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Abstract

We consider the time-harmonic Maxwell’s equations with physical parameters, namely
the electric permittivity and the magnetic permeability, that are complex, possibly non-
Hermitian, tensor fields. Both tensor fields verify a general ellipticity condition. In this
work, the well-posedness of formulations for the Dirichlet and Neumann problems (i.e. with
a boundary condition on the electric field or its curl, respectively) is proven using well-suited
function spaces and Helmholtz decompositions. For both problems, the a priori regularity
of the solution and the solution’s curl is analysed. The regularity results are obtained by
splitting the fields and using shift theorems for second-order divergence elliptic operators.
Finally, the discretization of the formulations with a H(curl)-conforming approximation
based on edge finite elements is considered. An a priori error estimate is derived and
verified thanks to numerical results with an elementary benchmark.

Maxwell’s Equations; Wave Propagation; Anisotropic media; Well-posedness; Regularity Anal-
ysis; Edge Finite Elements

AMS Subject Classification: 35J57, 65N30, 78M10

1 Introduction

The study of linear differential models for time-harmonic electromagnetic wave propagation is a
popular field. The mathematical analysis of these models has been performed for isotropic ma-
terials and certain classes of anisotropic materials. In particular, the well-posedness of boundary
value problems and the regularity of their solutions have been studied with strong assumptions
on the electric permittivity tensor field ε and the magnetic permeability tensor field µ (e.g.
real-valued isotropic tensors [13] and symmetric positive definite tensors [21, 8, 10]). The math-
ematical analysis of electromagnetic fields in anisotropic media has received some attention in
recent years. The well-posedness of variational formulations with non-Hermitian material ten-
sors has been studied e.g. in [3] for complex symmetric tensors, in [6] for particular anisotropic
media coming from plasma theory, and in [27] for material tensors with an elliptic real part.
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Regularity results have been obtained for a general class of non-Hermitian material tensors
with low-regularity assumptions in Ref. [2, 1, 26]. In these works, the time-harmonic Maxwell’s
equations are supplemented with a Dirichlet boundary condition.

The main aim of this work is to provide a detailed analysis of time-harmonic electromagnetic
boundary value problems with low-regularity solutions for a general class of material tensors:
The electric permittivity and the magnetic permeability are assumed to be complex tensor
fields, possibly non-Hermitian, that fulfill a general ellipticity condition. We consider variational
formulations with the electric field as unknown, with a boundary condition on the field itself or
on its curl, which correspond to the so-called Dirichlet and Neumann cases, respectively. The
well-posedness and the a priori regularity of the solution and the solution’s curl are studied for
both cases. In our framework, the regularity estimates depend crucially on the regularity of the
data.

The numerical solution of electromagnetic problems is naturally performed with edge finite
element methods, which lead to H(curl)-conforming approximations. While the comprehensive
numerical analysis of the approximate problems is out of the scope of this paper, a preliminary
analysis is proposed. In the coercive case, an a priori error estimate is derived by leveraging
the regularity results obtained for the exact problems. A numerical illustration with a simple
manufactured benchmark is presented as well.

This paper is organized as follows. In section 2, we extend classical results of functional
analysis required for the analyses. In sections 3 and 4, we propose the analysis of the problems
supplemented by Dirichlet or Neumann boundary conditions, respectively. In section 5, we
address the discretization with edge finite elements. A conclusion and extensions are proposed
in section 6.

Notation and hypotheses

Vector fields are written in boldface characters, and tensor fields are written in underlined bold
characters. Given a non-empty open set O of R3, we use the notation (·|·)0,O (resp. ‖ · ‖0,O)
for the L2(O) and the L2(O) := (L2(O))3 scalar products (resp. norms). More generally,
(·|·)s,O and ‖ · ‖s,O (resp. | · |s,O) denote the scalar product and the norm (resp. seminorm)
of the Sobolev spaces Hs(O) and Hs(O) := (Hs(O))3 for s ∈ R (resp. for s > 0). We
use the notation 〈u, v〉Hs(O) for the duality product of u ∈ (Hs(O))′ and v ∈ Hs(O). The
space Hs

zmv(O) is the subspace of Hs(O) with zero-mean-value fields. It is assumed that the
reader is familiar with the function spaces related to Maxwell’s equations, such as H(curl;O),
H0(curl;O), H(div;O) and H0(div;O). A priori, H(curl;O) is endowed with the “natural”
norm v 7→ ‖v‖H(curl;O) := (‖v‖20,O + ‖ curlv‖20,O)1/2. We refer to the monographs of Monk
[24], Kirsch and Hettlich [23], and Assous et al. [5] for further details.

The symbol C is used to denote a generic positive constant which is independent of the
mesh and the fields of interest; C may depend on the geometry, or on the coefficients defining
the model. We use the notation A ≲ B for the inequality A ≤ CB, where A and B are two
scalar fields, and C is a generic constant.

In this work, Ω is assumed to be an open, connected, bounded domain of R3, with a Lipschitz-
continuous boundary ∂Ω. In addition, the boundary is assumed to be of class C2 in the sections
dedicated to the regularity analysis (in subsections 3.2, 3.3, 4.2 and 4.3). The unit outward
normal vector field to ∂Ω is denoted n. We recall the classical integration by parts formula (see
Eq. (35) in Ref. [9]):

(u| curlv)0,Ω − (curlu|v)0,Ω = γ〈γT (u), πT (v)〉π, ∀u,v ∈ H(curl; Ω), (1)
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where γT : u 7→ (u × n)|∂Ω denotes the tangential trace operator, πT : v 7→ n × (v × n)|∂Ω
denotes the tangential components trace operator, and γ〈γT (u), πT (v)〉π expresses duality be-
tween the ad hoc trace spaces. We denote {Γk}1≤k≤K the maximal connected components of
∂Ω. Topologically speaking, the domain Ω can be trivial or non-trivial [17] under assumptions
given in Appendix A. Whenever this knowledge is needed, we use the notation (Top)I , with
I = 0 for a topologically trivial domain and I > 0 for a topologically non-trivial domain.

2 Model and extended functional framework

We consider the time-harmonic Maxwell’s equation, posed in Ω:

curl(µ−1 curlE)− ω2εE = f ,

where our unknown is the electric field E, which we assume a priori to belong to H(curl; Ω);
ε and µ are respectively the electric permittivity tensor and the magnetic permeability tensor;
ω > 0 is the angular frequency, and f is a volume data. The problem shall be supplemented by
appropriate boundary conditions on ∂Ω.

In this work, the material tensors ε and µ are assumed to satisfy an ellipticity condition.
This condition is defined in the following subsection, and useful technical properties are given.
The remainder of the section is dedicated to the introduction of the framework that derives
from the ellipticity condition, and the extension of classical results (i.e. for elliptic, Hermitian
tensor fields) given in Ref. [5]: Helmholtz decompositions, Weber inequalities, and compact
embedding results.

2.1 Ellipticity condition

Definition 2.1. We say that a complex-valued tensor field ξ ∈ L∞(Ω) is elliptic if and only if

∃θξ ∈ R, ∃ξ− > 0,∀z ∈ C3, ξ−|z|2 ≤ <[eiθξ · z∗ξz] almost everywhere in Ω. (2)

In addition, we will use the notation ξ+ := ‖ξ‖L∞(Ω)= supi,j ‖ξij‖L∞(Ω), where (ξij) are the
components of ξ.

This condition means that, almost everywhere in Ω, the eigenvalues of ξ(x) are contained
in a fixed open half-plane of C3; in other words, there exists a “coercivity direction” for ξ
in the complex plane.  This condition is slightly more general than the one proposed e.g. by
[27], varying only by a phase factor. This allows us to cover a more general class of material
properties, such as material tensors coming from plasma theory (e.g. in [6]) which do not satisfy
the standard ellipticity condition used in [27], but which are elliptic for well-suited phase factors
according to Definition 2.1. Because ξ can be non-Hermitian, the mapping (v,w) 7→ (ξv|w)0,Ω
is, in general, not a scalar product in L2(Ω); orthogonality properties are lateralized, in the
sense that (ξv|w)0,Ω = 0 is not equivalent to (ξw|v)0,Ω = 0.

Assumption. In the remainder of Section 2, the tensor ξ belongs to L∞(Ω) and satisfies the
ellipticity condition.

Proposition 2.1. One has ξ−1 ∈ L∞(Ω) with (ξ−1)+ ≤ (ξ−)
−1. Moreover, ξ−1 satisfies the

ellipticity condition with θξ−1 = −θξ, and (ξ−1)− := ξ−(ξ+)
−2.
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Proposition 2.2. For any v ∈ L2(Ω), one has the following inequalities:

ξ−‖v‖20,Ω ≤ <
[
eiθξ

(
ξv|v

)
0,Ω

]
≤
∣∣∣(ξv|v)

0,Ω

∣∣∣ ≤ ξ+‖v‖20,Ω. (3)

Then, the ellipticity condition implies that the inverse of the second-order divergence elliptic
operators, with Dirichlet or Neumann boundary condition, is well-defined. Equivalently, this
implies the well-posedness of the problems below, called either the Dirichlet problem or the
Neumann problem from now on.

Theorem 2.1. Under assumption (2), the Dirichlet problem{
Find p ∈ H1

0 (Ω) such that(
ξ∇p|∇q

)
0,Ω

= ℓ(q), ∀q ∈ H1
0 (Ω),

(4)

is well-posed for all ℓ in H−1(Ω) =
(
H1

0 (Ω)
)′, that is

∃C > 0, ∀ℓ ∈
(
H1

0 (Ω)
)′
,∃!p solution to (4), with ‖p‖1,Ω ≤ C ‖ℓ‖(H1

0 (Ω))′ .

Similarly, under assumption (2), the Neumann problem{
Find p ∈ H1

zmv(Ω) such that(
ξ∇p|∇q

)
0,Ω

= ℓ(q), ∀q ∈ H1
zmv(Ω),

(5)

is well-posed for all ℓ in
(
H1

zmv(Ω)
)′, that is

∃C > 0, ∀ℓ ∈
(
H1

zmv(Ω)
)′
, ∃!p solution to (5), with ‖p‖1,Ω ≤ C ‖ℓ‖(H1

zmv(Ω)))′ .

Proof. One uses Lax-Milgram’s theorem. All assumptions are fulfilled, and in particular coer-
civity of the sesquilinear form follows from relations (3) and Poincaré, resp. Poincaré-Wirtinger,
inequalities.

2.2 Helmholtz decompositions

Definition 2.2. We introduce the function spaces:

H(div ξ; Ω) := {v ∈ L2(Ω), ξv ∈ H(div; Ω)},
H0(div ξ; Ω) := {v ∈ L2(Ω), ξv ∈ H0(div; Ω)},
H(div ξ0;Ω) := {v ∈ H(div ξ; Ω), div ξv = 0},
H0(div ξ0;Ω) := H0(div ξ; Ω) ∩H(div ξ0;Ω),

as well as

XN (ξ; Ω) := H0(curl; Ω) ∩H(div ξ; Ω),

XT (ξ; Ω) := H(curl; Ω) ∩H0(div ξ; Ω),

KN (ξ; Ω) := H0(curl; Ω) ∩H(div ξ0;Ω),

KT (ξ; Ω) := H(curl; Ω) ∩H0(div ξ0;Ω).

The function spaces XN (ξ; Ω), XT (ξ; Ω), KN (ξ; Ω) and KT (ξ; Ω) are endowed with the graph
norm v 7→ (‖v‖2H(curl;Ω)+‖ξv‖2H(div;Ω))

1/2. When ξ is equal to the identity tensor I3, we choose
the simpler notation XN (Ω) instead of XN (I3; Ω), etc.
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As a first noticeable consequence of (2), one can prove the Helmholtz decompositions below.

Theorem 2.2. Under assumption (2), one has the first-kind Helmholtz decompositions:

L2(Ω) = ∇H1
0 (Ω)⊕H(div ξ0;Ω); (6)

H0(curl; Ω) = ∇H1
0 (Ω)⊕KN (ξ; Ω). (7)

In addition, these sums are continuous.

Proof. Let v ∈ L2(Ω). The Dirichlet problem{
Find p ∈ H1

0 (Ω) such that(
ξ∇p|∇q

)
0,Ω

=
(
ξv|∇q

)
0,Ω

, ∀q ∈ H1
0 (Ω),

is well-posed by theorem 2.1. Let vT = v−∇p ∈ L2(Ω). Then div ξvT = div ξv−div ξ∇p = 0,
i.e. vT ∈ H(div ξ0;Ω).
Additionally, the sum is direct: indeed, let v ∈ ∇H1

0 (Ω) ∩H(div ξ0;Ω), then v = ∇p for some
p ∈ H1

0 (Ω), and div ξ∇p = 0. But the Dirichlet problem is well-posed, so p = 0.
Finally, we note that, thanks to theorem 2.1, ∇p depends continuously on v: ‖∇p‖0,Ω ≲ ‖v‖0,Ω.
It is also the case for vT by the triangle inequality: ‖vT ‖0,Ω ≤ ‖∇p‖0,Ω + ‖v‖0,Ω ≲ ‖v‖0,Ω.
The second proof is similar, with bounds in ‖ · ‖H(curl;Ω)-norm.

Theorem 2.3. Under assumption (2), one has the second-kind Helmholtz decompositions:

L2(Ω) = ∇H1
zmv(Ω)⊕H0(div ξ0;Ω); (8)

H(curl; Ω) = ∇H1
zmv(Ω)⊕KT (ξ; Ω). (9)

In addition, these sums are continuous.

Proof. Let v ∈ L2(Ω). The Neumann problem{
Find p ∈ H1

zmv(Ω) such that(
ξ∇p|∇q

)
0,Ω

=
(
ξv|∇q

)
0,Ω

, ∀q ∈ H1
zmv(Ω),

is well-posed by theorem 2.1. We pose vT = v−∇p ∈ L2(Ω). Noting that the formulation is still
valid for all q ∈ H1(Ω), and taking q ∈ H1

0 (Ω), there holds 〈div ξvT , q〉H1
0 (Ω) = −

(
ξvT |∇q

)
0,Ω

=

0. Hence div ξvT = 0 and vT ∈ H(div ξ0;Ω). Moreover, ∀q ∈ H1(Ω), 〈ξvT · n, q〉H1/2(∂Ω) =(
ξvT |∇q

)
0,Ω

+
(
div ξvT |q

)
0,Ω

= 0. Hence vT ∈ H0(div ξ0;Ω).
Additionally, the sum is direct: indeed, let v ∈ ∇H1

zmv(Ω) ∩ H0(div ξ0;Ω), then v = ∇p for
some p ∈ H1

zmv(Ω), and fulfills div ξ∇p = 0 and ξ∇p · n|∂Ω = 0. As the Neumann problem is
well-posed, p = 0. The fact that the sum is continuous is derived as previously.
The second proof is similar.

Remark 2.1. We recall that the notion of orthogonality no longer applies, as the mapping
(ξ · |·)0,Ω is not automatically a scalar product. For instance, for v ∈ H(div ξ0;Ω), q ∈ H1

0 (Ω),
it always holds that

(
ξv|∇q

)
0,Ω

= 0 by integration by parts. On the other hand,
(
ξ∇q|v

)
0,Ω

may not vanish.
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2.3 The function space XN(ξ; Ω)

Let us begin with an extension of the first Weber inequality, cf. Theorem 6.1.6 in Ref. [5].

Theorem 2.4. Under assumption (2), one has the Weber inequality

∃CW > 0, ∀y ∈ XN (ξ; Ω)

‖y‖0,Ω ≤ CW

(
‖ curly‖0,Ω + ‖ div ξy‖0,Ω +

∑
1≤k≤K |〈ξy · n, 1〉H1/2(Γk)

|
)
,

(10)

Proof. We proceed by contradiction. Let us assume there exists (ym) a sequence of XN (ξ; Ω)
such that, ∀m, ‖ym‖0,Ω = 1 and

‖ curlym‖0,Ω + ‖ div ξym‖0,Ω +
∑

1≤k≤K

|〈ξym · n, 1〉H1/2(Γk)
| ≤ 1

m+ 1
.

Step 1. Consider the solution to the Dirichlet problem{
Find q0m ∈ H1

0 (Ω) such that(
ξ∇q0m|∇q

)
0,Ω

=
(
ξym|∇q

)
0,Ω

, ∀q ∈ H1
0 (Ω),

(11)

By theorem 2.1, this problem is well-posed. Moreover, taking q = q0m, one gets∣∣∣(ξ∇q0m|∇q0m
)
0,Ω

∣∣∣ = ∣∣∣(−div ξym|q0m
)
0,Ω

∣∣∣ ≤ ‖ div ξym‖0,Ω ‖q0m‖0,Ω.

Using the relation (3) on the left-hand side and the Poincaré inequality on the right-hand side,
one gets ‖∇q0m‖20,Ω ≲ ‖ div ξym‖0,Ω ‖∇q0m‖0,Ω, so

‖∇q0m‖0,Ω ≲ ‖ div ξym‖0,Ω. (12)

One gets that ‖∇q0m‖0,Ω −→ 0.
Step 2. Let xm := ym − ∇q0m ∈ KN (ξ; Ω) (this is the Helmholtz decomposition (7) of ym).
Consider the finite-dimensional space QN (ξ; Ω) := {q ∈ H1(Ω) | div ξ∇q = 0 in Ω, q|Γ0

=
0, q|Γk

= cstk, 1 ≤ k ≤ K}, where cstk is a constant field on Γk, and the solution to the
problem {

Find qΓm ∈ QN (ξ; Ω) such that(
ξ∇qΓm|∇q

)
0,Ω

=
(
ξxm|∇q

)
0,Ω

, ∀q ∈ QN (ξ; Ω).
(13)

This problem is also well-posed, following the proof of theorem 2.1 with the Poincaré inequality
in {q ∈ H1(Ω), q|Γ0

= 0}. Taking q = qΓm and integrating by parts, one has∣∣∣(ξ∇qΓm|∇qΓm
)
0,Ω

∣∣∣ = ∣∣∣〈ξxm · n, qΓm〉H1/2(∂Ω)

∣∣∣
=
∣∣∣ ∑
1≤k≤K

〈ξxm · n, qΓm〉H1/2(Γk)

∣∣∣
=
∣∣∣ ∑
1≤k≤K

qΓm|Γk
〈ξxm · n, 1〉H1/2(Γk)

∣∣∣.
As QN (ξ; Ω) is a finite-dimensional vector space, all the norms are equivalent, and among them,
‖∇ · ‖0,Ω and maxk | ·|Γk

|. Then, using additionally the relation (3), there holds

‖qΓm‖2QN (ξ) ≲
(
‖qΓm‖QN (ξ)

∑
1≤k≤K

∣∣∣〈ξxm · n, 1〉H1/2(Γk)

∣∣∣ ).
6



In addition, 〈ξxm · n, 1〉H1/2(Γk)
= 〈ξym · n, 1〉H1/2(Γk)

− 〈ξ∇q0m · n, 1〉H1/2(Γk)
, and, using the

continuity of the normal trace and recalling that div ξ∇q0m = div ξym as well as relation (12),
one obtains∣∣∣〈ξ∇q0m · n, 1〉H1/2(Γk)

∣∣∣ ≲ ‖ξ∇q0m · n‖−1/2,Γk
≲ ‖∇q0m‖H(div ξ;Ω) ≲ ‖ div ξym‖0,Ω.

Hence

‖qΓm‖QN (ξ) ≲
( ∑

1≤k≤K

∣∣∣〈ξym · n, 1〉H1/2(Γk)

∣∣∣+ ‖div ξym‖0,Ω
)
, (14)

and one gets that ‖∇qΓm‖0,Ω −→ 0. Observe that ∇qΓm × n|∂Ω = 0, so ∇qΓm ∈ H0(curl; Ω).
Step 3. Let zm := ym − ∇q0m − ∇qΓm. It belongs to XN (ξ,Ω) and, additionally, curl zm =
curlym, div ξzm = 0, and 〈ξzm · n, 1〉H1/2(Γk)

= 0. Indeed, introducing qk the unique element
of QN (ξ; Ω) such that qk|Γl

= δk,l for 1 ≤ k ≤ K, one has by integration by parts

〈ξzm · n, 1〉H1/2(Γk)
= 〈ξzm · n, qk〉H1/2(∂Ω) =

(
ξzm|∇qk

)
0,Ω

+
(
div ξzm|qk

)
0,Ω

.

Moreover,
(
ξzm|∇qk

)
0,Ω

=
(
ξxm|∇qk

)
0,Ω

−
(
ξ∇qΓm|∇qk

)
0,Ω

= 0 by definition of qΓm; and
div ξzm = 0. It follows that 〈ξzm · n, 1〉H1/2(Γk)

= 0. With the help of the vector poten-
tial Theorem 3.4.1 [5], there exists wm ∈ H1(Ω) such that ξzm = curlwm, and ‖wm‖1,Ω ≲
‖ξzm‖0,Ω ≲ ‖zm‖0,Ω.
Furthermore, we have by integration by parts(

zm|ξzm

)
0,Ω

= (zm| curlwm)0,Ω = (curl zm|wm)0,Ω = (curlym|wm)0,Ω .

Using again relation (3), there holds

‖zm‖20,Ω ≲ ‖ curlym‖0,Ω ‖wm‖0,Ω ≲ ‖ curlym‖0,Ω ‖zm‖0,Ω,

and so ‖zm‖0,Ω ≲ ‖ curlym‖0,Ω. One gets that ‖zm‖0,Ω −→ 0.
Finally, as ym = zm +∇q0m +∇qΓm, we have ‖ym‖0,Ω −→ 0, which contradicts ‖ym‖0,Ω = 1 for
all m.

One can also extend the compact embedding result of Theorem 7.5.1 in Ref. [5]. Let us note
that a similar result has been proven by Alonso and Valli [3] for a different class of anisotropic
materials.

Theorem 2.5. Under assumption (2), the embedding of XN (ξ; Ω) into L2(Ω) is compact.

Proof. Let (ym) be a bounded sequence of XN (ξ; Ω). As in the previous proof (Steps 1., 2., 3.),
we introduce q0m ∈ H1

0 (Ω), qΓm ∈ QN (ξ; Ω), and wm ∈ H1(Ω), such that ym = ξ−1 curlwm +

∇q0m +∇qΓm. Additionally, there holds (see previous proof):

‖∇q0m‖0,Ω ≲ ‖div ξym‖0,Ω;

‖∇qΓm‖0,Ω ≲

‖ div ξym‖0,Ω +
∑

1≤k≤K

∣∣∣〈ξym · n, 1〉H1/2(Γk)

∣∣∣
 ;

‖wm‖1,Ω ≲ ‖ curlym‖0,Ω.

Let us begin with (qΓm): it is a bounded sequence of the finite-dimensional vector space QN (ξ; Ω),
so it admits a subsequence which converges (in particular in ‖ · ‖1,Ω-norm).
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In addition, (q0m) and (wm) are bounded sequences of H1(Ω) (resp. H1(Ω)). Then, by Rellich’s
theorem, they admit susbsequences (still denoted with the same indices) which converge in L2(Ω)
(resp. L2(Ω)). It remains to prove that both subsequences (∇q0m) and (curlwm) converge in
L2(Ω).
By definition of q0m, for any q in H1

0 (Ω), there holds by integration by parts(
ξ∇q0m|∇q

)
0,Ω

=
(
ξym|∇q

)
0,Ω

= −
(
div ξym|q

)
0,Ω

.

Using the notation vmn := vm − vn and taking q = q0mn, one has∣∣∣(ξ∇q0mn|∇q0mn

)
0,Ω

∣∣∣ ≤ ‖ div ξymn‖0,Ω ‖q0mn‖0,Ω.

Then, by relation (3),

‖∇q0mn‖20,Ω ≲ 2 sup
m

(
‖div ξym‖0,Ω

)
‖q0mn‖0,Ω.

Thus (∇q0m) is a Cauchy sequence of L2(Ω), and hence converges in this Hilbert space.
We recall that ξ−1 curlwm ∈ XN (ξ,Ω) (cf. Step 3. of previous proof) and curl(ξ−1 curlwm) =
curlym. Then, still with the same notations, and by integration by parts,(

ξ−1 curlwmn| curlwmn

)
0,Ω

=
(
curl(ξ−1 curlwmn)|wmn

)
0,Ω

= (curlymn|wmn)0,Ω .

As ξ−1 also satisfies the ellipticity condition (proposition 2.1), we get

‖ curlwmn‖20,Ω ≲ ‖ curlymn‖0,Ω ‖wmn‖0,Ω ≤ 2 sup
m

(‖ curlym‖0,Ω) ‖wmn‖0,Ω,

which proves that (curlwm) is a Cauchy and hence converging sequence of L2(Ω).
As ym = ξ−1 curlwm + ∇q0m + ∇qΓm, we conclude that the subsequence (ym) converges in
L2(Ω).

2.4 The function space XT (ξ; Ω)

Let us begin with an extension of the second Weber inequality, cf. Theorem 6.2.5 in Ref. [5].
Some knowledge on the topology of the domain Ω is required, see Appendix A for details and
notations.

Theorem 2.6. Assume that (Top)I holds. Under assumption (2), one has the Weber inequality

∃C ′
W > 0, ∀XT (ξ; Ω)

‖y‖0,Ω ≤ C ′
W

(
‖ curly‖0,Ω + ‖ div ξy‖0,Ω +

∑
1≤i≤I |〈ξy · n, 1〉H1/2(Σi)

|
)
,

(15)

where {Σi}1≤i≤I are the cuts of Ω if I > 0 (see Appendix A).

Proof. The proof follows a similar structure as in theorem 2.4. By contradiction, we assume
there exists (ym) a sequence of XT (ξ; Ω) such that, ∀m, ‖ym‖0,Ω = 1 and

‖ curlym‖0,Ω + ‖ div ξym‖0,Ω +
∑

1≤i≤I

|〈ξym · n, 1〉H1/2(Σi)
| ≤ 1

m+ 1
.
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Step 1. Consider the solution to the Neumann problem{
Find q0m ∈ H1

zmv(Ω) such that(
ξ∇q0m|∇q

)
0,Ω

=
(
ξym|∇q

)
0,Ω

, ∀q ∈ H1
zmv(Ω).

(16)

The problem is well-posed by theorem 2.1. Taking q = q0m and integrating by parts, one gets,
as ym ∈ H0(div ξ; Ω):∣∣∣(ξ∇q0m|∇q0m

)
0,Ω

∣∣∣ = ∣∣∣(−div ξym|q0m
)
0,Ω

∣∣∣ ≤ ‖ div ξym‖0,Ω ‖q0m‖0,Ω.

Using the relation (3) on the left-hand side, as well as the Poincaré-Wirtinger inequality on the
right-hand side, leads to

‖∇q0m‖0,Ω ≲ ‖ div ξym‖0,Ω, (17)

so ‖∇q0m‖0,Ω −→ 0.
Step 2. With the help of the second-kind Helmholtz decomposition (9) of ym, we define xm :=
ym −∇q0m ∈ KT (ξ; Ω). Note that ∇q0m ∈ H0(div ξ; Ω). Consider the finite-dimensional space

QT (ξ; Ω̇) := {q̇ ∈ H1
zmv(Ω̇) | div ξ∇̃q̇ = 0 in Ω, ξ∇̃q̇ · n|∂Ω = 0, [q̇]Σi = csti, 1 ≤ i ≤ I},

where csti is a constant field on Σi. Let us introduce the problem{
Find q̇Σm ∈ QT (ξ; Ω̇) such that(
ξ∇q̇Σm|∇q̇

)
0,Ω̇

=
(
ξxm|∇q̇

)
0,Ω̇

∀q̇ ∈ QT (ξ; Ω̇).
(18)

This problem is well-posed, adapting the proof of theorem 2.1, and using Poincaré-Wirtinger
inequality in H1

zmv(Ω̇). Taking q̇ = q̇Σm and using the integration by parts formula (65), one has,
as div ξxm = 0,(

ξ∇q̇Σm|∇q̇Σm
)
0,Ω̇

=
∑

1≤i≤I

〈
ξxm · n,

[
q̇Σm
]
Σi

〉
H1/2(Σi)

=
∑

1≤i≤I

[q̇Σm]Σi

〈
ξxm · n, 1

〉
H1/2(Σi)

.

As QT (ξ; Ω̇) is a finite-dimensional vector space, all the norms are equivalent, and among them,
‖∇̃·‖0,Ω and maxi |[·]Σi |. Then, using additionally relation (3), there holds

‖q̇Σm‖2
QT (ξ;Ω̇)

≲

‖q̇Σm‖QT (ξ;Ω̇)

∑
1≤i≤I

∣∣∣〈ξxm · n, 1〉H1/2(Σi)

∣∣∣
 .

In addition, 〈ξxm · n, 1〉H1/2(Σi)
= 〈ξym · n, 1〉H1/2(Σi)

− 〈ξ∇q0m · n, 1〉H1/2(Σi)
. For 1 ≤ i ≤ I,

let q̇i be the unique element of QT (ξ; Ω̇) such that [q̇i]Σj = δi,j for 1 ≤ j ≤ I. If one recalls that
∇q0m ∈ H0(div ξ; Ω), then there holds, using the integration by parts formula (65),∣∣∣〈ξ∇q0m · n, 1〉H1/2(Σi)

∣∣∣ = ∣∣∣ ∑
1≤j≤I

〈ξ∇q0m · n, [q̇i]Σj 〉H1/2(Σj)

∣∣∣
=
∣∣∣(ξ∇q0m|∇q̇i

)
0,Ω̇

+
(
div ξ∇q0m|q̇i

)
0,Ω̇

∣∣∣
≲ ‖∇q0m‖0,Ω̇‖∇q̇i‖0,Ω̇ + ‖div ξ∇q0m‖0,Ω̇‖q̇i‖0,Ω̇
≲ ‖∇q0m‖H(div ξ;Ω)

≲ ‖ div ξym‖0,Ω,
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the latter because of (17) and div ξ∇q0m = div ξym in Ω. Hence,

‖q̇Σm‖QT (ξ;Ω̇) ≲
( ∑

1≤i≤I

∣∣∣〈ξym · n, 1〉H1/2(Σi)

∣∣∣+ ‖div ξym‖0,Ω
)
, (19)

which implies that ‖∇̃q̇Σm‖0,Ω = ‖q̇Σm‖QT (ξ;Ω̇) −→ 0.

Step 3. Let zm := ym−∇q0m−∇̃q̇Σm ∈ XT (ξ,Ω). There holds curl zm = curlym, div ξzm = 0,
and additionally 〈ξzm · n, 1〉H1/2(Σi)

= 0 for 1 ≤ i ≤ I. First, one has by using the integration
by parts formula (65)

〈ξzm · n, 1〉H1/2(Σi)
=
∑

1≤j≤I

〈ξzm · n, [q̇i]Σj 〉H1/2(Σj)
=
(
ξzm|∇q̇i

)
0,Ω̇

+
(
div ξzm|q̇i

)
0,Ω̇

.

Then,
(
ξzm|∇q̇i

)
0,Ω̇

=
(
ξxm|∇q̇i

)
0,Ω̇

−
(
ξ∇q̇Σm|∇q̇i

)
0,Ω̇

= 0 by definition of q̇Σm, while div ξzm =

0 by definition of zm.
One has also zm ∈ H0(div ξ0;Ω) so, according to the vector potential Theorem 3.5.1 [5]: there
exists wm ∈ XN (Ω) such that ξzm = curlwm and divwm = 0 in Ω, and ‖wm‖H(curl;Ω) ≲
‖ξzm‖0,Ω; in particular, ‖wm‖H(curl;Ω) ≲ ‖zm‖0,Ω.
We have by integration by parts

(
zm|ξzm

)
0,Ω

= (zm| curlwm)0,Ω = (curl zm|wm)0,Ω =

(curlym|wm)0,Ω. Using again the relation (3), we find

‖zm‖20,Ω ≲ ‖ curlym‖0,Ω ‖wm‖0,Ω ≲ ‖ curlym‖0,Ω ‖zm‖0,Ω,

so that ‖zm‖0,Ω ≲ ‖ curlym‖0,Ω. It follows that ‖zm‖0,Ω −→ 0.
As ym = zm +∇q0m + ∇̃q̇Σm, we conclude that ‖ym‖0,Ω −→ 0, but that contradicts ‖ym‖0,Ω = 1
for all m.

One can also extend the compact embedding result of Theorem 7.5.3 in Ref. [5].

Theorem 2.7. Assume that (Top)I holds. Under assumption (2), the embedding of XT (ξ; Ω)

into L2(Ω) is compact.

Proof. Let (ym) be a bounded sequence of XT (ξ; Ω). As in the previous proof (Steps 1.,
2., 3.), we introduce q0m ∈ H1

zmv(Ω), q̇Σm ∈ QT (ξ; Ω̇), and wm ∈ XN (Ω), such that ym =

ξ−1 curlwm +∇q0m + ∇̃q̇Σm. Additionally, there holds (see previous proof):

‖∇q0m‖0,Ω ≲ ‖div ξym‖0,Ω;

‖∇̃q̇Σm‖0,Ω ≲
(
‖ div ξym‖0,Ω +

∑
i

∣∣∣〈ξym · n, 1〉H1/2(Σi)

∣∣∣) ;

‖wm‖H(curl;Ω) ≲ ‖ curlym‖0,Ω.

Let us begin with (q̇Σm): it is a bounded sequence of the finite-dimensional vector space
QT (ξ; Ω̇), so it admits a converging subsequence (in particular in ‖ · ‖1,Ω-norm).
In addition, (q0m) is a bounded sequence of H1(Ω) so, by Rellich’s theorem, it admits a converging
susbsequence (denoted with the same index) in L2(Ω). Similarly, wm is a bounded sequence of
XN (Ω), so by theorem 2.5, it admits a converging subsequence in L2(Ω). It remains to prove
that the subsequences (∇q0m) and (curlwm) converge in L2(Ω).
By definition of q0m, for any q in H1

0 (Ω), there holds by integration by parts(
ξ∇q0mn|∇q

)
0,Ω

=
(
ξymn|∇q

)
0,Ω

= −
(
div ξymn|q

)
0,Ω

.
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Taking q = q0mn, one gets by property (2)

‖∇q0mn‖20,Ω ≲ ‖ div ξymn‖0,Ω ‖q0mn‖0,Ω ≤ 2 sup
m

(
‖div ξym‖0,Ω

)
‖q0mn‖0,Ω.

Thus (∇q0m) is a Cauchy sequence of L2(Ω), and hence it converges in this Hilbert space.
By integration by parts (recall that wmn ∈ XN (Ω)),(

ξ−1 curlwmn| curlwmn

)
0,Ω

=
(
curl(ξ−1 curlwmn)|wmn

)
0,Ω

= (curlymn|wmn)0,Ω .

As ξ−1 satisfies the ellipticity condition (proposition 2.1), we find

‖ curlwmn‖20,Ω ≲ ‖ curlymn‖0,Ω ‖wmn‖0,Ω ≤ 2 sup
m

(‖ curlym‖0,Ω) ‖wmn‖0,Ω,

which proves that (curlwm) is also a Cauchy and hence converging sequence of L2(Ω).
As ym = ξ−1 curlwm +∇q0m + ∇̃q̇Σm, the subsequence (ym) converges in L2(Ω).

3 Analysis of the Dirichlet problem

In this section, we supplement the time-harmonic Maxwell’s equation by a Dirichlet boundary
condition on ∂Ω: 

Find E ∈ H(curl; Ω) such that
curl(µ−1 curlE)− ω2εE = f in Ω,

E × n = g on ∂Ω,

(20)

where g is a boundary data.
We assume that the tensors ε,µ ∈ L∞(Ω) are elliptic. The corresponding coercivity directions
(or, equivalently, the parameters θϵ and θµ in definition 2.1) may be different. We also assume
that the volume data f belongs to L2(Ω), and that the surface data g is the tangential trace
of a field Ed ∈ H(curl; Ω), that is g = Ed×n|∂Ω. Further assumptions will be made to obtain
the extra-regularity results.

3.1 Variational formulation and well-posedness

Let us derive the variational formulation of problem (20). In order to deal with a problem with
homogeneous boundary condition, we introduce the new unknown E0 := E − Ed. It belongs
to H0(curl; Ω) and, additionally, satisfies

curl(µ−1 curlE0)− ω2εE0 = f − curl(µ−1 curlEd) + ω2εEd in Ω.

By standard techniques, we get the equivalent variational formulation for E0:{
Find E0 ∈ H0(curl; Ω) such that(
µ−1 curlE0| curlF

)
0,Ω

− ω2 (εE0|F )0,Ω = ℓD,0(F ), ∀F ∈ H0(curl; Ω).
(21)

Above, ℓD,0 : F 7→
(
f + ω2εEd|F

)
0,Ω

−
(
µ−1 curlEd| curlF

)
0,Ω

belongs to (H0(curl; Ω))
′. In

addition, we observe that

‖ℓD,0‖(H0(curl;Ω))′ ≲ ‖f‖0,Ω + ‖Ed‖H(curl;Ω). (22)
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Remark 3.1. In terms of the total field E, the variational formulation to be solved is
Find E ∈ H(curl; Ω) such that(
µ−1 curlE| curlF

)
0,Ω

− ω2 (εE|F )0,Ω = ℓD(F ), ∀F ∈ H0(curl; Ω),

E × n = g on ∂Ω,

(23)

where ℓD : F 7→ (f |F )0,Ω belongs to (H0(curl; Ω))
′. This formulation can be used to solve the

nonhomogeneous Dirichlet problem numerically, see section 5.

To study the well-posedness of the formulation (21), it is useful to introduce an equivalent
problem with the help of the previously derived first-kind Helmholtz decomposition (7).

Lemma 3.1. The formulation (21) can be equivalently recast as follows: set E0 = Ẽ + ∇p,
with p ∈ H1

0 (Ω) and Ẽ ∈ KN (ε; Ω), respectively governed by{
Find p ∈ H1

0 (Ω) such that
−ω2 (ε∇p|∇q)0,Ω = ℓD,0(∇q)0,Ω, ∀q ∈ H1

0 (Ω),
(24)

and{
Find Ẽ ∈ KN (ε; Ω) such that(
µ−1 curl Ẽ| curl F̃

)
0,Ω

− ω2
(
εẼ|F̃

)
0,Ω

= ω2
(
ε∇p|F̃

)
0,Ω

+ ℓD,0(F̃ ), ∀F̃ ∈ KN (ε; Ω).

(25)

Proof. Direct. Let us introduce the first-kind Helmholtz decomposition (7) of E0: E0 = Ẽ+∇p,
with p ∈ H1

0 (Ω) and Ẽ ∈ KN (ε; Ω). Taking F = ∇q for any q ∈ H1
0 (Ω) in (21), we get

−ω2
(
ε(Ẽ +∇p)|∇q

)
0,Ω

= ℓD,0(∇q)

and, since Ẽ ∈ KN (ε; Ω), it holds that, ∀q ∈ H1
0(Ω),

(
εẼ|∇q

)
0,Ω

= 0, so p is governed by
(24).
On the other hand, for Ẽ = E0 −∇p, one has(

µ−1 curl Ẽ| curlF
)
0,Ω

− ω2
(
εẼ|F

)
0,Ω

= ω2 (ε∇p|F )0,Ω + ℓD,0(F )

for any F ∈ H0(curl; Ω), hence in particular for any F̃ ∈ KN (ε; Ω): Ẽ is governed by (25).
Reverse. By summation one has, ∀q ∈ H1

0 (Ω), ∀F̃ ∈ KN (ε; Ω):(
µ−1 curl Ẽ| curl F̃

)
0,Ω

− ω2
(
εẼ|F̃

)
0,Ω

− ω2 (ε∇p|∇q)0,Ω

= ω2
(
ε∇p|F̃

)
0,Ω

+ ℓD,0(F̃ ) + ℓD,0(∇q).

One can add the vanishing terms
(
µ−1 curl∇p| curl F̃

)
0,Ω

,
(
µ−1 curl(Ẽ +∇p)| curl∇q

)
0,Ω

and −ω2
(
εẼ|∇q

)
0,Ω

to the left-hand side. Introducing E0 := Ẽ + ∇p ∈ H0(curl; Ω), one
gets, after simple rearrangements:(

µ−1 curlE0| curl(F̃ +∇q)
)
0,Ω

− ω2
(
εE0|F̃ +∇q

)
0,Ω

= ℓD,0(F̃ +∇q).

Finally, as F̃ and q span respectively KN (ε; Ω) and H1
0 (Ω), the sum F̃ +∇q spans the whole

H0(curl; Ω), thanks to (7): E0 is governed by (21).

12



Remark 3.2. The term ω2
(
ε∇p|F̃

)
0,Ω

in formulation (25) vanishes automatically only if ε

is a Hermitian tensor field.

Then, we have the following results.

Lemma 3.2. The formulation (24) is well-posed. Moreover, one has the bound ‖p‖1,Ω ≲
‖f‖0,Ω + ‖Ed‖0,Ω.

Proof. Well-posedness is an immediate consequence of theorem 2.1. Since ℓD,0 ∈ (H0(curl; Ω))
′,

and ∇ is a continuous mapping from H1
0 (Ω) to H0(curl; Ω), one has ℓD,0 ◦ ∇ ∈ (H1

0 (Ω))
′.

The bound on ‖p‖1,Ω is a straightforward consequence of the expression ℓD,0(∇q) = (f +
ω2εEd|∇q)0,Ω.

Recall that KN (ε; Ω) is equipped with the norm ‖ · ‖H(curl;Ω). Thanks to the compact
embedding of KN (ε; Ω) into L2(Ω) (see Theorem 2.5), the formulation (25) enters Fredholm’s
alternative (see e.g. [5]).

Lemma 3.3. The formulation (25) enters Fredholm’s alternative:

• either the problem (25) admits a unique solution Ẽ in KN (ε; Ω), which depends continu-
ously on the data f and Ed:

‖Ẽ‖H(curl;Ω) ≲ ‖f‖0,Ω + ‖Ed‖H(curl;Ω) ;

• or, the problem (25) has solutions if, and only if, f and Ed satisfy a finite number of
compatibility conditions; in this case, the space of solutions is an affine space of finite
dimension. Additionally, the component of the solution which is orthogonal (in the sense
of the H0(curl; Ω) scalar product) to the corresponding linear vector space, depends con-
tinuously on the data f and Ed.

Proof. Let us split the left-hand side of (25) in two terms. Let α > 0, recalling that µ−1 satisfies
assumption (2), and using the notations of proposition 2.1, we introduce two sesquilinear forms,
namely a : (u,v) 7→

(
µ−1 curlu| curlv

)
0,Ω

+ αeiθµ (u|v)0,Ω, and b : (u,v) 7→ (ε′u|v)0,Ω with
ε′ := −ω2ε− αeiθµ1 ∈ L∞(Ω).
We claim that the form a is coercive on KN (ε; Ω). Indeed:

|a(v,v)| = |
(
µ−1 curlv| curlv

)
0,Ω

+ αeiθµ (v|v)0,Ω |

≥ <
[
e−iθµ

(
µ−1 curlv| curlv

)
0,Ω

+ α (v|v)0,Ω
]

≥ (µ−1)− ‖ curlv‖20,Ω + α‖v‖20,Ω
≳ ‖v‖2H(curl;Ω).

In addition, |b(u,v)| ≤ ‖ε′‖L∞(Ω)‖u‖0,Ω‖v‖0,Ω ≲ ‖u‖0,Ω‖v‖KN (ε;Ω), so the form b is continuous
on L2(Ω)×KN (ε; Ω).
The embedding of KN (ε; Ω) into L2(Ω) is compact by theorem 2.5. Hence problem (25) enters
the coercive + compact framework, and then Fredholm’s alternative.
Regarding finally the bound, one uses simply the bounds on ‖p‖1,Ω (see lemma 3.2) and on
‖ℓD,0‖(H0(curl;Ω))′ (see (22)).

We are now in a position to solve formulation (21) by regrouping the previous results.

13



Theorem 3.1. The formulation (21) with unknown E0 enters Fredholm’s alternative:

• either the problem (21) admits a unique solution E0 in H0(curl; Ω), which depends
continuously on the data f and Ed:

‖E0‖H(curl;Ω) ≲ ‖f‖0,Ω + ‖Ed‖H(curl;Ω) ; (26)

• or, the problem (21) has solutions if, and only if, f and Ed satisfy a finite number of
compatibility conditions; in this case, the space of solutions is an affine space of finite
dimension. Additionally, the component of the solution which is orthogonal (in the sense
of the H0(curl; Ω) scalar product) to the corresponding linear vector space, depends con-
tinuously on the data f and Ed.

Moreover, each alternative occurs simultaneously for formulations (25) and (21).

Assumption. In the rest of the manuscript, we assume the problem (25) has a unique solution,
such that the problem (21) is well-posed and, in particular, the estimate (26) holds.

3.2 Extra-regularity of the solution

The next two subsections aim at determining the extra-regularity of the solution and the solu-
tion’s curl, depending on the extra-regularity of the data. We make the following extra-regularity
assumptions for the next two subsections. We assume that ∂Ω is of class C2 and that µ, ε ∈
C1(Ω). Regarding the extra-regularity of f and Ed, we assume div f ∈ Hs−1(Ω) =

(
H1−s

0 (Ω)
)′,

Ed ∈ Hr(Ω) and curlEd ∈ Hr′(Ω) for given s, r, r′ in [0, 1]\{1
2}.

Let us recall a result on the continuous splitting of fields of H0(curl; Ω), cf. Lemma 2.4 in
Ref. [21], or Theorem 3.6.7 in Ref. [5]:

Theorem 3.2. Let Ω be a domain. For all u in H0(curl; Ω), there exist ureg in H1(Ω) and
ϕ in H1

0 (Ω), such that

u = ureg +∇ϕ in Ω, with ‖ureg‖1,Ω + ‖ϕ‖1,Ω ≲ ‖u‖H(curl;Ω).

With theorem 3.2 at hand, we introduce the splitting of E0:{
E0 = Ereg +∇ϕE , with Ereg ∈ H1(Ω), ϕE ∈ H1

0 (Ω), and
‖Ereg‖1,Ω + ‖ϕE‖1,Ω ≲ ‖E0‖H(curl;Ω).

(27)

Taking F = ∇q in (21) for any q ∈ H1
0 (Ω), it holds that −ω2 (εE0|∇q)0,Ω =

(
f + ω2εEd|∇q

)
0,Ω

.
As a consequence, ϕE is governed by the Dirichlet problem{ Find ϕE ∈ H1

0 (Ω) such that
ω2 (ε∇ϕE |∇q)0,Ω =

(
div f + ω2 div εEd + ω2 div εEreg|q

)
0,Ω

, ∀q ∈ H1
0 (Ω).

(28)

Let us recall the fundamental regularity result for solutions of the Dirichlet problem, see The-
orem 3.4.5 in Ref. [14]:

Theorem 3.3 (Shift theorem). Let Ω be a bounded domain of boundary ∂Ω, ℓ in
(
H1

0 (Ω)
)′,

and p governed by {
Find p ∈ H1

0 (Ω) such that(
ξ∇p|∇q

)
0,Ω

= ℓ(q), ∀q ∈ H1
0 (Ω).

(29)
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If the tensor coefficient ξ fulfills the ellipticity condition, then the problem (29) is well-posed; if
additionally ξ ∈ C1(Ω) and ∂Ω is of class C2, then, ∀σ ∈ [0, 1]\{1

2},

ℓ ∈
(
H1−σ

0 (Ω)
)′

=⇒ p ∈ Hσ+1(Ω); (30)

additionally,

∃Cσ > 0, ∀ℓ ∈
(
H1−σ

0 (Ω)
)′
, ‖p‖σ+1,Ω ≤ Cσ‖ℓ‖(H1−σ

0 (Ω))
′ . (31)

Consequently, we have the following regularity result for E.

Theorem 3.4. Let E, governed by (20), be split as E = E0 +Ed with E0 ∈ H0(curl; Ω). If
∂Ω is of class C2, if ε ∈ C1(Ω), if f ∈ L2(Ω) is such that div f ∈ Hs−1(Ω) with s in [0, 1]\{1

2},
and if Ed ∈ Hr(Ω) with r in [0, 1]\{1

2}, then

E ∈ Hmin(s,r)(Ω) and
‖E‖min(s,r),Ω ≲ ‖f‖0,Ω + ‖ div f‖s−1,Ω + ‖Ed‖r,Ω + ‖ curlEd‖0,Ω.

(32)

Remark 3.3. No regularity assumption on µ is required here.

Proof. We split E0 as in (27), and we apply theorem 3.3 to the problem (28) governing ϕE . Let
us introduce the right-hand side of (28), ℓ ∈ (H1

0 (Ω))
′, and defined by

ℓ : q 7→
(
div f + ω2 div εEd + ω2 div εEreg|q

)
0,Ω

.

Consider each term: one has div f ∈ Hs−1(Ω) =
(
H1−s

0 (Ω)
)′; as ε ∈ W1,∞(Ω), there holds

εEreg ∈ H1(Ω) and div εEreg ∈ L2(Ω); similarly, εEd ∈ Hr(Ω), so div εEd ∈ Hr−1(Ω) =(
H1−r

0 (Ω)
)′ as soon as r 6= 1

2 . It follows that ℓ ∈ Hmin(s,r)−1(Ω) =
(
H

1−min(s,r)
0 (Ω)

)′
. In

addition, one has the bound

‖ℓ‖min(s,r)−1,Ω ≲ ‖div f‖s−1,Ω + ‖ div εEreg‖0,Ω + ‖ div εEd‖r−1,Ω

≲ ‖div f‖s−1,Ω + ‖Ereg‖1,Ω + ‖Ed‖r,Ω
≲ ‖div f‖s−1,Ω + ‖E0‖H(curl;Ω) + ‖Ed‖r,Ω,

where we used (27) to reach the third line. We conclude by the shift theorem 3.3 that ϕE ∈
Hmin(s,r)+1(Ω), and ‖ϕE‖min(s,r)+1,Ω ≲ ‖div f‖s−1,Ω + ‖E0‖H(curl;Ω) + ‖Ed‖r,Ω. Hence E =

Ereg +∇ϕE +Ed belongs to Hmin(s,r)(Ω), with the bound

‖E‖min(s,r),Ω ≲ ‖Ereg‖1,Ω + ‖∇ϕE‖min(s,r),Ω + ‖Ed‖r,Ω
≲ ‖E0‖H(curl;Ω) + ‖∇ϕE‖min(s,r),Ω + ‖Ed‖r,Ω
≲ ‖E0‖H(curl;Ω) + ‖div f‖s−1,Ω + ‖Ed‖r,Ω,
≲ ‖f‖0,Ω + ‖ curlEd‖0,Ω + ‖ div f‖s−1,Ω + ‖Ed‖r,Ω,

where we used successively (27), the bound on ‖ϕE‖min(s,r)+1,Ω and finally (26) to conclude.

Corollary 3.1. Let the assumptions of theorem 3.4 hold. When f ∈ H(div; Ω), there holds
E ∈ Hr(Ω), and ‖E‖r,Ω ≲ ‖f‖H(div;Ω) + ‖Ed‖r,Ω + ‖ curlEd‖0,Ω.
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3.3 Extra-regularity of the solution’s curl

We proceed similarly with the solution’s curl, with the same assumptions as in subsection 3.2.
One has a theorem analogous to theorem 3.2, on the continuous splitting of fields of H(curl; Ω),
cf. Theorem 3.6.7 in Ref. [5] (see also Lemma 2.4 in Ref. [21] for a similar result):

Theorem 3.5. Let Ω be a domain of the A-type (see Definition A.2). For all u in H(curl; Ω),
there exist ureg in H1(Ω) and ϕ in H1

zmv(Ω), such that ureg · n|∂Ω = 0 and

u = ureg +∇ϕ in Ω, with ‖ureg‖1,Ω + ‖ϕ‖1,Ω ≲ ‖u‖H(curl;Ω).

Let C := µ−1 curlE ∈ L2(Ω), one has curlC = f+ω2εE ∈ L2(Ω), hence C ∈ H(curl; Ω)
with the bound

‖C‖H(curl;Ω) ≲ ‖E‖H(curl;Ω) + ‖f‖0,Ω, (33)

according to proposition 2.1. Observing that E = E0+Ed with E0 ∈ H0(curl; Ω), for any q in
H1

zmv(Ω), it holds that
(
µC|∇q

)
0,Ω

= (curlE|∇q)0,Ω = (curlEd|∇q)0,Ω. Next, we introduce
the splitting of C by theorem 3.5:{

C = Creg +∇ϕC , with Creg ∈ H1(Ω), ϕC ∈ H1
zmv(Ω), Creg · n|∂Ω = 0 and

‖Creg‖1,Ω + ‖ϕC‖1,Ω ≲ ‖C‖H(curl;Ω).
(34)

Thus ϕC is governed by the Neumann problem{
Find ϕC ∈ H1

zmv(Ω) such that(
µ∇ϕC |∇q

)
0,Ω

=
(
curlEd − µCreg|∇q

)
0,Ω

, ∀q ∈ H1
zmv(Ω).

(35)

Hence, one may use a regularity result for solutions of the Neumann problem, see Theorem 3.4.5
in Ref. [14], to estimate the regularity of ϕC , to infer the regularity of C and finally the regularity
of curlE.

Theorem 3.6 (Shift theorem). Let Ω be a bounded domain of boundary ∂Ω, ℓ in
(
H1

zmv(Ω)
)′,

and p governed by {
Find p ∈ H1

zmv(Ω) such that(
ξ∇p|∇q

)
0,Ω

= ℓ(q), ∀q ∈ H1
zmv(Ω).

(36)

If the tensor coefficient ξ fulfills the ellipticity condition, then the problem (36) is well-posed;
assume in addition that ξ ∈ C1(Ω) and ∂Ω is of class C2.

(i) Then, ∀σ ∈ [0, 12 [,

ℓ ∈
(
H1−σ

zmv (Ω)
)′

=⇒ p ∈ Hσ+1(Ω) ; (37)

and,

∃Cσ > 0, ∀ℓ ∈
(
H1−σ

zmv (Ω)
)′
, ‖p‖σ+1,Ω ≤ Cσ‖ℓ‖(H1−σ

zmv (Ω))
′ . (38)

(ii) If there exists σ ∈ ]12 , 1] such that ℓ writes ℓ(q) = (f |q)0,Ω + 〈g, q〉H1/2(∂Ω) with f ∈ L2(Ω)

and g ∈ Hσ−1/2(∂Ω), then p ∈ Hσ+1(Ω). Moreover,

∃Cσ > 0, ∀(f, g) ∈ L2(Ω)×Hσ−1/2(∂Ω), ‖p‖σ+1,Ω ≤ Cσ

(
‖f‖0,Ω + ‖g‖σ−1/2,∂Ω

)
. (39)

16



Remark 3.4. In case (i), the theorem can be understood in a variational manner, just as in
theorem 3.3 for the Dirichlet problem. On the other hand, in case (ii), the proof relies on local
analysis arguments; see [14] for details.

Applying this result to problem (35), one finds the regularity of ϕC , then of curlE.

Theorem 3.7. Let E, governed by (20), be split as E = E0 +Ed with E0 ∈ H0(curl; Ω). If
∂Ω is of class C2, if µ ∈ C1(Ω), and if curlEd ∈ Hr′(Ω) with r′ in [0, 1]\{1

2}, then

curlE ∈ Hr′(Ω) and
‖ curlE‖r′,Ω ≲ ‖f‖0,Ω + ‖Ed‖0,Ω + ‖ curlEd‖r′,Ω.

(40)

Remark 3.5. No regularity assumption on ε (other than ε ∈ L∞(Ω)) is required here. As Ω is
a domain with boundary of class C2, it is automatically of the A-type.

Proof. We would like to apply theorem 3.6 to the problem (35) governing ϕC . Let us introduce
the right-hand side of (35), ℓ ∈ (H1

zmv(Ω))
′, and defined by

ℓ : q 7→
(
curlEd − µCreg|∇q

)
0,Ω

.

To determine the regularity of ϕC , one wants to determine whether the form ℓ belongs to(
H1−σ

zmv (Ω)
)′ for σ ∈ [0, 1]\1

2 as large as possible.
If r′ < 1

2 , then Hr′(Ω) identifies with Hr′
0 (Ω), the dual space of H−r′(Ω). Hence the product

(curlEd|∇q)0,Ω is meaningful as soon as q ∈ H1−r′
zmv (Ω), because ∇q ∈ H−r′(Ω) in this case;

the same holds for the term
(
µCreg|∇q

)
0,Ω

. This means that ℓ belongs to (H1−r′
zmv (Ω))′, and the

shift theorem 3.6 (i), with σ = r′, ensures that ϕC ∈ H1+r′(Ω), with the bound

‖ϕC‖1+r′,Ω ≲ ‖ curlEd‖r′,Ω + ‖µCreg‖1,Ω ≲ ‖ curlEd‖r′,Ω + ‖Creg‖1,Ω.

On the other hand, if r′ > 1
2 , then Hr′

0 (Ω) does not identify with Hr′(Ω), and, as soon as
curlEd·n|∂Ω 6= 0, the product (curlEd|∇q)0,Ω can be meaningless if one has only q ∈ H1−r′

zmv (Ω).
However, since r′ > 1

2 , curlEd · n|∂Ω makes sense in Hr′−1/2(∂Ω), and, as µCreg · n|∂Ω = 0,
ℓ(q) rewrites by integrations by parts ℓ(q) =

(
divµCreg|q

)
0,Ω

+ 〈curlEd · n, q〉H1/2(∂Ω). As
divµCreg ∈ L2(Ω), ℓ satisfies the assumptions of the shift theorem 3.6 (ii) with σ = r′, and we
conclude that ϕC ∈ H1+r′(Ω), with the bound

‖ϕC‖1+r′,Ω ≲ ‖ curlEd · n‖r′−1/2,∂Ω + ‖ divµCreg‖0,Ω
≲ ‖ curlEd‖r′−1/2,∂Ω + ‖divµCreg‖0,Ω
≲ ‖ curlEd‖r′,Ω + ‖Creg‖1,Ω.

Therefore, ϕC ∈ H1+r′(Ω) in all cases (with the same upper bound), so that C = Creg+∇ϕC ∈
Hr′(Ω),

‖C‖r′,Ω ≲ ‖Creg‖1,Ω + ‖∇ϕC‖r′,Ω
≲ ‖Creg‖1,Ω + ‖ curlEd‖r′,Ω

(see (34)) ≲ ‖C‖H(curl;Ω) + ‖ curlEd‖r′,Ω.
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As curlE = µC and µ ∈ W1,∞(Ω), it then holds that curlE ∈ Hr′(Ω), with the bound
‖ curlE‖r′,Ω ≲ ‖C‖r′,Ω. Finally, with the help of (33) and of theorem 3.1, one concludes that

‖ curlE‖r′,Ω ≲ ‖C‖H(curl;Ω) + ‖ curlEd‖r′,Ω
≲ ‖E‖H(curl;Ω) + ‖f‖0,Ω + ‖ curlEd‖r′,Ω
≲ ‖E0‖H(curl;Ω) + ‖Ed‖0,Ω + ‖f‖0,Ω + ‖ curlEd‖r′,Ω
≲ ‖Ed‖0,Ω + ‖f‖0,Ω + ‖ curlEd‖r′,Ω.

The last theorem sums up the regularity results of this section.

Theorem 3.8. Let E, governed by (20), be split as E = E0 +Ed with E0 ∈ H0(curl; Ω). If
∂Ω is of class C2, if ε,µ ∈ C1(Ω), if f ∈ L2(Ω) and is such that div f ∈ Hs−1(Ω) with s in
[0, 1]\{1

2}, and if Ed ∈ Hr(Ω) and is such that curlEd ∈ Hr′(Ω) with r, r′ in [0, 1]\{1
2}, then E ∈ Hmin(s,r)(Ω), curlE ∈ Hr′(Ω), and

‖E‖min(s,r),Ω ≲ ‖f‖0,Ω + ‖div f‖s−1,Ω + ‖Ed‖r,Ω + ‖ curlEd‖0,Ω,
‖ curlE‖r′,Ω ≲ ‖f‖0,Ω + ‖Ed‖0,Ω + ‖ curlEd‖r′,Ω.

(41)

4 Analysis of the Neumann problem

In this section, the time-harmonic Maxwell’s equation is supplemented by a Neumann boundary
condition: 

Find E ∈ H(curl; Ω) such that
curl(µ−1 curlE)− ω2εE = f in Ω,

µ−1 curlE × n = j on ∂Ω,
(42)

where j is a boundary data which can be interpreted as a surface current.
We assume that the tensors ε,µ ∈ L∞(Ω) are elliptic. The corresponding coercivity directions
(or, equivalently, the parameters θϵ and θµ in definition 2.1) may be different. We also assume
that f ∈ L2(Ω) and that j is the tangential trace of a field Bd defined on Ω, i.e. j = Bd×n|∂Ω,
with Bd ∈ H(curl,Ω).

4.1 Variational formulation and well-posedness

The equivalent variational formulation of the problem is obtained by the integration by parts
formula (1). It writes:{

Find E ∈ H(curl; Ω) such that(
µ−1 curlE| curlF

)
0,Ω

− ω2 (εE|F )0,Ω = ℓN(F ), ∀F ∈ H(curl; Ω),
(43)

where ℓN : F 7→ (f |F )0,Ω − γ〈j, πTF 〉π belongs to (H(curl; Ω))′, and

‖ℓN‖(H(curl;Ω))′ ≲ ‖f‖0,Ω + ‖j‖γ ≲ ‖f‖0,Ω + ‖Bd‖H(curl;Ω). (44)

The analysis follows the same reasoning as in the section 3. For this reason, some proofs
are just outlined. For the Neumann problem, our analysis relies on a second-kind Helmholtz
decomposition (see theorem 2.3).
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Lemma 4.1. The formulation (43) can be equivalently recast as follows: set E = Ẽ+∇p, with
p ∈ H1

zmv(Ω) and Ẽ ∈ KT (ε; Ω), respectively governed by{
Find p ∈ H1

zmv(Ω) such that
−ω2 (ε∇p|∇q)0,Ω = ℓN(∇q), ∀q ∈ H1

zmv(Ω),
(45)

and{
Find Ẽ ∈ KT (ε; Ω) such that(
µ−1 curl Ẽ| curl F̃

)
0,Ω

− ω2
(
εẼ|F̃

)
0,Ω

= ω2
(
ε∇p|F̃

)
0,Ω

+ ℓN(F̃ ), ∀F̃ ∈ KT (ε; Ω).

(46)

Proof. Direct. Let us introduce the second-kind Helmholtz decomposition (9) of E: E =
Ẽ +∇p, with p ∈ H1

zmv(Ω) and Ẽ ∈ KT (ε; Ω). Taking F = ∇q in (43) for any q ∈ H1
zmv(Ω)

yields

−ω2
(
ε(Ẽ +∇p)|∇q

)
0,Ω

= ℓN(∇q).

Hence, as Ẽ belongs to H0(div ε0;Ω), p is governed by (45).
On the other hand, there holds(

µ−1 curl Ẽ| curlF
)
0,Ω

− ω2
(
εẼ|F

)
0,Ω

= ω2 (ε∇p|F )0,Ω + ℓN(F )

for any F ∈ H(curl; Ω), hence for any F̃ ∈ KT (ε; Ω): Ẽ is governed by (46).
Reverse. Summing (45) and (46) and introducing E := Ẽ +∇p ∈ H(curl; Ω), one gets, after
rearrangements:(

µ−1 curlE| curl(F̃ +∇q)
)
0,Ω

− ω2
(
εE|(F̃ +∇q)

)
0,Ω

= ℓN(F̃ +∇q).

As q and F̃ span respectively H1
zmv(Ω) and KT (ε; Ω), we know that the sum F̃ +∇q spans the

whole H(curl; Ω) thanks to (9); hence E is governed by (43).

Here, KT (ε; Ω) is equipped with the norm ‖ · ‖H(curl;Ω). The rest of the analysis proceeds
as for the Dirichlet problem.

Theorem 4.1. The formulation (43) enters Fredholm’s alternative:

• either the problem (43) admits a unique solution E in H(curl; Ω), which depends contin-
uously on the data f and Bd:

‖E‖H(curl;Ω) ≲ ‖f‖0,Ω + ‖Bd‖H(curl;Ω) ; (47)

• or, the problem (43) has solutions if, and only if, f and Bd satisfy a finite number
of compatibility conditions; in this case, the space of solutions is an affine space of fi-
nite dimension. Additionally, the component of the solution which is orthogonal (in the
sense of the H(curl; Ω) scalar product) to the corresponding linear vector space, depends
continuously on the data f and Bd.
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Proof. The Neumann problem (45) is well-posed according to theorem 2.1. In fact, the form ℓN
is continuous on H(curl; Ω) and the mapping ∇ is continuous from H1

zmv(Ω) to H(curl; Ω), so
one has ℓN ◦ ∇ ∈ (H1

zmv(Ω))
′, with the bound ‖p‖1,Ω ≲ ‖f‖0,Ω + ‖Bd‖H(curl;Ω).

In addition, the formulation (46) fits the coercive + compact framework. Indeed, as in
the proof of lemma 3.3, one can split the left-hand side of (46) in two terms. Let α > 0,
the term

(
µ−1 curl Ẽ| curl F̃

)
0,Ω

+ αeiθµ
(
Ẽ|F̃

)
0,Ω

is coercive on H(curl; Ω) (therefore on
KT (ε; Ω)), as µ−1 satisfies the ellipticity condition (see proposition 2.1). The remaining term
−ω2

(
εẼ|F̃

)
0,Ω

− αeiθµ
(
Ẽ|F̃

)
0,Ω

is continuous on L2(Ω) × KT (ε; Ω), and the embedding of

KT (ε; Ω) into L2(Ω) is compact by theorem 2.7. Hence formulation (46) enters the coercive
+ compact framework, and so does formulation (43). The bound ‖Ẽ‖H(curl;Ω) ≲ ‖∇p‖0,Ω +
‖f‖0,Ω + ‖Bd‖H(curl;Ω) follows from (44), and the bound on ‖E‖H(curl;Ω) is a consequence of
the triangle inequality.

Assumption. In the rest of the manuscript, we assume that the problem (43) is well-posed
and, in particular, (47) holds.

4.2 Extra-regularity of the solution’s curl

As previously, we are now willing to estimate the regularity of the solution and its curl in the
Neumann case, depending on the extra-regularity of the data. We make the following extra-
regularity assumptions for the next two subsections. We assume that ∂Ω is of class C2, and that
ε ∈ W1,∞(Ω) and µ ∈ C1(Ω). Regarding the extra-regularity of f and Bd, we assume that
f ∈ H(curl; Ω) ∩Hs(Ω) for a given s ∈ [0, 1], and that Bd ∈ Hr′(Ω) and curlBd ∈ Hr(Ω)
for given r′, r ∈ [0, 1]\{1

2}. We begin with the estimation on the curl. The analysis relies on
the same arguments as in subsection 3.2.

Let us introduce B := µ−1 curlE ∈ L2(Ω). There holds curlB = f + ω2εE ∈ L2(Ω),
hence B ∈ H(curl; Ω), with the bound ‖B‖H(curl;Ω) ≲ ‖E‖H(curl;Ω) + ‖f‖0,Ω, according to
proposition 2.1. Moreover, B ×n = Bd ×n on ∂Ω. Letting B0 := B −Bd ∈ H0(curl; Ω), we
introduce the splitting of B0 by theorem 3.2:{

B0 = Breg +∇ϕB, with Breg ∈ H1(Ω), ϕB ∈ H1
0 (Ω), and

‖Breg‖1,Ω + ‖ϕB‖1,Ω ≲ ‖B0‖H(curl;Ω).
(48)

As divµB = 0, ϕB is governed by the Dirichlet problem{
Find ϕB ∈ H1

0 (Ω) such that(
µ∇ϕB|∇q

)
0,Ω

=
(
divµBd + divµBreg|q

)
0,Ω

, ∀q ∈ H1
0 (Ω).

(49)

As in subsection 3.2, one can apply the shift theorem 3.3 to get the regularity estimate on ϕB

and curlE.

Theorem 4.2. Let E be governed by (42), and B = µ−1 curlE be split as B = B0 +Bd with
B0 ∈ H0(curl; Ω). If ∂Ω is of class C2, if µ ∈ C1(Ω), and if Bd ∈ Hr′(Ω) with r′ ∈ [0, 1]\{1

2},
then

curlE ∈ Hr′(Ω) and
‖ curlE‖r′,Ω ≲ ‖f‖0,Ω + ‖ curlBd‖0,Ω + ‖Bd‖r′,Ω.

(50)
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Remark 4.1. No regularity assumption on ε (other than ε ∈ L∞(Ω)) is required here.

Proof. The proof proceeds as in theorem 3.4. We apply the shift theorem 3.3 to the Dirichlet
problem (49) governing ϕB. Let us introduce the right-hand side of (49), ℓ ∈ (H1

0 (Ω))
′, and

defined by
ℓ : q 7→

(
divµBd + divµBreg|q

)
0,Ω

.

We observe that there holds, as µ ∈ W1,∞(Ω), that divµBreg ∈ L2(Ω) and divµBd ∈ Hr′−1(Ω)

(as soon as r′ 6= 1
2 for the latter). Then ℓ ∈ Hr′−1(Ω) =

(
H1−r′

0 (Ω)
)′

. Hence, by the shift
theorem 3.3, we have that ϕB ∈ H1+r′(Ω). Moreover, thanks to (47), we have the bound

‖ϕB‖1+r′,Ω ≲ ‖f‖0,Ω + ‖ curlBd‖0,Ω + ‖Bd‖r′,Ω.

So, B = Breg+∇ϕB+Bd ∈ Hr′(Ω) and we conclude that (50) holds, because µ ∈ W1,∞(Ω).

4.3 Extra-regularity of the solution

To estimate the regularity of the solution itself, we follow the same approach as in subsection 3.3,
with the same assumptions as in subsection 4.2. To that end, let us introduce G := curlB =
f + ω2εE ∈ L2(Ω). As ε ∈ W1,∞(Ω) and f ∈ H(curl; Ω), one finds that curlG = curlf +
ω2 curl εE ∈ L2(Ω), hence G ∈ H(curl; Ω), with the bound ‖G‖H(curl;Ω) ≲ ‖E‖H(curl;Ω) +
‖f‖H(curl;Ω). By theorem 3.5, one can introduce the splitting of G:{

G = Greg +∇ϕG, with Greg ∈ H1(Ω), ϕG ∈ H1
zmv(Ω), Greg · n|∂Ω = 0 and

‖Greg‖1,Ω + ‖ϕG‖1,Ω ≲ ‖G‖H(curl;Ω).
(51)

Therefore, for any q ∈ H1
zmv(Ω), there holds (G|∇q)0,Ω = (curlB|∇q)0,Ω = (curlBd|∇q)0,Ω,

as the part with B0 ∈ H0(curl; Ω) vanishes by integration by parts. Then ϕG is governed by
the Neumann problem{

Find ϕG ∈ H1
zmv(Ω) such that

(∇ϕG|∇q)0,Ω = (curlBd −Greg|∇q)0,Ω , ∀q ∈ H1
zmv(Ω).

(52)

As in subsection 3.3, the regularity of ϕG, and E, is then given by the shift theorem 3.6.

Theorem 4.3. Let E be governed by (42), and B = µ−1 curlE be split as B = B0 +Bd with
B0 ∈ H0(curl; Ω). If ∂Ω is of class C2, if ε ∈ W1,∞(Ω), if f ∈ H(curl; Ω) ∩ Hs(Ω) with
s ∈ [0, 1], and if curlBd ∈ Hr(Ω) with r ∈ [0, 1]\{1

2}, then

E ∈ Hmin(r,s)(Ω) and
‖E‖min(r,s),Ω ≲ ‖ curlf‖0,Ω + ‖f‖s,Ω + ‖Bd‖0,Ω + ‖ curlBd‖r,Ω.

(53)

Remark 4.2. No regularity assumption on µ is required here.

Proof. The proof is as in theorem 3.7: we want to apply the shift theorem 3.6 to the problem
(52) governing ϕG. Let us introduce the right-hand side of (52), ℓ ∈ (H1

zmv(Ω))
′, and defined by

ℓ : q 7→ (curlBd −Greg|∇q)0,Ω .

To determine the regularity of ϕG, one wants to determine whether the form ℓ belongs to(
H1−σ

zmv (Ω)
)′ for σ ∈ [0, 1]\1

2 as large as possible.
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If r < 1
2 , then Hr(Ω) identifies with Hr

0(Ω), the dual space of H−r(Ω). Hence the product
(curlBd −Greg|∇q) is meaningful as soon as q ∈ H1−r

zmv (Ω), because ∇q ∈ H−r(Ω) in this case.
This means that ℓ belongs to

(
H1−r

zmv (Ω)
)′, and the shift theorem 3.6 (i), with σ = r, ensures

that ϕG ∈ H1+r(Ω), with the bound
‖ϕG‖1+r,Ω ≲ ‖f‖H(curl;Ω) + ‖ curlBd‖r,Ω + ‖Bd‖0,Ω.

On the other hand, if r > 1
2 , the previous argument is not valid anymore. However, curlBd·n|∂Ω

makes sense in Hr−1/2(∂Ω), and, as Greg · n|∂Ω = 0, ℓ(q) rewrites by integrations by parts
ℓ(q) = (divGreg|q)0,Ω+〈curlBd ·n, q〉H1/2(∂Ω). As divGreg ∈ L2(Ω), ℓ satisfies the assumptions
of the shift theorem 3.6 (ii), with σ = r, and we conclude that ϕG ∈ H1+r(Ω), with the same
bound as above.
Finally, ϕG ∈ H1+r(Ω) in all cases, and G = Greg +∇ϕG ∈ Hr(Ω). In passing, we note that
ε−1 ∈ W1,∞(Ω), because ε−1 ∈ L∞(Ω) (Proposition 2.1) and ε ∈ W1,∞(Ω). Recalling that
E = ω−2ε−1(G− f), with f ∈ Hs(Ω), we conclude that (53) holds.

To conclude, we sum up the regularity results of this section.
Theorem 4.4. Let E be governed by problem (42), and B = µ−1 curlE be split as B =

B0 + Bd with B0 ∈ H0(curl; Ω). If ∂Ω is of class C2, if µ ∈ C1(Ω), if ε ∈ W1,∞(Ω), if
f ∈ H(curl; Ω)∩Hs(Ω) with s in [0, 1], and if Bd ∈ Hr′(Ω) and is such that curlBd ∈ Hr(Ω)
with r′, r in [0, 1]\1

2 , then E ∈ Hmin(r,s)(Ω), curlE ∈ Hr′(Ω), and
‖E‖min(r,s),Ω ≲ ‖f‖s,Ω + ‖ curlf‖0,Ω + ‖Bd‖0,Ω + ‖ curlBd‖r,Ω,
‖ curlE‖r′,Ω ≲ ‖f‖0,Ω + ‖Bd‖r′,Ω + ‖ curlBd‖0,Ω.

(54)

5 H(curl)-conforming finite element discretization

Edge finite element methods are natural candidates for the numerical solution of electromagnetic
problems. Since these methods lead to H(curl)-conforming approximations, some features of
the numerical solutions can be rather easily studied by leveraging the results obtained for the
exact problems. While the comprehensive numerical analysis of the approximate problems
is out of the scope of this paper, this section aims at giving a few numerical results for the
considered problems. After introducing a standard edge finite element discretization and basic
results, we derive an a priori error estimate, which is obtained by using the regularity estimates.
Elementary numerical results are then proposed to illustrate the expected convergence rate of
the method.

5.1 Discretization and a priori error estimate

We consider a shape regular familly of meshes (Th)h for the domain Ω. For the sake of simplicity,
we assume that the domain Ω is a Lipschitz polyhedron. Each mesh Th is made up of closed
non-overlapping tetrahedra, generically denoted by K, and is indexed by h := maxK hK , where
hK is the diameter of K. Denoting by ρK the diameter of the largest ball inscribed in K, we
assume that there exists a shape regularity parameter ς > 0 such that for all h, for all K ∈ Th,
it holds that hK ≤ ςρK .

Finite-dimensional subspaces (V h)h of H(curl; Ω) are defined by using the so-called Nédélec’s
first family of edge finite elements. Elements of degree 1 are considered. One has

V h := {vh ∈ H(curl; Ω),vh|K ∈ R1(K), ∀K ∈ Th},
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where R1(K) is the six-dimensional vector space of polynomials on K

R1(K) := {v ∈ P 1(K) : v(x) = a+ b× x, a, b ∈ R3}.

The subspaces verify the approximability property (see e.g. Lemma 7.10 in Ref. [24])

lim
h→0

(
inf

vh∈V h

‖v − vh‖H(curl;Ω)

)
= 0, ∀v ∈ H(curl; Ω). (55)

We also introduce the closed subspaces (V 0
h)h with V 0

h := V h ∩H0(curl; Ω), which also verify
the approximability property in H0(curl; Ω).

Using the standard Galerkin approach, the variational formulation of the approximate prob-
lem is obtained by seeking the solution in V h with test functions in V 0

h or V h for the Dirichlet
and Neumann cases, respectively. Therefore, the discrete Dirichlet problem reads

Find Eh ∈ V h such that
a(Eh,F h) = ℓD(F h), ∀F h ∈ V 0

h,
Eh × n = gh on ∂Ω,

(56)

and the discrete Neumann problem reads{
Find Eh ∈ V h such that
a(Eh,F h) = ℓN(F h), ∀F h ∈ V h,

(57)

with the sesquilinear form

a : (u,v) 7→ (µ−1 curlu| curlv)0,Ω − ω2(εu|v)0,Ω (58)

defined on H(curl; Ω). The linear forms ℓD and ℓN are defined in sections 3.1 and 4.1, respec-
tively. The right-hand-side term gh is the projection of g onto γTV h. For simplicity, in the
remaining, we assume that the integrals are computed exactly.

As a first result, we derive a sharp error estimate for the interpolation of the solutions of
both problems onto the finite element space. Let πh denote the classical interpolation operator
from H0(curl; Ω) onto V 0

h, resp. from H(curl; Ω) onto V h. One has the following interpolation
error estimate [7]:

Theorem 5.1. Let t ∈ (1/2, 1] and t′ ∈ (0, 1]. For all v ∈
{
v ∈ Ht(Ω), curlv ∈ Ht′(Ω)

}
, it

holds that

‖v − πhv‖H(curl;Ω) ≲ hmin(t,t′)
(
‖v‖t,Ω + ‖ curlv‖t′,Ω

)
. (59)

In this result, t > 1/2 is assumed for simplicity. A similar result can be obtained for t ∈ (0, 1]
with the help of the combined interpolation operator (see Section 4.2 in Ref. [10]), but this
result is more involved. Indeed, the norm of the gradient part of the decomposition of v (given
in theorems 3.2 or 3.5) then appears in the right-hand side of (59), in addition to both terms
already there. Nevertheless, since the gradient part is bounded by the norm of the data (see
again theorems 3.2 or 3.5), the same conclusion stands in this general case. Then, observe that
one can replace the field v with E in (59). Using theorems 3.8 and 4.4, the norms ‖E‖t,Ω and
‖ curlE‖t′,Ω are bounded by the norms on the data, and the exponents become t = min(s, r)
and t′ = r′, where s, r, r′ are the extra-regularity exponents for the data. Injecting the regularity
estimates in (59) then gives

‖E − πhE‖H(curl;Ωh) ≲ hmin(s,r,r′), (60)
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where the bounds on the exponents are defined in theorems 3.8 and 4.4 for the Dirichlet and
Neumann cases, respectively.

In order to derive an a priori error estimate for both problems, one has to bound the
error between the numerical solution and the exact solution with the interpolation error. For
a problem with a coercive sesquilinear form, it is known that an a priori error estimate for the
numerical solution is obtained thanks to Céa’s lemma.

Theorem 5.2. When the sesquilinear form a(·, ·) is coercive, it holds that

∃C > 0, ∀h, ‖E −Eh‖H(curl;Ω) ≤ C inf
wh∈V h

‖E −wh‖H(curl;Ω) . (61)

Using wh = πhE and the estimates (60) and (61), one has that

‖E −Eh‖H(curl;Ω) ≲ hmin(s,r,r′), (62)

where the exponents depend only on the regularity of the data.
Let us highlight that the regularity results have been obtained for a boundary of class C2,

while the interpolation error estimates are for Lipschitz polyhedral domains. The error resulting
from this geometric approximation can be studied thanks to the framework introduced by Dello
Russo and Alonso [15]. Following Section 8 there, one obtains additional terms in the right-hand
side of (61), which are asymptotically all in the order of O(h).

On the other hand, to obtain a similar estimate for a problem with a non-coercive sesquilinear
form, one has to prove a uniform discrete inf-sup condition and to combine it with a generalised
Céa’s lemma. In our case, when a(·, ·) is not coercive, deriving a uniform discrete inf-sup
condition requires tedious developments. We refer the reader to [18] and [11] for analyses in
slightly different contexts. Provided that such a result is available, the estimate (62) holds.

5.2 Numerical results with a manufactured benchmark

To illustrate the expected convergence rate with a numerical case, we consider a simple bench-
mark with a manufactured solution. Let a spherical domain of unit radius centered at the
origin, Ω = {x ∈ R3, ‖x‖ < 1}, the angular frequency ω = 1 and the material tensors

µ = diag
(
1, 1, 1

)
, ε = diag

(
1 + 10−1i, 1 + 10−1i,−2 + 10−1i

)
, (63)

which fulfill assumption (2). According to Lemma 2.3 in Ref. [25], the sesquilinear form a
is coercive for these material tensors. A nonhomogeneous Dirichlet or Neumann boundary
condition is prescribed on the boundary of the domain. We consider the manufactured solution

Eref =
[
− 1, 1, 1

]⊤
exp(iπk · x), with k =

1√
14

[
3, 2, 1

]⊤
. (64)

The volume source term is chosen accordingly, i.e. f = curl curlEref − ω2εEref, as well as the
right-hand-side term of the boundary conditions.

Numerical simulations are performed with FreeFem [20] using six unstructured meshes made
of tetrahedra and first-degree edge finite elements. Because the boundary of the meshes (which
are polyhedral) does not exactly match the curved border of the spherical domain, the boundary
data used in the numerical simulation are evaluated on the sphere and then projected on the
surface mesh. It has been proven that this geometric approximation introduces a geometric
error of the order O(h) [15].
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Figure 1: Relative error in H(curl)-norm obtained with six meshes for the manufactured benchmark
with Dirichlet and Neumann boundary conditions. The relative projection error in H(curl)-norm is
plotted in both cases. The dashed lines correspond to the linear scale O(h).

The relative numerical error in H(curl)-norm is plotted as a function of the mesh size h in
Fig. 1 for both Dirichlet and Neumann cases. As a reference, the relative error corresponding
to the projection of the reference solution on the discrete solution space, which corresponds to
the best approximation error according to Céa’s lemma, is plotted as well. As the solution Eref
is smooth, it belongs to H1(Ω) as well as its curl, and one has t = t′ = 1 in (62). Therefore,
one expects the error to evolve linearly with the mesh size h. The results reported in Fig. 1
show that the convergence behaves effectively like O(h) for both problems.

6 Conclusion and extensions

We have addressed the mathematical analysis of time-harmonic electromagnetic boundary value
problems in complex anisotropic material tensors, which fulfill a general ellipticity condition. Af-
ter having developed a functional framework suited to these complex material tensors (i.e. func-
tion spaces, Helmholtz decompositions, Weber inequalities, and compact embedding results),
we have analyzed the well-posedness of the Dirichlet and Neumann problems (see Theorems 3.1
and 4.1, respectively), as well as the regularity of the solution (i.e. the electric field) and the
solution’s curl. The regularity results are summarized in Theorems 3.8 and 4.4. A preliminary
numerical analysis with a H(curl)-conforming finite element discretization has been proposed.

Among possible extensions, one could consider a domain Ω with a non-smooth boundary
(e.g. polyhedral), possibly non-convex. The shift theorems then have to be revisited. To our
knowledge, results are available for piecewise smooth, Hermitian and elliptic material tensors
(see e.g. [13, 19, 8, 12] for shift theorems in settings with a non-smooth boundary and Hermitian
tensors). The theory developed in this work could be extended thanks to these results. One
could also consider settings with mixed boundary conditions, i.e. when a Dirichlet condition
is prescribed on one part of the boundary, and a Neumann condition is prescribed on the rest
of the boundary. To carry out the theory and fit the problem within the coercive+compact
framework, we refer the reader to [16]. For shift theorems, we refer the reader to the works of
Jochmann [22]. Finally, one could consider variational formulations with the magnetic field as
the unknown, which poses no extra difficulty.
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A Additional definitions

Definition A.1. From a topological point of view, a domain Ω verifies the hypothesis (Top)I
if one of the following conditions holds:

1. For all curl-free vector field v ∈ C1(Ω), there exists p ∈ C0(Ω) such that v = ∇p in Ω.
2. There exist I > 0 non-intersecting, piecewise plane manifolds, (Σj)j=1,...,I , with boundaries

∂Σi ⊂ ∂Ω, such that, if we let Ω̇ = Ω \
⋃I

i=1Σi, for all curl-free vector field v, there exists
ṗ ∈ C0(Ω̇) such that v = ∇ṗ in Ω̇.

If the first condition holds, Ω is topologically trivial, and we set I = 0 and Ω̇ = Ω. If the second
condition holds, Ω is topologically non-trivial. See [17] for further details.

The set Ω̇ has pseudo-Lipschitz boundary in the sense of [4]. The extension operator from L2(Ω̇)
to L2(Ω) is denoted by ,̃ whereas the jump across Σi is denoted by [·]Σi , for i = 1, · · · , I. The
definition of the jump depends on the (fixed) orientation of the normal vector field to Σi. One
has the integration by parts formula [4]:

(v|∇q̇)0,Ω̇ + (div v|q̇)0,Ω̇ =
∑

1≤j≤I

〈v · n, [q̇]Σj 〉H1/2(Σj)
, ∀v ∈ H0(div; Ω), ∀q̇ ∈ H1(Ω̇). (65)

For the sake of completeness, we recall Definition 3.6.3 of Ref. [5].

Definition A.2. A domain Ω is said of the A-type if, for any x ∈ ∂Ω, there exists a neigh-
bourhood V of x in R3, and a C2 diffeomorphism that transforms Ω∩V into one of the following
types, where (x1, x2, x3) denote the Cartesian coordinates and (ρ, ω) ∈ R × S2 the spherical
coordinates in R3:

1. [x1 > 0], i.e. x is a regular point;
2. [x1 > 0, x2 > 0], i.e. x is a point on a salient (outward) edge;
3. R3\[x1 ≥ 0, x2 ≥ 0], i.e. x is a point on a reentrant (inward) edge;
4. [ρ > 0, ω ∈ Ω̃], where Ω̃ ⊂ S2 is a topologically trivial domain. In particular, if ∂Ω̃ is

smooth, x is a conical vertex; if ∂Ω̃ is a made of arcs of great circles, x is a polyhedral
vertex.
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