Topological and geometric hyperbolicity criteria for polynomial automorphisms of C^2 - Archive ouverte HAL
Article Dans Une Revue Ergodic Theory and Dynamical Systems Année : 2021

Topological and geometric hyperbolicity criteria for polynomial automorphisms of C^2

Eric Bedford
  • Fonction : Auteur
  • PersonId : 1072049

Résumé

We prove that uniform hyperbolicity is invariant under topological conjugacy for dissipative polynomial automorphisms of C^2. Along the way we also show that a sufficient condition for hyperbolicity is that local stable and unstable manifolds of saddle points have uniform geometry.
Fichier principal
Vignette du fichier
topological.pdf (502.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02739480 , version 1 (02-06-2020)

Identifiants

Citer

Eric Bedford, Romain Dujardin. Topological and geometric hyperbolicity criteria for polynomial automorphisms of C^2. Ergodic Theory and Dynamical Systems, 2021, 42 (7), pp.2151-2171. ⟨10.1017/etds.2021.47⟩. ⟨hal-02739480⟩
24 Consultations
37 Téléchargements

Altmetric

Partager

More