Continuity equation and characteristic flow for scalar Hencky plasticity
Résumé
We investigate uniqueness issues for a continuity equation arising out of the simplest model for plasticity, Hencky plasticity. The associated system is of the form $\rm{ curl\;}(\mu\sigma)=0$ where $\mu$ is a nonnegative measure and $\sigma$ a two-dimensional divergence free unit vector field. After establishing the Sobolev regularity of that field, we provide a precise description of all possible geometries of the characteristic flow, as well as of the associated solutions.
Origine | Fichiers produits par l'(les) auteur(s) |
---|