Folding-based Compression of Point Cloud Attributes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Folding-based Compression of Point Cloud Attributes

Maurice Quach
Frédéric Dufaux

Résumé

Existing techniques to compress point cloud attributes leverage either geometric or video-based compression tools. We explore a radically different approach inspired by recent advances in point cloud representation learning. Point clouds can be interpreted as 2D manifolds in 3D space. Specifically , we fold a 2D grid onto a point cloud and we map attributes from the point cloud onto the folded 2D grid using a novel optimized mapping method. This mapping results in an image, which opens a way to apply existing image processing techniques on point cloud attributes. However, as this mapping process is lossy in nature, we propose several strategies to refine it so that attributes can be mapped to the 2D grid with minimal distortion. Moreover, this approach can be flexibly applied to point cloud patches in order to better adapt to local geometric complexity. In this work, we consider point cloud attribute compression; thus, we compress this image with a conventional 2D image codec. Our preliminary results show that the proposed folding-based coding scheme can already reach performance similar to the latest MPEG Geometry-based PCC (G-PCC) codec.
Fichier principal
Vignette du fichier
2020_ICIP_Quach_et_al.pdf (4.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02609423 , version 1 (16-06-2020)

Identifiants

Citer

Maurice Quach, Giuseppe Valenzise, Frédéric Dufaux. Folding-based Compression of Point Cloud Attributes. IEEE International Conference on Image Processing (ICIP’2020), Oct 2020, Abu Dhabi, United Arab Emirates. pp.3309-3313, ⟨10.1109/ICIP40778.2020.9191180⟩. ⟨hal-02609423⟩
63 Consultations
69 Téléchargements

Altmetric

Partager

More