Computing persistent Stiefel-Whitney classes of line bundles - Archive ouverte HAL
Article Dans Une Revue Journal of Applied and Computational Topology Année : 2021

Computing persistent Stiefel-Whitney classes of line bundles

Résumé

We propose a definition of persistent Stiefel-Whitney classes of vector bundle filtrations. It relies on seeing vector bundles as subsets of some Euclidean spaces. The usual Čech filtration of such a subset can be endowed with a vector bundle structure, that we call a Čech bundle filtration. We show that this construction is stable and consistent. When the dataset is a finite sample of a line bundle, we implement an effective algorithm to compute its persistent Stiefel-Whitney classes. In order to use simplicial approximation techniques in practice, we develop a notion of weak simplicial approximation. As a theoretical example, we give an in-depth study of the normal bundle of the circle, which reduces to understanding the persistent cohomology of the torus knot (1,2).
Fichier principal
Vignette du fichier
PersistentStiefelWhitneyClasses.pdf (3.59 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02619607 , version 1 (25-05-2020)
hal-02619607 , version 2 (11-11-2021)

Identifiants

Citer

Raphaël Tinarrage. Computing persistent Stiefel-Whitney classes of line bundles. Journal of Applied and Computational Topology, 2021, ⟨10.1007/s41468-021-00080-4⟩. ⟨hal-02619607v2⟩
129 Consultations
188 Téléchargements

Altmetric

Partager

More