Journal Articles Functiones et Approximatio Commentarii Mathematici Year : 2013

Some elementary explicit bounds for two mollifications of the Moebius function

Abstract

We prove that the $\sum_{d\le x, (d,r)=1}\mu(d)/d^{1+\varepsilon}$ is bounded by $1 + \varepsilon$, uniformly in $x \ge 1$, $r$ and $\varepsilon > 0$. We prove a similar estimate for the quantity $\sum_{d\le x, (d,r)=1} \mu(d) \log(x/d)/d^{1+\varepsilon}. When $\varepsilon=0$, $r$ r varies between 1 and a hundred, and x is below a million, this sum is non-negative and this raises the question as to whether it is non-negative for every x.
Fichier principal
Vignette du fichier
MuLog-4.pdf (271.93 Ko) Télécharger le fichier
MuLog-4 (1).pdf (271.93 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02573950 , version 1 (14-05-2020)

Identifiers

Cite

Olivier Ramaré. Some elementary explicit bounds for two mollifications of the Moebius function. Functiones et Approximatio Commentarii Mathematici, 2013, 49 (2), pp.229-240. ⟨10.7169/facm/2013.49.2.3⟩. ⟨hal-02573950⟩
36 View
73 Download

Altmetric

Share

More