

F
χ
(1)
m

(ϕ) = e2ϕ sinπm

2π
+m+ 2m2 − 2 sin2πm

π2

+e−2ϕ sinπm

2π3
(−4 + π2 − 4mπ2 − 8m2π2 + 4 cos(2πm) + 2(1 + 4m) sin(2πm))

+O(e−4ϕ) (3.42a)

= m× 2 cosh2ϕ−m3 1

6
cosh 2ϕ+m4π

2

3
(1 + tanh2ϕ) +O(m5) , (3.42b)

and we can check that expanding fb(m) around m = 0 and gb(ϕ) around ϕ → ∞, we

obtain two double series in m, e−2ϕ whose coefficients exactly match. We checked this

correspondance until order 8 in m, e−2ϕ. This obviously provides a stringent check of

both [13] and theorem 1 of the present paper.

4 A special root configuration

The coefficients of the series (3.17) can all be recursively computed, and in practice the

first ≈ 20 terms are relatively fast to calculate. One obtains the energy levels of a state at

large ϕ, within the (m and χ(x)-dependent) radius of convergence of the series (3.17). The

magnetization m that is necessarily positive when solving numerically the Bethe equations

in finite size, enters these series as a mere parameter that can be set to m < 0. This

permits to analytically continue the energy level of a state down to m = −1, at least for

large ϕ. In this logic, a state at m < 0 is still characterized by its moments, but those do

not derive anymore from a filling function with the constraints (3.11), but are obtained as

analytic continuations of moments at m > 0.

In the rest of the paper, we will graphically depict a state at m = −1 (i.e., its moments)

with the following conventions. Although its moments do not directly derive from a filling

function, it may be that at m = −1 they can be written as
∫ 1/2
−1/2 f(x)e2iπax dx, with f(x)

a function. If it takes the values −n with n a positive or zero integer at x, then we depict
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Figure 5. Sketch of root configurations (4.1) and (4.2), corresponding to the continuation of (3.35)

and (3.39) at m = −1.

it with a black circle with n red layers at e2iπx where f(x) = −n. For example, figure 5

depicts the states (3.35) and (3.39) at m = −1. We indeed have for (3.35) at m = −1

Xa = −δa,0

= −
∫ 1/2

−1/2
e2iπax dx ,

(4.1)

and for (3.39) at m = −1

Xa =





−1 if a = 0

− 2(−1)b

π(2b+1) if a = 2b+ 1 odd

0 if a = 2b 6= 0 even

= −2

∫ 1/4

−1/4
e2iπax dx .

(4.2)

Of course, not all states can be written with a function f(x) taking only integer values,

but those that are relevant to us in this paper can.

One now faces the following difficulty. Although one can obtain the energies at m = −1

as series in e−2ϕ, the only value of ϕ relevant to us is ϕ = 0 (or its vicinity to obtain

derivatives), and the series (3.17) are observed to be not convergent down to ϕ = 0, see

section 3.4. Thus one would have to resum the series (3.17) in order to be able to set ϕ = 0,

which requires finding the generic explicit expression for the terms in the series.

4.1 Solution for a special root configuration

For an arbitrary root configuration given by an arbitrary filling function, it is evidently

difficult to find a generic explicit expression for all the terms of the series (3.17). However,

in the case of the root structure (3.35), one can exceptionally find such a generic expression

at m = −1. Indeed, all the moments Xa(χm) vanish at m = −1 but one, that is, X0(χ−1) =

−1. As we will see, this allows us to compute all the terms in (3.17) as well as their m-

derivatives, evaluated at m = −1, and this will be crucial in order to be able to continue

the energy levels down to ϕ = 0.
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4.1.1 The series (3.17) at m = −1

For the root configuration given in (4.1) the recurrence relation (3.31) becomes

c̃ab
2iπ

=
∑

n≥0

n∑

q=0

∑

b1,b2≥1
b1+b2=b

arctan(n)(0)

n!π

(
n

q

)
(−1)n−qc[q]

ab1
c

[n−q]
0b2

+
∑

n≥1

(−1)n+1

n(2i)n+1π
c

[n]
ab +

1

2iπ

∑

n≥2

(−1)n

n
c̃

[n]
ab

=
∑

n≥0

arctan(n)(0)

n!π
c

[n]
ab +

∑

n≥1

(−1)n+1

n(2i)n+1π
c

[n]
ab +

1

2iπ

∑

n≥2

(−1)n

n
c̃

[n]
ab ,

(4.3)

where we used that c
[n−q]
0b2

= 0 unless b2 = 0, n − q = 0, in which case c
[0]
00 = 1, because

c0b = 0 for b ≥ 0. Substituting back the expansion of arctan (3.21), this equation is exactly

arctan


i+

∑

a,b≥1

e−2bϕe
2iπIk
L

acab


 = π

Ik
L

+ iϕ+ arctan


∑

a,b≥1

e−2bϕe
2iπIk
L

acab


 . (4.4)

Introducing the generating function

γ0(t, x) =
∑

a,b≥1

taxbcab|m=−1 , (4.5)

where the cab’s are evaluated at m = −1, and in which one can interpret t = e2iπI/L and

x = e−2ϕ, this equation reads

arctan(i+ γ0(t, x)) =
1

2i
log(tx) + arctan γ0(t, x) , (4.6)

which can be solved by

γ0(t, x) = − i
2

+
i

2

√
1− 8tx

1− tx ≡ ∆(tx) . (4.7)

As for equation (3.33) for the values of the coefficients in the series (3.17), it becomes

fb(χ−1) = −
∑

n≥0

(
(−1)n

ic11
c̃

[n]
1,b+1 +

c
[n]
0b

2(−2i)n

)
. (4.8)

From the solution (4.7) it follows that cab, c̃ab = 0 whenever a 6= b. Hence the only non-

vanishing term is f0(χ) given by, with n = 1 for the first term and n = 0 for the second one,

f0(χ−1) =
c̃11

ic11
− 1

2

=
∆′′(0)

2i∆′(0)2
− 1

2

= 1 ,

(4.9)

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
9

where we recall the definition (3.23) for c̃ab. Hence we obtain that for this root configuration

Fχ−1(ϕ) = 1 +O(e−2nϕ) (4.10)

for any n > 0, in the limit ϕ → ∞. Since all the expansions in e−2ϕ are observed to

be convergent series, this equation is expected to hold at least within a finite radius of

convergence near ϕ → ∞. As explained hereafter in section 4.2, one needs to know the

behaviour of the m-derivatives of F at m = −1 in order to know the range of validity of

this expression.

Let us make the following side comment. If we keep working backwards from (4.6), we

obtain that the Bethe equations for λk = i+ γ0(e2iπIk/L, e−2ϕ) are

(
λk − i
λk + i

λk
λk − 2i

)L
= e−ϕL (4.11)

but this identification works only in the thermodynamic limit L→∞.

4.1.2 The m-derivatives of the series (3.17) at m = −1

For the particular root structure (3.35), one can also compute all the m-derivatives of

the coefficients fb(χm) evaluated at m = −1. In order to show this, let us introduce the

following generating functions

γp(t, x) =
∑

a,b≥1

taxb
1

p!

(
d

dm

)p
cab

∣∣∣∣
m=−1

. (4.12)

Let us consider a function F (t) with a Laurent series

F (t) =
∑

a≥−n
Fat

a (4.13)

with a certain n. Then in the limit L→∞, by definition (3.18) of the moments Xa(χm),

1

L

∑

k

F (e2iπIk/L) =
∑

a≥−n
Xa(χm)Fa +O(L−1) . (4.14)

For the particular root structure under consideration, one has the moments given in (3.36).

We denote µ = m+ 1 and expand these moments around µ = 0. This yields for a 6= 0

Xa(χm) = (−1)a
∑

p≥0

(πa)2p

(2p+ 1)!
(−1)pµ2p+1 . (4.15)

Hence

1

L

∑

k

F (e2iπIk/L) = −F0 +
∑

p≥0

π2pµ2p+1

(2p+ 1)!
(−1)p/∂

2p
F (−1) +O(L−1) , (4.16)
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where we have defined /∂tF (t) = t∂tF (t) =
∑

a≥−n at
aFa. The Bethe equations (3.12) yield

in the thermodynamic limit L→∞

arctan


i+

∑

p≥0

γp(t, x)µp


 =

log(xt)

2i
+ arctan


∑

p≥0

γp(t, x)µp




−
∑

p≥0

π2pµ2p+1

(2p+ 1)!
(−1)p/∂

2p
u arctan


∑

p≥0

γp(t, x)µp −
∑

p≥0

γp(u, x)µp



∣∣∣∣∣∣
u=−1

,

(4.17)

which is the generalisation of (4.6) to µ = m+ 1 6= 0. This equation allows us to solve for

γp(t, x) recursively in p, by expressing them in terms of γ0(t, x) = ∆(tx). Let us take the

example of γ1(t, x). At order µ, (4.17) is

arctan(i+ ∆(tx) + µγ1(t, x))− arctan(∆(tx) + µγ1(t, x))

=
log(xt)

2i
− µ arctan(∆(tx)−∆(−x)) +O(µ2) .

(4.18)

Expanding at order µ, the µ0 term vanishes due to (4.6), while the µ term gives

γ1(t, x) =
arctan(∆(tx)−∆(−x))

arctan′(∆(tx))− arctan′(i+ ∆(tx))
. (4.19)

And in this way, one can determine all the γp(t, x) recursively in terms of ∆.

As for the energy, it reads

Fχm(ϕ) = −e0(µ) +
∑

p≥0

π2pµ2p+1

(2p+ 1)!
(−1)p/∂

2p
t


 2

1 +
(
i+
∑

p≥0 µ
pγp(t, x)

)2




∣∣∣∣∣∣∣
t=−1

, (4.20)

with x=e−2ϕ, and where e0(µ) is the term in t0 in the Laurent series of 2

1+(i+
∑
p≥0 µ

pγp(t,x))
2 .

Hence all the m-derivatives of Fχm(ϕ) can be expressed in terms of the γp(t, x) and com-

puted explicitly.

Let us for instance compute the first derivative. We have

2

1 +
(
i+
∑

p≥0 µ
pγp(t, x)

)2 =
2

∆(xt)(2i+ ∆(xt))
− 4(i+ ∆(xt))γ1(t, x)

∆(xt)2(2i+ ∆(xt))2
µ+O(µ2) . (4.21)

Using the expression (4.19) one finds the t0 term

e0(µ) = −1 +
2µ

1 + ∆(−x)2
+O(µ2) . (4.22)

This gives

Fχm(ϕ) = −e0(µ) +
2µ

∆(−x)(2i+ ∆(−x))
+O(µ2) . (4.23)
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One deduces, with x = e−2ϕ,

∂mFχm(ϕ)|m=−1 = −2 cosh2 ϕ
√

5− 4 tanhϕ . (4.24)

The next terms can be computed efficiently by noting that only the knowledge of the

expansion of γp(t, x) for t close to 0 and t close to −1 are actually needed to compute the

successive terms. A recurrence relation is given in appendix B.

The important aspect of this calculation is that the computation of γp(t, x) only in-

volves t-derivatives of γ0(t, x) evaluated at t = −1, i.e., derivatives of ∆ evaluated at

−x = −e−2ϕ, a negative real. The function ∆ has no singularity for negative real (it only

has a pole at 1 and a branch point at 1
9), and the only division is by arctan′(∆(tx)) −

arctan′(i + ∆(tx)) which has no zeros for t = −1 and 0 ≤ x ≤ 1, so that no singularity

can arise. Hence, all the m-derivatives of Fχm(ϕ) evaluated at m = −1 are regular for

0 ≤ ϕ < ∞. As explained in section 4.2 below, this ensures that the range of validity of

the analytic continuations (4.10) and (4.24) are at least 0 ≤ ϕ <∞, which includes ϕ = 0.

Hence we obtain the analytic continuations

Fχm(ϕ = 0)|m=−1 = 1 , ∂mFχm(ϕ = 0)|m=−1 = −2
√

5 , (4.25)

and all the other derivatives can be analytically computed. We were able to evaluate more

than 20 terms.

4.2 Conditions for analytically continuing series at ϕ = 0

4.2.1 A counter-example and a criterion

In section 4.1 we saw that for the second pseudo-vacuum root configuration, one can

compute all the terms in the series (3.17), which yields Fχm(ϕ) = 1 at m = −1 within a

certain radius of convergence ϕc ≤ ϕ < ∞. Although the obtained (trivial) function of

ϕ can be obviously analytically continued to all real ϕ, this does not guarantee that the

function Fχm(ϕ) will actually take these values, because analytic continuation of Fχm(ϕ)

should be considered with respect to both variables m and ϕ.

We can first exhibit a counterexample. The function

f(m,ϕ) =
2

π
arctan

ϕ− ϕc
(m−mc)2

(4.26)

is analytic everywhere except at (m,ϕ) = (mc, ϕc). At m = mc one has

f(mc, ϕ) = sgn(ϕ− ϕc) , (4.27)

whose expansion in 1/ϕ around ϕ→∞ is

f(mc, ϕ) = 1 +O(ϕ−n) ∀n ≥ 0 , (4.28)

that can be trivially resummed into the function 1, which can itself be analytically continued

for all ϕ. However, it does not correspond to the actual value of f(mc, ϕ) for ϕ < ϕc, which

is −1. Using this function as a building block, one can obtain functions f(m,ϕ) whose
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expansions at mc around ϕ → ∞ will be perfectly regular and that can be analytically

continued to all ϕ without anything special happening at ϕ = ϕc, but that will actually

not be the true value of f(m,ϕ) after ϕ < ϕc, which can take essentially any value.

After this sobering example we see that to have more information on the validity of

f(mc, ϕ) = 1, one needs to know the behaviour of the same series for f(m,ϕ) for m close

to mc. In the case of (4.26), the radius of convergence of f(m,ϕ) as a series in 1/ϕ for

ϕ → ∞ is larger than 1
ϕc+(m−mc)2 for m 6= mc. For m → mc we only know it is larger

than 1
ϕc

, and we have indeed f(mc, ϕ) = 1 for 1
ϕ < 1

ϕc
. In any case, the resummed value

of f(mc, ϕ) has to be correct within the radius lim
m→mc

ρ(m) where ρ(m) is the radius of

convergence as a function of m. But the radius of convergence for m close to mc gives too

strong a constraint for the validity of the analytic continuation is general. For example,

the function

f̃(m,ϕ) =
1

1 + aϕ
+

2

π
arctan

ϕ− ϕc
(m−mc)2

(4.29)

for a > 0 can have a radius of convergence when m → mc for the series in 1/ϕ around

ϕ→∞ arbitrarily small provided a is sufficiently large, whereas the analytic continuation

of the series will work down to ϕ > ϕc for any a > 0.

To find a sensible constraint on the range of validity of the analytic continuation with

respect to ϕ, one can make the following reasoning. To analytically continue a function

f(mc, ϕ) on ϕ ∈]ϕc,+∞[, one needs that f(m,ϕ), considered as a function of two variables

(m,ϕ), is analytic in a domain of (m,ϕ) ∈ C × C strictly containing {mc}×]ϕc,∞[. This

implies in particular that none of the derivatives with respect to m at mc is singular for

any ϕ ∈]ϕc,+∞[, but also that the radius of convergence of the series in m is non-zero for

all ϕc < ϕ <∞. In the case of the example (4.26), we have

∂2
mf(mc, ϕ) = − 4

π(ϕ− ϕc)
, (4.30)

which is regular for ϕc < ϕ < +∞ but singular at ϕc, and indeed its analytic continuation

f(mc, ϕ) = 1 is valid only for ϕc < ϕ < +∞.

A counterexample where all the m-derivatives are regular for ϕc < ϕ <∞, but whose

series in m has a zero radius of convergence beyond some value of ϕ is

f(m,ϕ) =
∑

p≥1

(
2ϕc
ϕ

)p2
(m−mc)

p . (4.31)

Indeed, for any m 6= mc the series in ϕ cannot be analytically continued for ϕ < 2ϕc, since

it is well known that
∑

n≥1 x
n2

has a natural boundary on the unit circle.

Hence to be able to perform these analytic continuations we need the following

Proposition 3. Let f(x, y) be a function of two real variables defined and analytic in a

neighbourhood of (0, 0), hence with an expansion

f(x, y) =
∑

n≥0

xnfn(y) , (4.32)

with fn(y) analytic functions of y in a neighbourhood of 0.
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1. If for all p ≥ 0, there exists a function gp(x), analytic on [0, 1], whose expansion

around 0 is
∑

n≥0 x
nf

(p)
n (0),

2. and if the series
∑

p≥0
yp

p! gp(x) has a non-zero radius of convergence for all 0 ≤ x ≤ 1,

then f(x, y) can be analytically continued to a function that takes the values g0(x) on

[0, 1]× {0} (and whose p-th y-derivative takes the values gp(x) on [0, 1]× {0}).

The proof is elementary — the point of this proposition is to avoid reaching naive

conclusions, as illustrated by the examples shown above.

Proof. Defining r(x) > 0, the radius of convergence of
∑

p≥0
yp

p! gp(x), we have r0 ≡
min

0≤x≤1
r(x) > 0. Then the function f̃(x, y) =

∑
p≥0

yp

p! gp(x) defined on [0, 1]×] − r0, r0[

is analytic and coincides with f(x, y) on an open non-empty set, so that it is the analytic

continuation of f(x, y) on [0, 1]×]− r0, r0[, and we have ∂py f̃(x, 0) = gp(x).

In the following, the first hypothesis of this proposition will be verified analytically.

The second hypothesis will however be verified only numerically (leaving in many cases

almost no doubt about its validity, for example when we have ≈ 15 terms in the series).

4.2.2 Direct numerical check at m = 1

Let us give a numerical check of this criterion in a situation very close to the one in

section 3. Considering the same root configuration as in section 4.1 but for m = 1, we have

the moments

Xa(χ1) =

{
1 if a = 0 ,

0 otherwise ,
(4.33)

which also simplifies greatly the recurrence relations as in the case m = −1. Similarly, one

can show that the generating function γ0(t, x) satisfies then

arctan(i+ γ0(t, x)) =
1

2i
log(tx)− arctan γ0(t, x) , (4.34)

which can be solved by

γ0(t, x) =
i

2

1 + 3tx

1− tx

[
1−

√
1 +

8tx(1− tx)

(1 + 3tx)2

]
≡ ∆(tx) . (4.35)

Then in the series (3.17) one has

Fχ1(ϕ) = 3 +O(e−2nϕ) (4.36)

for any n > 0. As in the case m = −1, one can compute the m-derivatives of Fχm(ϕ) at

m = 1. For example

∂mFχm(ϕ)|m=1 = 2 cosh2ϕ
cosh 2ϕ− 7− 2

√
2 sinhϕ

√
cosh 2ϕ− 7

5 cosh 2ϕ− 11− 4
√

2 sinhϕ
√

cosh 2ϕ− 7
. (4.37)
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Figure 6. Fχ1(ϕ) (left panel) and ∂mFχm(ϕ)|m=1 (right panel) as functions of e−2ϕ for ϕc ≤ ϕ <∞.

We show numerical values obtained from solving the Bethe equations (red crosses) and analytic

values (4.36)–(4.37) (blue curves).

Generically, it will involve γ0(−1, e−2ϕ) as in the case m=−1. But in this case, γ0(−1, e−2ϕ)

has a singularity at

ϕc =
1

2
log(7 + 4

√
3) > 0 . (4.38)

Hence (4.36) and all the resummed values for the m-derivatives of Fχm(ϕ) at m = 1 (4.37)

will work only for ϕc < ϕ < +∞, in particular not at ϕ = 0. The advantage of m = 1

is that one can solve the Bethe equations in finite size and directly check this affirmation

numerically. One indeed obtains figure 6, in agreement with proposition 3.

4.2.3 Numerical check at m=−1: analytic continuation of the energy at ϕ=0

As explained in [13], around m = 0 one can efficiently expand F
χ
(1)
m

(ϕ) in powers of m:

F
χ
(1)
m

(ϕ = 0) = 2m− π2

6
m3 +

π2

3
m4 +

−60π2 + π4

120
m5 +

(
2π2

3
− 11π4

180

)
m6

+

(
−5π2

6
+

2π4

9
− π6

5040

)
m7 +

(
π2 − 7π4

12
+

31π6

2520

)
m8

+O(m9) ,

(4.39)

as well as with the twist ϕ:

F
χ
(1)
m

(ϕ) = 2m cosh2 ϕ− π2

6
cosh(2ϕ)m3 +

π2

3
(1 + tanh2 ϕ)m4 +O(m5) . (4.40)

This matches the numerical solution of the s = −1 Bethe equations (2.7) in large size

L, obviously for a positive number of roots N , hence m ≥ 0. In the derivation of these

series in [13], the m-dependence comes from sums over the Bethe numbers of these root

configurations

1

L

N∑

i=1

(
Ii
L

)a
=





ma+1

a+1 if a is even

0 if a is odd
+O(L−1) . (4.41)
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−0.5 −0.4 −0.3 −0.2 −0.1 0

−2.0

−1.5

−1.0

−0.5

0.0

m

F
χ
(1

)
m
(ϕ

)

Figure 7. F
χ
(1)
m

(ϕ) as a function of m, obtained by solving numerically the Bethe equations (2.7)

at s = 1 with N = L|m| roots for m > −1/2 with N = 80 roots (red crosses), and by expanding

around m = 0 within the radius of convergence with equation (4.40) (blue curves), for different

values of ϕ = 0, 0.5, 0.75, 1, 1.25 from top to bottom inside the panel.

Changing m into −m corresponds to placing a minus sign in front of every sum over Bethe

numbers, hence to inverting the right-hand side of the Bethe equations (2.7). This is

exactly equivalent to changing s into −s. Since the expansions (4.40) hold only in the

thermodynamic limit, this correspondence also holds only in the thermodynamic limit.

Hence the free energy (4.40) for m < 0 corresponds to the free energy of the s = 1 Bethe

equations for |m| > 0 in the thermodynamic limit, with the same root configuration. See

figure 7 for the numerical verification of this fact. However, such root configuration for

s = 1 is valid only for 0 ≤ |m| ≤ 1/2, hence one cannot reach m = −1 with this technique.

Moreover, at ϕ = 0 the expansion is observed to have a radius of convergence ≈ 0.3, which

is not even enough to reach the limit point m = −1/2.

The results of section 4.1 show that, remarkably, one can expand F
χ
(1)
m

(ϕ = 0) around

m = −1 and compute recursively all the coefficients of the expansion, as around m = 0

in (4.39). The coefficients of the expansion read

F
χ
(1)
m

(ϕ = 0) = 1− 2
√

5(m+ 1) +
23π2

30
√

5
(m+ 1)3 +

23π2

75
(m+ 1)4

+

(
23π2

50
√

5
− 109π4

3000
√

5

)
(m+ 1)5 +

(
46π2

375
− 59π4

2500

)
(m+ 1)6

+

(
23π2

150
√

5
− 533π4

11250
√

5
+

359π6

393750
√

5

)
(m+ 1)7

+

(
23π2

625
− 189π4

12500
+

427π6

562500

)
(m+ 1)8 +O((m+ 1)9) .

(4.42)

This result can be compared to the numerics by checking that this expansion around

m = −1 matches the values for m > −1/2 in (4.39), as shown in figure 8. But one can go
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−1 −0.8 −0.6 −0.4 −0.2 0
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0.0

1.0

m

F
χ
(1

)
m
(ϕ

)

0.1 0.2 0.3 0.4 0.5 0.6

−1.5

−1.0

−0.5

e−2ϕ

1/
F
χ
−
1
/
2
(ϕ

)

Figure 8. Left: F
χ
(1)
m

(ϕ) as a function of m, obtained by solving numerically the Bethe equa-

tions (2.7) at s = 1 with N = L|m| roots for m > −1/2 with N = 80 roots (red), and by expanding

around m = −1 with equation (4.42) (blue), for different values of ϕ = 0, 0.5, 0.75, 1, 1.25 from

top to bottom inside the panel. Right: 1/Fχ−1/2
(ϕ) as a function of e−2ϕ, obtained by solving

numerically the Bethe equations (2.7) at s = 1 with the twist with N = L|m| roots for m = −1/2

(red), and by evaluating the expansion (4.43) at m = −1/2 with around 10 terms (blue).

further and obtain the ϕ-dependence of Fχm(ϕ) when expanded around m = −1. The first

terms read

F
χ
(1)
m

(ϕ) = 1− 2 cosh2 ϕ
√

5 + 4 tanhϕ(m+ 1) +O((m+ 1)3) . (4.43)

This can again be compared with the numerics at m = −1/2, where one can simply solve

numerically (2.7) for s = 1 and N = L|m| = L/2 for large L, with a twist ϕ as in

equation (3.12), see figure 8.

All these expansions and their agreement with the numerics give a very strong check

of our method.

5 Exploring the spectrum

The values (4.25) and (4.42) are non-trivial results since they constitute the analytic con-

tinuation of a function of m around m = −1, whereas its definition is for m ≥ 0, and its

natural expansion is around m = 0. Their calculation relied on the fact that for a very

particular root configuration χm all the moments Xa(χm) except one vanish at m = −1,

which allows one to compute all the coefficients of the series involved in the Bethe root λk,

or the generating function γp(t, x). However, because of that reason, the state considered is

very particular and in the limit ϕ→∞ it is not the ground state, and nothing guarantees

that the root structure of the ground state allows for the same mechanism.

To explore the rest of the spectrum, i.e. to compute the analytic continuation of energies

at m = −1 whose moments are not given by (4.1), we proceed as follows. We consider a

trajectory ξ → {Xξ
a}a in the space of moments at m = −1, such that at ξ = 0, {Xξ=0

a }a
are the moments of the special root configuration (4.1). By this, we mean the analytic
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continuation at m = −1 of the moments of a family of filling functions ξ → χξm(x) for

m > 0. The idea is that, in the same way that all the m-derivatives of Fχm(ϕ) can be

evaluated at m = −1 for this special root configuration, all the ξ-derivatives of the energy of

state with moments {Xξ
a}a can be evaluated at ξ = 0, whenever {Xξ=0

a }a are the moments

of the special root configuration (4.1).

5.1 Expanding along a trajectory

To that end, we expand the moments in terms of ξ along the trajectory

Xξ
a =

∑

p≥0

ξpXa,p . (5.1)

By construction, we have X0,0 = −1 and Xa,0 = 0 for a 6= 0. Following section 4.1.2 for

the m-derivatives, we have for a function F (t) with a Laurent series at t = 0

1

L

∑

k

F (e2iπIk/L) =
∑

p≥0

ξpΞpt [F (t)] +O(L−1) , (5.2)

where we introduced the operator Ξpt [F (t)] that takes a function of t and returns the

following complex number

Ξpt [F (t)] =
∑

a≥−n
Xa,pFa . (5.3)

The index t merely indicates the dummy variable on which Ξpt acts. By construction,

Ξ0
t [F (t)] = −F0. We introduce the generating functions

γp(t, x) =
∑

a,b≥1

taxb
1

p!

(
d

dξ

)p
cab

∣∣∣∣
ξ=0

. (5.4)

The coefficients cab indeed now depend on ξ on the trajectory. Again, by construction

γ0(t, x) is given by (4.7). The other γp(t, x) satisfy an equation analogous to (4.17)

arctan


i+

∑

p≥0

γp(t, x)ξp


 =

log(xt)

2i
+ arctan


∑

p≥0

γp(t, x)ξp




−
∑

p≥1

ξpΞpu


arctan


∑

p≥0

(γp(t, x)− γp(u, x))ξp




 .

(5.5)

This equation again allows us to solve for all the γp(t, x) recursively. For example

γ1(t, x) =
Ξ1
u[arctan(∆(tx)−∆(ux))]

arctan′(∆(tx))− arctan′(i+ ∆(tx))
. (5.6)

As for the energy Fξ(ϕ), it reads

Fξ(ϕ) =
∑

p≥0

ξpΞpt


 2

1 +
(
i+
∑

q≥0 γq(t, x)ξq
)2


 , (5.7)
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with x = e−2ϕ. Hence all the ξ-derivatives of Fξ(ϕ) can be expressed in terms of the γp(t, x)

and computed explicitly.

We can now justify the use of the term ‘pseudo-vacuum’ for the state (4.1) at m = −1.

It indeed shares remarkable properties with the usual pseudo-vacuum defined by having

no Bethe roots (hence that is at m = 0). First, the energies of these two states are both

independent of the twist ϕ, which is never true for a generic root configuration. Second,

and most importantly, one can compute the energy of any state whose root configuration

is close to them: indeed, at m close to zero the Bethe equations decouple and one can

always solve for the Bethe roots, while for the second pseudo-vacuum we saw that one can

calculate the perturbation of its energy along a trajectory. This means that the energy

levels of the spin chains can be explored from the usual pseudo-vacuum as well as from

this other pseudo-vacuum.

We note that the crucial ingredient for this other pseudo-vacuum to exist (i.e., for

trajectories to be expandable around it) is the absence of singularities of the ‘kernel’

γ0(−1, x) = ∆(−x) in (4.7) for 0 ≤ x = e−2ϕ ≤ 1, which allows us to analytically continue

up to ϕ = 0. At m = 1, for example, we saw in section 4.2.2 that there is also a special

root configuration for which the energy can be computed, but then (4.35) has a singularity

for 0 ≤ x ≤ 1, so that these energies cannot be continued to ϕ = 0. Hence this state at

m = 1 cannot be considered as another pseudo-vacuum.

One should also note that this construction of another pseudo-vacuum is not an excep-

tional feature of the s = −1 chain. The same reasoning can indeed be performed for the

usual s = 1/2 Heisenberg chain, whose usual pseudo-vacuum is one of the two ferromagnetic

ground states where all the spins are either up or down. Conventionally the m = 0 state

|⇑〉 is taken as the pseudo-vacuum, so the other m = 1 state |⇓〉 is what we would call the

second pseudo-vacuum. In this case, one finds at m = 1 such a special root configuration

with a kernel that has no singularity for 0 ≤ x ≤ 1. Expanding for example the free energy

with all the roots symmetrically packed around the origin (which is the root configuration

of the ground state in the antiferromagnetic regime), around m = 1, one finds exactly the

same coefficients as around m = 0, up to a minus sign for odd coefficients. This implies

that the function is symmetric around m = 1/2 where half of the spins are down and half

up, which implies, non surprisingly, that the energies are unchanged if all the spins are

flipped. This means that in the case of the s = 1/2 spin chain, this new pseudo-vacuum

is exactly the second ferromagnetic ground state, around which one could have performed

the ABA. This gives another justification for the use of the term ‘pseudo-vacuum’ for these

special states.

5.2 A trajectory to the state (4.2)

Let us now choose a trajectory that goes to the state (4.2) at m = −1. We can take for

example

Xξ
a =

∫ 1

−1
g(x)e2iπaxdx with g(x) =





−1 for − 1/2 + ξ/2 < x < 1/2− ξ/2 ,
−1 for 3/4 < x < 3/4 + ξ/2 ,

−1 for − 3/4− ξ/2 < x < −3/4 ,

0 otherwise .

(5.8)
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ξ = −1/2 −1/2 < ξ < 0 ξ = 0 0 < ξ < 1/2 ξ = 1/2

Figure 9. Sketch of the root structure of the trajectory for different values of ξ.

This trajectory at m = −1 is depicted in figure 9 with the conventions given at the

beginning of section 4. It has the property that at ξ = 0 it is the second pseudo-vacuum,

at ξ = 1/2 it is the state (4.2), and at ξ = −1/2 it is the second pseudo-vacuum again.

This last property gives a strong check of the expansion: its evaluation at ξ = −1/2 should

give back 1, the second pseudo-vacuum energy.

Calculating the moments Xξ
a, we obtain the values for Ξpt [F (t)] for a function F (t)

Ξpt [F (t)] =
(iπ)p−1

2p!

[
(1− (−1)p)/∂

p−1
F (−1) + (−1)p/∂

p−1
F (i)− /∂

p−1
F (−i)

]
. (5.9)

Applying then the recurrence (5.5) and formula (5.7), one obtains analytic expressions

for all the coefficients in ξ of the energy along the trajectory. For example the first two

terms read

F (ξ) = 1+
ξ

2
(−4
√

5+2<
√

5−4i)

− ξ2

2
√

205

(
π<(5+2i)

√
25−20i−4<((2+5i)

√
25+20i+2

√
41) argth

√
5−
√

5−4i

2

+2
√

5=(2+5i)
√

5+4i arctan=
√

5−4i
)

+O(ξ3) .

(5.10)

We computed the coefficients up to ξ14 using the recurrence relations written in appendix C.

The energy of the trajectory is reported in figure 10.

Because of the small oscillations observed around a seemingly straight line, a sensible

extrapolation to k =∞ requires to take several points to average them out. Performing a

simple linear fit a+ b
k on the almost aligned points for k ≥ 5 we obtain F (ξ = 1/2) ≈ −0.992,

and for k ≥ 6 we obtain F (ξ = 1/2) ≈ −1.002. Hence this strongly suggests

F (ξ = 1/2) = −1 , (5.11)

and hence the energy level of the SL(2,C) spin chain

E(m = −1) = 0 . (5.12)

This value corresponds to the value of the ground state obtained in [1] by calculating

numerically the ground state energy for small sizes up to L = 8 and extrapolating to the

thermodynamic limit.8 To ensure that we are dealing with the same state indeed, we need

to check that the energy of this state is minimal with respect to all excitations.

8In [1] is also obtained that the 1/L corrections to this result vanish.
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Figure 10. Top: energy of the trajectory (5.8) as a function of ξ, up to ξ4, ξ9, ξ14 (from light to

dark blue). Bottom: energy at ξ = 1/2 (left) and ξ = −1/2 (right), taking into account the first k

terms in the expansion in ξ, as a function of 1/k.

5.3 First-level particle and hole excitations above the state (4.2)

In this section, we verify that the state (4.2) at m = −1 is minimal with respect to

microscopic excitations described within theorem 1.

At m > 0, since all the roots are real, there are only particle excitations (i.e., adding

a Bethe root with a Bethe number that is not already taken by another root, and thus

increasing the value of m by 1/L) or hole excitations (i.e., removing one of the Bethe

roots, and thus decreasing the value of m by 1/L). Because of the structure of (3.39), the

only possible values of z = Ik
L for the Bethe number involved are such that χm(z) = 0 for

particle excitations and χm(z) = 1 for hole excitations. We will call first-level particle or

hole excitations, those such that −1/2 < z < 1/2, for which theorem 1 applies. As m varies,

the authorized values of z for first-level particle or hole excitations vary correspondingly.

At m = −1, they become −1/4 < z < 1/4 for hole excitations, and 1/4 < z < 1/2 or

−1/2 < z < −1/4 for particle excitations.

If we consider a macroscopic but tiny number ηL of such excitations around z, then

denoting by χzm the resulting filling function of the new Bethe root distribution, its moments
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Xa(χ
z
m) are, at first order in η

Xa(χ
z
m) = Xa(χm) + ηe2iπaz +O(η2) . (5.13)

This writing encompasses the two types of excitations according to the sign of η: for particle

excitations we have η > 0, and for hole excitations we have η < 0. From the moments,

one can deduce at first order in η the change in the energy at large ϕ, with the expansion

presented in theorem 1. One has the first terms

∂ηFχzm(ϕ)|η=0 =
e−2iπz

2
e2ϕ + 1 + 4m− 2e2iπzX−1 − 2e−2iπzX1 +O(e−2ϕ) . (5.14)

We should now recall that this is the change to the energy of an eigenstate of only one of the

two copies of the SL(2,R) spin chain composing the whole SL(2,C) spin chain. Since the

eigenstate of the other SL(2,R) spin chain copy must have a magnetisation m′ = −2−m, we

conclude that it must undergo an excitation of the opposite type, i.e., with η changed into

−η. Moreover, contrarily to the SL(2,R) spin chain, the SL(2,C) spin chain is Hermitian,

hence with a real spectrum. The value of z for the particle excitation (denoted zp) and the

value of z for the hole excitation (denoted zh) composing an elementary excitation of the

whole SL(2,C) spin chain are thus constrained to be such that the total excitation energy

is real. Hence, the change of energy of the state (4.2) of the SL(2,C) spin chain after a

particle-hole excitation (zp, zh) is

δzp,zh = ∂ηFχzpm (ϕ)
∣∣∣
η=0
− ∂ηFχzhm (ϕ)

∣∣∣
η=0

, (5.15)

where the analytic continuation is taken to m = −1, and with the constraints on (zp, zh)

− 1/4 < zp < 1/4

1/4 < |zh| < 1/2

δzp,zh real .

(5.16)

In practice, the constraint =δzp,zh = 0 leaves only one of the two parameters zp or zh, with

the other becoming a (possibly multi-valued) function of the first. For example, in the

limit ϕ→∞ we have still for the state (4.2)

∂ηFχzm(ϕ)
∣∣
η=0

=
e−2iπz

2
e2ϕ +O(1) , (5.17)

from which one deduces that the couples (zp, zh) satisfying (5.16) are

(
zp,

(
1

2
− |zp|

)
sgn(zp)

)
, −1/4 < zp < 1/4 , (5.18)

which gives

δzp,zh(zp) = cos(2πzp)e
2ϕ +O(1) , (5.19)

which is indeed always positive. So the state considered (4.2) is indeed minimal with

respect to first-level particle-hole excitations in the limit ϕ→∞.
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Figure 11. Left: ∂ηFχz
m

(ϕ)|η=0 for (4.2) as a function of z, real part (green) and imaginary part

(purple), at ϕ = 1.5 with 13 terms in the expansion in e−2ϕ. Right: the corresponding δzp,zh for

admissible values of (zp, zh), as a function of zp.

To investigate the case ϕ < ∞, we start by plotting in figure 11 the complex values

of ∂ηFχzm(ϕ)|η=0 and the real values of δzp,zh(zp) calculated with the expansion in e−2ϕ,

evaluated at ϕ = 1.5 which is within its radius of convergence. We see that we have indeed

δzp,zh(zp) ≥ 0 for all −1/4 ≤ zp ≤ 1/4, which shows that the state (4.2) at ϕ = 1.5 is

still a local minimum with respect to particle-hole excitations. Moreover, we see that the

excitations are even gapped (with a gap extensive in L) at ϕ = 1.5.

Once again, the series in e−2ϕ are not convergent at ϕ = 0. In order to investigate the

values of δzp,zh at ϕ = 0, we apply the reasoning presented in sections 5.1 and 5.2, with

now the values (5.13) for the moments at order 1 in η.

The values of the functional Ξpt [F (t)] for p > 0 are not modified and are given by (5.9),

whereas for p = 0 we have

Ξ0
t [F (t)] = −F0 + ηF (e2iπz) . (5.20)

Thus we obtain

arctan


i+

∑

p≥0

γp(t, x)ξp


 =

log(xt)

2i
+ arctan


∑

p≥0

γp(t, x)ξp




− η arctan


∑

p≥0

γp(t, x)ξp −
∑

p≥0

γp(e
2iπz, x)ξp




−
∑

p≥1

ξpΞpu


arctan


∑

p≥0

(γp(t, x)− γp(u, x))ξp




 .

(5.21)

For example, the order ξ0 gives the energy of the particle or hole excitations above the
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other pseudo-vacuum (4.1) at ϕ = 0

∂ηF (χz;ξ=0
−1 )|η=0 =

e−2iπz

2
(−1 + e2iπz)2

√
−1 + 9e2iπz

−1 + e2iπz
. (5.22)

In figure 12 is plotted the result of this expansion in ξ. We observe first that the results

at ϕ = 0 are qualitatively different from those at large ϕ shown previously; with this

expansion in ξ (that can be performed at any value of ϕ) we observe indeed a change of

regime as ϕ decreases to 0. Besides, we see that we indeed have δzp,zh ≥ 0 for all (zp, zh)

satisfying the constraints, which means that the state (4.2) is indeed of minimal energy

with respect to first-level particle-hole excitations. Moreover, we observe as in the case

ϕ = 1.5 that these excitations are gapped excitations.

To conclude this section, we presented evidence for the minimality of the state (4.2)

at m = −1 with respect to first-level particle-hole excitations, i.e. particle-hole excitations

with Bethe numbers −L
2 < Ik <

L
2 , which constitute all the possible excitations to which

theorem 1 applies. Together with the fact that its energy in the continuum limit is the

same as the one found in [1], this is strong evidence that it is the ground state indeed.

Our analysis also shows that these first-level excitations are even gapped excitations.

However, there are also other possible excitations with Bethe numbers |Ik| > L/2, and

also the possibility of giving to m a small imaginary part, due to the fact that the spins

u, ū of the SL(2,C) spin chain representations can be complex. This will be studied in

further work.

5.4 Another trajectory to the state (4.2)

The previous trajectory that goes to the ground state at m = −1 is clearly not unique.

Another example of such a trajectory is

Xξ
a =

∫ 1

−1
g(x)e2iπaxdx with g(x) =





−1 for − 1/2 + ξ/2 < x < 1/2− ξ/2 ,
−1 for 7/8− ξ/4 < x < 7/8 + ξ/4 ,

−1 for − 7/8− ξ/4 < x < −7/8 + ξ/4 ,

0 otherwise .

(5.23)

This trajectory at m = −1 is depicted in figure 13.

Calculating the moments Xa(χ
ξ
−1), we obtain the values for Ξpt [F (t)] for a function F (t)

Ξpt [F (t)] = (1− (−1)p)
(iπ)p−1

2p!

[
/∂
p−1

F (−1)− /∂
p−1

F (eiπ/4) + /∂
p−1

F (e−iπ/4)

2p

]
. (5.24)

We report in figure 14 the result for the energy of this trajectory, by plotting the partial

series taking into account k terms, as a function of 1/k. We see that the result is compatible

with the value obtained with the other trajectory, with a curve moving towards around −1

in the limit k →∞. Having several different trajectories going to the same state offers the

possibility of more consistency checks when studying its properties.
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δ z
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Figure 12. Left: ∂ηFχz
m

(ϕ)|η=0 as a function of z, real part (green) and imaginary part (red), at

ϕ = 0 with 3, 4, 5 terms in the expansion in ξ (from light to dark colors). Right: the corresponding

δzp,zh for admissible values of (zp, zh), as a function of zh, with 3, 4, 5 terms in the expansion in ξ

(from light to dark blue).

ξ = −1/2 −1/2 < ξ < 0 ξ = 0 0 < ξ < 1/2 ξ = 1/2

Figure 13. Sketch of the root structure of the trajectory for different values of ξ.
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ξ

F
(ξ
)
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1/k

∑
k
−
1

i=
0
0.
5
i f

i

Figure 14. Left: energy of the trajectory (5.23) as a function of ξ, up to ξ3, ξ5, ξ7 (from light to

dark blue). Right: energy at ξ = 1/2, taking into account the first k terms in the expansion in ξ,

as a function of 1/k.

– 36 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
9

6 Conclusion

In this paper, we presented a method to analytically continue energies computed with the

Bethe ansatz in the thermodynamic limit to a negative number of Bethe roots, and showed

that it permits one to compute the (extensive part of the) energy levels of the SL(2,C)

non-compact spin chain in the thermodynamic limit. As a proof of principle, we recovered

the value of the ground state previously obtained [1, 3, 45, 58–60] by extrapolating small

sizes.

The starting point was to observe that an energy of the SL(2,C) spin chain for a

state with magnetization u has to be a sum of two energies of the SL(2,R) spin chain at

magnetizations u and ū = −1− u∗, and that each of these can be obtained with the ABA

provided u ≤ Ls and ū ≤ Ls̄. Since these two conditions cannot be satisfied simultaneously,

one needs to analytically continue the energies in terms of m = s− u
L to m < 0, in particular

to m close to −1.

In order to perform this analytic continuation, we found it useful to introduce an

imaginary extensive twist ϕ and to study the behaviour of the thermodynamic limit of

the energies at large ϕ → ∞. Indeed, these thermodynamic energies are found to be

expandable in a series in e−2ϕ with coefficients depending smoothly on m, which allows

their analytic continuation to m < 0. Although these series are convergent, their radius of

convergence unfortunately does not include the sought value ϕ = 0.

To solve this problem, we identified a very special state for which all the coefficients

of the series as well as their m-derivatives can be explicitly computed and resummed at

m = −1. Remarkably, the absence of singularities of these expressions for 0 ≤ ϕ < ∞
allowed us to analytically continue them down to ϕ = 0, which provides the value of the

energy of one specific state in the SL(2,C) spin chain. It is not the ground state, but a

state in the bulk of the spectrum.

In order to obtain the other energy levels, we used this special state as another ‘pseudo-

vacuum’ by expanding the energy levels on any trajectory that departs from this special

state, and explores the energy landscape of the chain. The coefficients of the corresponding

series can be efficiently computed one by one, and yield convergent series that allowed us

to reach another state in the spectrum, not necessarily close to this pseudo-vacuum. These

series also permit to study a certain (but large) class of excitations above a state, so that we

are able to identify one whose energy is minimal with respect to any of these particle-hole

excitations. The energy of this ground state that we compute is indeed the value previously

obtained by extrapolation from small-size studies [1].

All throughout the paper, series and analytic continuations were compared with strin-

gent numerical tests. In particular, this led to an expansion around m = −1 of the free

energy obtained with all the Bethe roots symmetrically packed around the origin, whereas

its natural point of expansion is around the usual pseudo-vacuum at m = 0. These two

expansions are in excellent agreement with the numerics.

The existence of this other pseudo-vacuum is not a specificity of this spin chain, and

is also present in the s = 1/2 Heisenberg spin chain, in which case it is simply the second

ferromagnetic ground state. In the present case, however, this other pseudo-vacuum reveals
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new insights on the analytic structure of the Bethe equations and their solutions, and

suggests exciting further studies.

The present method is not restricted to the thermodynamic limit L → ∞ only, and

is expected to work as well to study L−1 corrections. These contain crucial information

on the field theory that describes the SL(2,C) chain in the thermodynamic limit: further

work along these lines will be the object of a subsequent paper.
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A Series expansion in e−2ϕ

We give here a Mathematica code to compute the series (3.33):

ClearAll["Global‘*"];

M = 7;

R = Join[{0}, Series[1/Pi ArcTan[x], {x, 0, M}][[3]]];

S = ConstantArray[0, M];

S[[1]] = -I/2/Pi Log[-2 I];

For[i = 2, i < M + 1, i++,

S[[i]] = I/(2 Pi)*(I/2)^(i - 1)/(i - 1);

];

X[a_] := If[a == 0, m, Sin[Pi a m]/a/Pi];

Clear[X];

CC = ConstantArray[0, {M, M, M}];

CCtilde = ConstantArray[0, {M, M, M}];

SetAttributes[ComputeNext, HoldAll];

SetAttributes[FillMultiple, HoldAll];

SetAttributes[CompleteTable, HoldAll];

ComputeNext[a_, b_, c_, ctilde_] :=

Module[{res, a1, b2, q, n, res2, Res},

res = 0;

For[a1 = 0, a1 < M, a1++,

For[b2 = 0, b2 < M, b2++,

If[(b - b2 >= 0),

For[n = 0, n < M, n++,

For[q = 0, q < n + 1, q++,

res += -2 I Pi (-1)^q Binomial[n, q]*R[[n + 1]] X[a1]*

c[[a1 + 1, b - b2 + 1, q + 1]]*

c[[a + 1, b2 + 1, n - q + 1]];

]

]

]

]

];
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For[n = 2, n < M, n++,

res += (-1)^n ctilde[[a + 1, b + 1, n + 1]]/n;

];

For[n = 0, n < M, n++,

res += 2 I Pi c[[a + 1, b + 1, n + 1]]*S[[n + 1]];

];

Print[a, " ",b];

c[[a + 1 + 1, b + 1 + 1, 2]] = c[[2, 2, 2]]*res;

ctilde[[a + 1, b + 1, 2]] = res;

];

FillMultiple[c_, a0_, b0_, max_] :=

Module[{a, b, a1, b1, x, y, n, k, A, cCop},

A = c[[a0 + 1, b0 + 1, 2]];

c[[a0 + 1, b0 + 1, 2]] = 0;

cCop = c;

For[n = 2, n < M, n++,

For[k = 0, k < n, k++,

For[a = a0*(n - k), a < M, a++,

For[b = b0*(n - k), b < M, b++,

cCop[[a + 1, b + 1, n + 1]] +=

Binomial[n, k]*A^(n - k)*

c[[a - a0*(n - k) + 1, b - b0*(n - k) + 1, k + 1]];

];

]

]

];

cCop[[a0 + 1, b0 + 1, 2]] = A;

c = cCop;

];

CompleteTable[c_, ctilde_] := Module[{d, b},

For[d = 0, d < M - 1, d++,

For[b = 0, b < d + 1, b++,

If[d == 0 && b == 0,

c[[1, 1, 1]] = 1;

c[[1, 1, 2]] = 0;

ctilde[[1, 1, 1]] = 1;

ctilde[[1, 1, 2]] = 0;

FillMultiple[c, 0, 0, 0 + 2];

FillMultiple[ctilde, 0, 0, 0 + 2];

c[[2, 2, 2]] = -2 I;

FillMultiple[c, 1, 1, d + 5];

,

ComputeNext[b, d, c, ctilde];

FillMultiple[c, b + 1, d + 1, d + 3];

FillMultiple[ctilde, b, d, d + 3];

]
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]

]

];

EnergyTable[c_, cstar_] := Module[{F, a, b, n},

F = ConstantArray[0, M-1];

F[[1]] = X[-1]/c[[2, 2, 2]]/I;

For[a = 0, a < M - 1, a++,

For[n = 0, n < M - 1, n++,

For[b = 0, b < M - 2, b++,

F[[b + 1 + 1]] +=

1 /c[[2, 2, 2]]/I (-1)^n*

cstar[[a + 1, b + 1 + 1, n + 1]] X[a - 1] -

2 Pi (n + 1) S[[n + 1 + 1]] c[[a + 1, b + 1, n + 1]] X[a];

];

]

];

Return[F];

];

CompleteTable[CC, CCtilde];

F= EnergyTable[CC, CCtilde]

B Series expansion for the energy at m = −1

Equation (4.17) permits one to compute iteratively all the γp(t, x) defined in (4.12), and

then deduce all the derivatives of the energy F (m,ϕ) at m = −1 with (4.20). However,

directly solving iteratively for γp(t, x) with a computer is costly since it requires symbolic

manipulation. One actually sees that only the evaluation of the t-derivatives of γp(t, x) at

t = 0 and t = −1 are needed, and x is only a ‘spectator’ variable. Hence if we define cab(x)

and dab(x) by

γp(t, x) =
∑

a≥0

cap(x)ta

=
∑

a≥0

dap(x)(t+ 1)a ,
(B.1)

we can turn (4.17) into nested recurrence relations for cab(x) and dab(x), that require only

manipulating numbers. We will consider x fixed and drop the explicit dependence to lighten

the notations. Following the steps of section 3.3, we obtain

c̃ab = 2i

[∑

n≥0

arctan(n)(0)

n!
c

[n]
ab −

1

2i

∑

n≥0

(−1)nc
[n]
ab

n(2i)n
+

1

2i

∑

n≥2

(−1)n
c̃

[n]
ab

n

−
∑

p≥0
b1+b2+2p+1=b

a1≥0
0≤q≤n

π2p

(2p+ 1)!
(−1)pκa12p

arctan(n)(−∆(−x))

q!(n− q)! (−1)qd
[q]
a1b1

c
[n−q]
ab2

]
,

(B.2)
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and

dab =

1

arctan′(i+ ∆(−x))− arctan′(∆(−x))

[∑

n≥2

arctan(n)(∆(−x))− arctan(n)(i+ ∆(−x))

n!
c

[n]
ab

− 1

2i

δb,0
a
−

∑

p≥0
b1+b2+2p+1=b

a1≥0
0≤q≤n

π2p

(2p+ 1)!
(−1)pκa12p

arctan(n)(0)

q!(n− q)! (−1)qd
[q]
a1b1

d
[n−q]
ab2

]
,

(B.3)

where we defined

c̃ab =





ca+1,b

c10
=

ca+1,b

x∆′(0) if (a, b) 6= (0, 0)

0 if a = b = 0 ,
(B.4)

and

κji = /∂
i
(t+ 1)j |t=−1 =

j∑

k=0

(
j

k

)
ki(−1)k . (B.5)

Then we obtain

F (ξ) =
∑

p≥0

fpξ
p , (B.6)

with f0 = 1, and for p ≥ 1

fp =
i

c10

∑

b,n≥0

c̃
[n]
1b (−1)n + 2

∑

a,m,n,b≥0
b+2m+1=p

π2m

(2m+ 1)!
(−1)m

arctan(n)(i+ ∆(−x))

n!
κa2md

[n]
ab . (B.7)

This expansion can be computed with the following Mathematica code:

ClearAll["Global‘*"];

M = 7;

S = ConstantArray[0, M];

SL = ConstantArray[0, M];

R = ConstantArray[0, M];

Ggamma[x_] := -I/2 + I/2 Sqrt[1 - 8 x/(1 - x)];

S = Join[{0},

Series[-1/Pi ArcTan[x], {x, 0, M}][[3]]*Factorial[Range[M]]];

Clear[xx];

Sm1 = Join[{},

Series[-1/Pi ArcTan[(x + I + Ggamma[-xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]]*Factorial[Range[0, M]]];

R = Join[{0},

Series[1/Pi ArcTan[x], {x, 0, M}][[3]]*Factorial[Range[M]]];

Rm1 = Join[{},

Series[1/Pi ArcTan[(x + Ggamma[-xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]]*Factorial[Range[0, M]]];

sigma = 1/(2 Pi);
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SL[[1]] = -I/2/Pi Log[-2 I];

For[i = 2, i < M + 1, i++,

SL[[i]] = I/(2 Pi)*(-I)^(i - 1)/(i - 1);

SL[[i]] = I/(2 Pi)*(I/2)^(i - 1)/(i - 1);

];

CC = ConstantArray[0, {M, M, M}];

DD = ConstantArray[0, {M, M, M}];

DDt = ConstantArray[0, {M, M, M}];

kappa = ConstantArray[0, {M, M}];

For[i = 1, i < M + 1, i++,

For[j = 1, j < M + 1, j++,

kappa[[i, j]] =

If[i > 1, Sum[Binomial[j - 1, k] k^(i - 1) (-1)^k, {k, 0, j - 1}],

Sum[Binomial[j - 1, k] (-1)^k, {k, 0, j - 1}]];

]

]

xx; (*Value of x*)

SetAttributes[ComputeNext, HoldAll]

SetAttributes[ComputeNextDD, HoldAll]

SetAttributes[FillMultiple, HoldAll]

SetAttributes[CompleteTable, HoldAll]

SetAttributes[CompleteTableDD, HoldAll]

ComputeNext[a_, b_, c_] := Module[{res, a1, b2, q, n, res2, Res, mm},

res = 0;

For[a1 = 0, a1 < b, a1++,

For[b2 = 0, b2 < b, b2++,

For[mm = 0, mm < b/2 + 2, mm++,

If[(b - b2 - 1 - 2 mm >= 0) && (2 mm + 1 < M + 1),

For[n = 0, n < M, n++,

For[q = 0, q < n + 1, q++,

res += (-1)^(q + mm)/Factorial[q]/Factorial[n - q]*

R[[n + 1]] Pi^(2 mm)/Factorial[2 mm + 1] kappa[[2 mm + 1,

a1 + 1]]*c[[a1 + 1, b - b2 - 1 - 2 mm + 1, q + 1]]*

c[[a + 1, b2 + 1, n - q + 1]];

]

]

]

]

]

];

For[n = 2, n < M, n++,

res += -c[[a + 1, b + 1, n + 1]]*(Sm1[[n + 1]] + Rm1[[n + 1]]) /

Factorial[n];

];

If[b == 0, res += -I/2/Pi/a ];
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res /= (Sm1[[2]] + Rm1[[2]] );

Print[a," ",b];

c[[a + 1, b + 1, 2]] = res;

];

ComputeNextDD[a_, b_, c_, d_, dt_] :=

Module[{res, a1, b2, q, n, res2, Res, mm},

res = 0;

For[a1 = 0, a1 < b, a1++,

For[b2 = 0, b2 < b, b2++,

For[mm = 0, mm < b/2 + 2, mm++,

If[(b - b2 - 1 - 2 mm >= 0) && (2 mm + 1 < M + 1),

For[n = 0, n < M, n++,

For[q = Max[0, n - a - b2],

q < Min[a1 + b - b2 - 2 mm - 1 + 1, n + 1], q++,

res += -(-1)^(n - q + mm)/Factorial[q]/Factorial[n - q]*

Rm1[[n + 1]] Pi^(2 mm)/Factorial[2 mm + 1] kappa[[

2 mm + 1, a1 + 1]]*

c[[a1 + 1, b - b2 - 1 - 2 mm + 1, q + 1]]*

d[[a + 1, b2 + 1, n - q + 1]];

]

]

]

]

]

];

For[n = 1, n < M, n++,

res += -d[[a + 1, b + 1, n + 1]]*(R[[n + 1]] /Factorial[n] +

SL[[n + 1]]) ;

];

For[n = 2, n < M, n++,

res += (-1)^n dt[[a + 1, b + 1, n + 1]]*sigma*I/n;

];

res *= xx Ggamma’[0]/I/sigma;

Print[a," ",b];

d[[a + 1 + 1, b + 1, 2]] = res;

dt[[a + 1, b + 1, 2]] = res/Ggamma’[0]/xx;

];

FillMultiple[c_, a0_, b0_, max_] :=

Module[{a, b, a1, b1, x, y, n, k, A, cCop},

A = c[[a0 + 1, b0 + 1, 2]];

c[[a0 + 1, b0 + 1, 2]] = 0;

cCop = c;

For[n = 2, n < M, n++,

For[k = 0, k < n, k++,

For[a = a0*(n - k), a < M, a++,

For[b = b0*(n - k), b < M, b++,
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cCop[[a + 1, b + 1, n + 1]] +=

Binomial[n, k]*A^(n - k)*

c[[a - a0*(n - k) + 1, b - b0*(n - k) + 1, k + 1]];

];

]

]

];

cCop[[a0 + 1, b0 + 1, 2]] = A;

c = cCop;

];

CompleteTable[c_] := Module[{d, b},

For[d = 0, d < M, d++,

For[b = 0, b < d + 1, b++,

If[d == 0 && b == 0,

c[[1, 1, 1]] = 1;

c[[1, 1, 2]] = 0;

FillMultiple[c, 0, 0, 0 + 2],

If[d == 1 && b == 0,

c[[2, 1, 2]] = Ggamma’[-xx]*xx;

FillMultiple[c, 1, 0, d],

ComputeNext[d - b, b, c];

FillMultiple[c, d - b, b, d];

]

]

]

]

];

CompleteTableDD[d_, dt_] := Module[{dy, b},

For[dy = 0, dy < M - 1, dy++,

For[b = 0, b < dy + 1, b++,

If[dy == 0 && b == 0,

d[[1, 1, 1]] = 1;

d[[1, 1, 2]] = 0;

FillMultiple[d, 0, 0, 0 + 2];

dt[[1, 1, 1]] = 1;

dt[[1, 1, 2]] = 0;

FillMultiple[dt, 0, 0, 0 + 2];

d[[2, 1, 2]] = Ggamma’[0] xx;

FillMultiple[d, 1, 0, dy],

ComputeNextDD[dy - b, b, CC, d, dt];

FillMultiple[d, dy - b + 1, b, dy + 2];

FillMultiple[dt, dy - b, b, dy + 2];

]

]

]

];
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FreeEnergyTable[c_, dt_] := Module[{F, a, b, n, mm},

F = ConstantArray[0, M-2];

For[a = 0, a < M-2, a++,

For[n = 0, n < M - 1, n++,

For[b = 0, b < a, b++,

For[mm = 0, mm < M/2 + 1, mm++,

If[a - 2 mm - 1 >= 0,

F[[a + 1]] += -2 Pi Sm1[[n + 1 + 1]]/Factorial[n]*

c[[b + 1, a - 2 mm - 1 + 1, n + 1]] kappa[[2 mm + 1,

b + 1]] Pi^(2 mm)/Factorial[2 mm + 1] (-1)^mm;

]

]

]

];

];

For[a = 0, a < M-2, a++,

For[n = 0, n < M, n++,

F[[a + 1]] +=

2 I Pi sigma/Ggamma’[0]/xx dt[[1 + 1, a + 1, n + 1]] (-1)^n;

];

];

F[[1]] += 2 Pi SL[[2]];

Return[F];

];

CompleteTable[CC];

CompleteTableDD[DD, DDt];

F = FreeEnergyTable[CC, DDt]

C Series expansion for the trajectory to the ground state

In section 5.2 we presented a trajectory to the ground state, with values of Ξp given

in (5.9). Hence only the t-derivatives of γp(t, x) at t = 0,−1, i,−i are needed to compute

the ξ-derivatives of the free energy. Hence if we define cab(x), dab(x) and e±ab(x) by

γp(t, x) =
∑

a≥0

capt
a(x)

=
∑

a≥0

dap(t+ 1)a(x)

=
∑

a≥0

e+
ap(t− i)a(x)

=
∑

a≥0

e−ap(t+ i)a(x) ,

(C.1)

we can obtain nested recurrence relations on cab, dab, e
±
ab, similarly as in appendix B. We

obtain then the following Mathematica code:
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ClearAll["Global‘*"];

M = 7;

S = ConstantArray[0, M];

R = ConstantArray[0, M];

Ggamma[x_] := -I/2 + I/2 Sqrt[1 - 8 x/(1 - x)];

sfunction[x_] := -1/Pi ArcTan[x];

S = Join[{0}, Series[sfunction[x], {x, 0, M}][[3]]];

Sm1 = Series[sfunction[(x + I + Ggamma[-xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Spi = Series[sfunction[(x + I + Ggamma[I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Smi = Series[sfunction[(x + I + Ggamma[-I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

rfunction[x_] := 1/Pi ArcTan[x ];

R = Join[{0}, Series[rfunction[x], {x, 0, M}][[3]]];

Rm1 = Series[rfunction[(x + Ggamma[-xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Rpi = Series[rfunction[(x + Ggamma[I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Rmi = Series[rfunction[(x + Ggamma[-I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Rm1pi =Series[rfunction[(x + Ggamma[-xx] - Ggamma[I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Rm1mi =Series[rfunction[(x + Ggamma[-xx] - Ggamma[-I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

Rpimi = Series[rfunction[(x + Ggamma[I xx] - Ggamma[-I xx])], {x, 0, M},

Assumptions -> {xx <= 1, xx > 0}][[3]];

sigma = 1/(2 Pi);

Sl = Range[M];

Sl[[1]] = -I/2/Pi Log[-2 I];

For[i = 2, i < M + 1, i++,

Sl[[i]] = I/(2 Pi)*(-I)^(i - 1)/(i - 1);

Sl[[i]] = I/(2 Pi)*(I/2)^(i - 1)/(i - 1);

];

CC = ConstantArray[0, {M, M, M}];

EE = ConstantArray[0, {M, M, M}];

FF = ConstantArray[0, {M, M, M}];

DD = ConstantArray[0, {M, M, M}];

DDt = ConstantArray[0, {M, M, M}];

Kappa = ConstantArray[0, {M, M}];

kappa2[i_, j_] :=

If[i > 0, Sum[Binomial[j, k] k^(i) (-1)^k, {k, 0, j}],

Sum[Binomial[j, k] (-1)^k, {k, 0, j}]];

For[i = 0, i < M, i++,

For[j = 0, j < M, j++,

Kappa[[i + 1, j + 1]] = kappa2[i, j];

]

]

SetAttributes[ComputeNext, HoldAll];

SetAttributes[ComputeNextDD, HoldAll];
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SetAttributes[FillMultiple, HoldAll];

SetAttributes[CompleteTable, HoldAll];

SetAttributes[CompleteTableDD, HoldAll];

ComputeNext[a_, b_, c_, d_, e_] :=

Module[{res, a1, b2, q, n, res1, res2, mm},

res = 0;

res1 = 0;

res2 = 0;

For[a1 = 0, a1 < b, a1++,

For[b2 = 0, b2 < b, b2++,

For[mm = a1 + 1, mm < b + 1, mm++,

If[(b - b2 - mm >= 0),

For[n = 0, n < M, n++,

For[q = Max[0, n - a - b2],

q < Min[a1 + b - b2 - mm + 1, n + 1], q++,

res += (-1)^(q)*Binomial[n,q]*(I Pi)^(mm - 1)/2/Factorial[mm]

Kappa[[mm - 1 + 1,a1 + 1]]*(R[[n + 1]] c[[a1 + 1, b - b2 - mm + 1,

q + 1]] (1 - (-1)^mm) + (-I)^a1 Rm1pi[[n + 1]] d[[

a1 + 1, b - b2 - mm + 1, q + 1]] ((-1)^mm) - (I)^

a1 Rm1mi[[n + 1]] e[[a1 + 1, b - b2 - mm + 1,

q + 1]] (1))*c[[a + 1, b2 + 1, n - q + 1]];

res1 += (-1)^(q)*Binomial[n,q]*(I Pi)^(mm - 1)/2/Factorial[mm]

Kappa[[mm - 1 + 1,a1 + 1]]*((-1)^(n + 1) Rm1pi[[n + 1]] c[[a1 + 1,

b - b2 - mm + 1, q + 1]] (1 - (-1)^mm) + (-I)^a1 R[[

n + 1]] d[[a1 + 1, b - b2 - mm + 1,

q + 1]] ((-1)^mm) - (I)^a1 Rpimi[[n + 1]] e[[a1 + 1,

b - b2 - mm + 1, q + 1]] (1))*

d[[a + 1, b2 + 1, n - q + 1]];

res2 += (-1)^(q)*Binomial[n,q]*(I Pi)^(mm - 1)/2/Factorial[mm]

Kappa[[mm - 1 + 1, a1 + 1]]*((-1)^(n + 1) Rm1mi[[n + 1]] c[[a1 + 1,

b - b2 - mm + 1, q + 1]] (1 - (-1)^mm) + (-I)^

a1 (-1)^(n + 1) Rpimi[[n + 1]] d[[a1 + 1,

b - b2 - mm + 1, q + 1]] ((-1)^mm) - (I)^a1 R[[

n + 1]] e[[a1 + 1, b - b2 - mm + 1, q + 1]] (1))*

e[[a + 1, b2 + 1, n - q + 1]];

]

]

]

]

]

];

For[n = 2, n < M, n++,

res += -c[[a + 1, b + 1, n + 1]]*(Sm1[[n + 1]] + Rm1[[n + 1]]);

res1 += -d[[a + 1, b + 1, n + 1]]*(Spi[[n + 1]] + Rpi[[n + 1]]);

res2 += -e[[a + 1, b + 1, n + 1]]*(Smi[[n + 1]] + Rmi[[n + 1]]);

];

If[b == 0,

res += - I/2/Pi/a ;

res1 += - I/2/Pi/a (-1/I)^a;

res2 += - I/2/Pi/a (1/I)^a;

];

res /= (Sm1[[2]] + Rm1[[2]] );
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res1 /= (Spi[[2]] + Rpi[[2]] );

res2 /= (Smi[[2]] + Rmi[[2]] );

Print[a," ",b];

c[[a + 1, b + 1, 2]] = res;

d[[a + 1, b + 1, 2]] = res1;

e[[a + 1, b + 1, 2]] = res2;

];

ComputeNextDD[a_, b_, c_, d_, dt_, e_, f_] :=

Module[{res, a1, b2, q, n, res2, Res, mm},

res = 0;

For[a1 = 0, a1 < b, a1++,

For[b2 = 0, b2 < b, b2++,

For[mm = 1, mm < b + 1, mm++,

If[(b - b2 - mm >= 0),

For[n = 0, n < M, n++,

For[q = Max[0, n - a - b2],

q < Min[a1 + b - b2 - mm + 1, n + 1], q++,

res += -(-1)^(n - q)*Binomial[n,q]*(I Pi)^(mm - 1)/2/Factorial[mm]

Kappa[[mm - 1 + 1, a1 + 1]]*(Rm1[[n + 1]] c[[a1 + 1, b - b2 - mm + 1,

q + 1]] (1 - (-1)^mm) + (-I)^a1 Rpi[[n + 1]] e[[

a1 + 1, b - b2 - mm + 1, q + 1]] ((-1)^mm) - (I)^

a1 Rmi[[n + 1]] f[[a1 + 1, b - b2 - mm + 1,

q + 1]] (1))*d[[a + 1, b2 + 1, n - q + 1]];

]

]

]

]

]

];

For[n = 1, n < M, n++,

res += -d[[a + 1, b + 1, n + 1]]*(R[[n + 1]] +

Sl[[n + 1]]) ;

];

For[n = 2, n < M, n++,

res += (-1)^n dt[[a + 1, b + 1, n + 1]]*sigma*I/n;

];

res *= xx Ggamma’[0]/I/sigma;

Print[a," ",b];

d[[a + 1 + 1, b + 1, 2]] = res;

dt[[a + 1, b + 1, 2]] = res/Ggamma’[0]/xx;

];

FillMultiple[c_, a0_, b0_, max_] :=

Module[{a, b, a1, b1, x, y, n, k, A, cCop},

A = c[[a0 + 1, b0 + 1, 2]];

c[[a0 + 1, b0 + 1, 2]] = 0;

cCop = c;

For[n = 2, n < M, n++,

For[k = 0, k < n, k++,

For[a = a0*(n - k), a < M, a++,
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For[b = b0*(n - k), b < M, b++,

cCop[[a + 1, b + 1, n + 1]] +=

Binomial[n, k]*A^(n - k)*

c[[a - a0*(n - k) + 1, b - b0*(n - k) + 1, k + 1]];

];

]

]

];

cCop[[a0 + 1, b0 + 1, 2]] = A;

c = cCop;

];

CompleteTable[c_, e_, f_] := Module[{d, b},

For[d = 0, d < M, d++,

For[b = 0, b < d + 1, b++,

If[d == 0 && b == 0,

c[[1, 1, 1]] = 1;

c[[1, 1, 2]] = 0;

e[[1, 1, 1]] = 1;

e[[1, 1, 2]] = 0;

f[[1, 1, 1]] = 1;

f[[1, 1, 2]] = 0;

FillMultiple[c, 0, 0, 0 + 2];

FillMultiple[e, 0, 0, 0 + 2];

FillMultiple[f, 0, 0, 0 + 2];

,

If[d == 1 && b == 0,

c[[2, 1, 2]] = Ggamma’[-xx]*xx*1;

e[[2, 1, 2]] = Ggamma’[I xx]*xx*1;

f[[2, 1, 2]] = Ggamma’[-I xx]*xx*1;

FillMultiple[c, 1, 0, M];(*d*)

FillMultiple[e, 1, 0, M];

FillMultiple[f, 1, 0, M];

,

ComputeNext[d - b, b, c, e, f];

FillMultiple[c, d - b, b, d];

FillMultiple[e, d - b, b, d];

FillMultiple[f, d - b, b, d];

]

]

]

]

];

CompleteTableDD[d_, dt_, cc_, e_, f_] := Module[{dy, b},

For[dy = 0, dy < M - 1, dy++,

For[b = 0, b < dy + 1, b++,

If[dy == 0 && b == 0,

d[[1, 1, 1]] = 1;

d[[1, 1, 2]] = 0;

FillMultiple[d, 0, 0, 0 + 2];
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dt[[1, 1, 1]] = 1;

dt[[1, 1, 2]] = 0;

FillMultiple[dt, 0, 0, 0 + 2];

d[[2, 1, 2]] = Ggamma’[0] xx;

FillMultiple[d, 1, 0, dy],

ComputeNextDD[dy - b, b, cc, d, dt, e, f];

FillMultiple[d, dy - b + 1, b, dy + 2];

FillMultiple[dt, dy - b, b, dy + 2];

]

]

]

];

FreeEnergyTable[c_, dt_, e_, f_] := Module[{F, a, b, n, mm},

F = ConstantArray[0, M-2];

Print[F];

For[a = 0, a < M-2, a++,

For[n = 0, n < M - 1, n++,

For[b = 0, b < a, b++,

For[mm = 1, mm < M, mm++,

If[a - mm >= 0 && (mm >= b + 1),

F[[

a + 1]] += -2 Pi* (Sm1[[n + 1 + 1]] c[[b + 1, a - mm + 1,

n + 1]] (1 - (-1)^mm) + (-I)^b Spi[[n + 1 + 1]] e[[

b + 1, a - mm + 1, n + 1]] ((-1)^mm) - (I)^b Smi[[

n + 1 + 1]] f[[b + 1, a - mm + 1, n + 1]] (1)) Kappa[[

mm - 1 + 1, b + 1]] (I Pi)^(mm - 1)/2/Factorial[mm];

]

]

]

];

Print[a];

];

For[a = 0, a < M-2, a++,

For[n = 0, n < M, n++,

F[[a + 1]] +=

2 I Pi sigma/Ggamma’[0]/xx dt[[1 + 1, a + 1, n + 1]] (-1)^n;

];

];

F[[1]] += 2 Pi Sl[[2]];

Return[F];

];

CompleteTable[CC, EE, FF];

CompleteTableDD[DD, DDt, CC, EE, FF];

F = FreeEnergyTable[CC, DDt, EE, FF]

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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