Analysis of variational formulations and low-regularity solutions for time-harmonic electromagnetic problems in complex anisotropic media - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Mathematical Analysis Année : 2021

Analysis of variational formulations and low-regularity solutions for time-harmonic electromagnetic problems in complex anisotropic media

Résumé

We consider the time-harmonic Maxwell's equations with physical parameters, namely the electric permittivity and the magnetic permeability, that are complex, possibly non-Hermitian, tensor fields. Both tensor fields verify a general ellipticity condition. In this work, the well-posedness of formulations for the Dirichlet and Neumann problems (i.e. with a boundary condition on the electric field or its curl, respectively) is proven using well-suited functional spaces and Helmholtz decompositions. For both problems, the a priori regularity of the solution and the solution's curl is analysed. The regularity results are obtained by splitting the fields and using shift theorems for second-order divergence elliptic operators. Finally, the discretization of the formulations with a H(curl)-conforming approximation based on edge finite elements is considered. An a priori error estimate is derived and verified thanks to numerical results with an elementary benchmark.
Fichier principal
Vignette du fichier
ChCM20_Postprint.pdf (297.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02651682 , version 1 (29-05-2020)
hal-02651682 , version 2 (29-06-2021)
hal-02651682 , version 3 (17-12-2021)

Identifiants

Citer

Damien Chicaud, Patrick Ciarlet, Axel Modave. Analysis of variational formulations and low-regularity solutions for time-harmonic electromagnetic problems in complex anisotropic media. SIAM Journal on Mathematical Analysis, 2021, 53 (3), pp.2691-2717. ⟨10.1137/20M1344111⟩. ⟨hal-02651682v2⟩
364 Consultations
326 Téléchargements

Altmetric

Partager

More