Contrast estimation of time-varying in finite memory processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Contrast estimation of time-varying in finite memory processes

Résumé

This paper aims at providing statistical guarantees for a kernel-based estimation of time-varying parameters driving the dynamic of infinite memory processes introduced by Doukhan and Wintenberger \cite{DW}. We then extend the results of Dahlhaus {\it et al.} \cite{DRW} on local stationary Markov processes to other important models such as the GARCH model. The estimators are computed as localized M-estimators of any contrast satisfying appropriate regularity conditions. % as in Bardet and Wintenberger \cite{BW}. We prove the uniform consistency and the pointwise asymptotic normality of such kernel-based estimators. We apply our results to usual contrasts such as least-square, least absolute value, or quasi-maximum likelihood contrasts. Various time-varying models such as AR$(\infty$), ARCH$(\infty)$ and LARCH$(\infty)$ are considered. We discuss their approximation of locally stationary ARMA and GARCH models under contraction conditions. Numerical experiments demonstrate the efficiency of the estimators on both simulated and real data sets.
Fichier principal
Vignette du fichier
nonstationarityGARCH_14102020.pdf (773.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02586009 , version 1 (15-05-2020)
hal-02586009 , version 2 (16-10-2020)
hal-02586009 , version 3 (15-06-2021)

Identifiants

  • HAL Id : hal-02586009 , version 2

Citer

Jean-Marc Bardet, Paul Doukhan, Olivier Wintenberger. Contrast estimation of time-varying in finite memory processes. 2021. ⟨hal-02586009v2⟩
274 Consultations
183 Téléchargements

Partager

More