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Some elementary explicit bounds for two

mollifications of the Moebius function

O. Ramaré

May 15, 2013

Abstract

We prove that the sum
∑{

d≤x,
(d,r)=1

µ(d)/d1+ε is bounded by 1 + ε,

uniformly in x ≥ 1, r and ε > 0. We prove a similar estimate for the
quantity

∑{
d≤x,

(d,r)=1

µ(d) log(x/d)/d1+ε. When ε = 0, r varies between

1 and a hundred, and x is below a million, this sum is non-negative and
this raises the question as to whether it is non-negative for every x.

1 Introduction and results

Our first result is the following:

Theorem 1.1. When r ≥ 1 and ε ≥ 0, we have∣∣∣∣ ∑
d≤x,

(d,r)=1

µ(d)

d1+ε

∣∣∣∣ ≤ 1 + ε.

This Lemma generalizes the estimate of [5, Lemme 10.2] which corre-
sponds to the case ε = 0. This generalization is not straightforward at all
and requires a change of proof. The case ε = 0 and r = 1 is classical.
The parameter ε that is being introduced induces some flexibility useful
when applying Rankin’s method (devised in [8]). As it turns out, we can do
somewhat better concerning the lower bound, and we prove that

−11
15(1 + ε) ≤

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
.

We ran computations covering the range 1 ≤ x ≤ 106 and 1 ≤ r ≤ 100 with
ε = 0 ; we found that the lowest lower bound was met at x = 13 and r = 1.
This raises the following question:
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Question 1. It is true that∑
d≤x,

(d,r)=1

µ(d)

d
≥ −2323/30030 ?

See section 2 for a very preliminary result in this direction.
We proceed by proving the following more involved form:

Theorem 1.2. When r ≥ 1 and 1.38 ≥ ε ≥ 0, we have∣∣∣∣∣ ∑
d≤x,

(d,r)=1

µ(d)

d1+ε
log

x

d

∣∣∣∣∣ ≤ 1.4 + 4.7ε+ 3.3ε2 + (1 + ε)
r1+ε

φ1+ε(r)
xε

where
r1+ε

φ1+ε(r)
=
∏
p|r

p1+ε

p1+ε − 1
. (1)

The dependence in r is optimal as seen by taking for r the product of
every primes not more than

√
x. The proof is again unbalanced with respect

to the upper and the lower bound, and we prove a somewhat better lower
bound:

−(1.434 + 4.992ε+ 3.558ε2) ≤
∑
d≤x,

(d,r)=1

µ(d)

d1+ε
log

x

d
.

I expect the factor xε in the upper bound to be a blemish; however, the
(limited) numerical verifications we ran suggest that the factor r1+ε/φ1+ε(r)
cannot be omitted even if the condition r ≤ x is added (this condition often
appears in practice). It should be added that it is not difficult to prove that∑

d≤x

µ(d)

d
log

x

d
∼ 1 (x→∞)

which means that one cannot expect an arbitary small constant in the right
hand side of the inequality given in Theorem 1.2. We have checked that

0 ≤
∑
d≤x,

(d,r)=1

µ(d)

d
log

x

d
≤ r

φ(r)
+ 0.007 (x ≤ 106, 1 ≤ r ≤ 100)

(where x is a real number and not especially an integer) and all these maxima
were in fact very close to r/φ(r). These computations raise two questions:

Question 2. Is it true that∑
d≤x,

(d,r)=1

µ(d)

d
log

x

d
≥ 0, (x ≥ 1, r ≥ 1) ?
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Question 3. Is it true that∑
d≤x,

(d,r)=1

µ(d)

d
log

x

d
≤ r

φ(r)
+ 1, (x ≥ 1, r ≥ 1) ?

In both these questions, x is only assumed to be a positive real number.
On recalling what happens in the case of Turán’s conjecture on the sum-
matory function of the Liouville function divided by its argument, see [2],
we believe that the answer to the first question is no. The sum is however
less likely to be very erratical because of the smoothing factor, a factor that
is absent in Turán’s problem. In direction of these conjecture, we note the
following formula∫ ∞

1

∑
d≤x,

(d,r)=1

µ(d)

d
log

x

d

dx

xs+1
=

r1+s

φ1+s(r)

1

s2ζ(1 + s)

from which we easily deduce (on taking s = ε > 0 and letting ε go to infinity)
that

lim sup
x

∑
d≤x,

(d,r)=1

µ(d)

d
log

x

d
≥ r

φ(r)
.

We discuss some related points in the last section.

Notation

We use here the notation h = O∗(k) to mean that |h| ≤ k. We denote by
τ(m) the number of (positive) divisors of m, and by (a, b) the gcd of a and b.
For ε ≥ 0 and r ≥ 1 any natural squarefree number, we define two functions.
The first one is alternatively defined by

fr,ε(n) =
∑
`|n,

(`,r)=1

µ(`)

`ε
τ(n/`) (2)

or, in multiplicative form, by:

fr,ε(n) =
∏
pν‖n,
p-r

(
ν + 1− ν

pε

) ∏
pν‖n,
p|r

(ν + 1). (3)

We easily determine its Dirichlet series:
∑

n≥1 fr,ε(n)/ns = ζ(s)2/ζ(s + ε).
We shall further write

fr,ε(n) = 11 ? gr,ε(n) (4)
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where the function gr,ε has the essential property of being non-negative and
is being defined by:

gr,ε(n) =
∑
`|n,

(`,r)=1

µ(`)

`ε
≥ 0. (5)

Thanks

Sincere thanks are due to the careful referee who has checked our computa-
tions and indeed has rooted out several mistakes.

2 Verifying Theorem 1.1 for small values

We study what happens for small values here. The proof is pedestrian and
painful, but I have not seen any way to avoid it, or to present it in a more
general frame.

We study the following quantity:

m0(r, x) =
∑
d≤x,

(d,r)=1

µ(d)

d1+ε
. (6)

Lemma 2.1. When x < 10 and ε ≥ 0, we have −1/30 ≤ m0(r, x) ≤ 1.

Proof. The sum we consider reads

1− h(2)

21+ε
− h(3)

31+ε
− h(5)

51+ε
+
h(6)

61+ε
− h(7)

71+ε

where h is the characteristic function of the integers ≤ x that are coprime
with r. The minimum is clearly

1− 1

21+ε
− 1

31+ε
− 1

51+ε

which is minimal when ε = 0. This is the −1/30. The maximum contains
the summand 1. If the summand 1/61+ε is present, then so is the summand
−1/21+ε. This concludes the proof.

3 Auxiliaries

Lemma 3.1. When ε ≥ 0, we have∑
h≤H

hε =
H1+ε

1 + ε
+O∗

(
Hε
)
.

This is also ≤ H1+ε. When H is an integer, we have
∑

h≤H h
ε ≥ H1+ε

1+ε .
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Proof. Indeed, when ε > 0, a summation by parts gives us directly

∑
h≤H

hε =
∑
h≤H

ε

∫ h

0
dt/t1−ε = ε

∫ H

0

∑
t<h≤H

1 dt/t1−ε

= ε

∫ H

0
(H − t) dt/t1−ε +O∗(Hε).

We proceed by continuity to cover the case ε = 0. When H is an integer, a
comparison to an integral gives the result.

Lemma 3.2. For L > 1, we have∑
n≤L

fr,ε(n) ≤ L
∑
`≤L

gr,ε(`)/`. (7)

Proof. We recall (4) and write, since gr,ε ≥ 0∑
n≤L

fr,ε(n) =
∑
km≤L

gr,ε(m) ≤ L
∑
m≤L

gr,ε(m)/m.

The Lemma follows readily.

Lemma 3.3. For every integer n and any ε ≥ 0, we have

g1,ε(`) ≤
∑
mn=`

g1,ε/2(m)g1,ε/2(n).

Proof. We check that, when α ≥ 1 is an integer and p a prime number,

g1,ε
(
pα
)

= 1− 1

pε
= 1− 1

pε/2
+

1

pε/2

(
1− 1

pε/2

)
≤≤ g1,ε/2

(
pα
)
g1,ε/2(1) + g1,ε/2(1)g1,ε/2

(
pα
)
≤

∑
0≤β≤α

g1,ε/2
(
pα−β

)
g1,ε/2

(
pβ
)
.

We conclude by invoking the multiplicativity of g1,ε/2.

Lemma 3.4. We have when L ≥ 7.2,∑
p≤L

log p

p− 1
≤ logL.

Proof. We cite [9, (2.8)]:∑
p≤L

log p

p
≤ logL− γ −

∑
p≥2

log p

p(p− 1)
+

1

2 logL
, (L ≥ 319)
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from which we deduce, for L ≥ 319,∑
p≤L

log p

p− 1
≤ logL− γ +

1

2 logL
.

A simple GP script shows that∑
p≤L

log p

p− 1
≤ logL

when 1000 ≥ L ≥ 7.2, and the reader will conclude readily.

Lemma 3.5. We have, when L ≥ 1 and ε ≥ 0,∑
`≤L

g1,ε(`)/` ≤ Lε. (8)

Proof. Verifying the stated inequality for 1 ≤ L < 8 is (tedious but) easy,
hence we can now assume that L ≥ 8. We readily find that the sum in
question is not more than

T =
∏
p≤L

1− p−1−ε

1− p−1
= exp

∑
p≤L

log

(
1 +

1− p−ε

p− 1

)
.

We apply log(1 + x) ≤ x for non-negative x and 1 − p−ε ≤ ε log p to get,
when L ≥ 8,

T ≤ exp ε
∑
p≤L

log p

p− 1
≤ Lε

by invoking Lemma 3.4.

Lemma 3.6. We have, when L ≥ 1, r ≥ 1 and ε ≥ 0,∑
`≤L

gr,ε(`)/` ≤
r1+ε

φ1+ε(r)
Lε. (9)

Proof. We use the notation d|r∞ to say that each prime factor of d divides
r. We write ∑

`≤L

gr,ε(`)

`
=
∑
d|r∞,
d≤L

∑
`≤L/d,
(`,r)=1

gr,ε(`)

`d

≤ Lε
∑
d|r∞

1

d1+ε
= Lε

r1+ε

φ1+ε(r)

by Lemma 3.5. The Lemma follows readily.
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Lemma 3.7.∑
m≤M

mετ(m) =
M1+ε

1 + ε

(
logM + 2γ − 1

1 + ε

)
+O∗

(
0.961(1 + 2ε)M

1
2+ε

)

Proof. We recall part of [1, Theorem 1.1]:∑
m≤t

τ(m) = t log t+ (2γ − 1)t+O∗(0.961
√
t), (t ≥ 1).

Since (t log t+ (2γ−1)t)/
√
t is seen to vary between −0.681 and 0.155 when

t varies between 0 and 1, this estimate is also valid for t > 0. We use
summation by parts and find that

∑
m≤M

mετ(m) = M ε
∑
m≤M

τ(m)− ε
∫ M

0

∑
m≤t

τ(m)dt/t1−ε

= M1+ε(logM + 2γ − 1) +O∗
(

0.961M
1
2+ε
)

− ε
∫ M

0
(log t+ 2γ − 1)tεdt+O∗

(
0.961ε

∫ M

0
tε−1/2dt

)
=
M1+ε

1 + ε

(
logM + 2γ − 1

1 + ε

)
+O∗

(
0.961(1 + 2ε)M

1
2+ε

)
.

Lemma 3.8. We have, when n ≥ 2,

gr,ε(n) ≤ 1−
11(n,r)=1µ

2(n)

nε
.

Proof. Indeed, we verify that (1 − a)(1 − b) ≤ (1 − ab) when 0 ≤ a, b ≤ 1.
The Lemma readily follows by recursion on the number of prime factors
of n.

4 Some lemmas on squarefree numbers

Here is a Lemma from [4]:

Lemma 4.1. We have, for D ≥ 1 664∑
d≤D

µ2(d) =
6D

π2
+O∗

(
0.1333

√
D
)
.

In particular, this is not more than 0.62D when D ≥ 1700.
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Lemma 4.2. We have∑
d≤x

µ2(d)/
√
d ≤ 1.33

√
x, (x ≥ 1).

If we are ready to assume larger, we would not save much since the best
constant one can get is 12/π2 = 1.215 +O∗(0.001).

Proof. We use PARI/GP see [7] and the following script:

{check(borne) =

my(res = 0.0, coef = 0);

for(d = 1, borne,

res += moebius(d)^2/sqrt(d);

coef = max(coef, res/sqrt(d)));

return(coef)}

It is then almost immediate to check our result when x ≤ 107, despite
the lack of refinement of the script proposed. For larger values, we use a
summation by parts together with Lemma 4.1.

Lemma 4.3. We have ∑
d≤x

µ2(d) ≤ 11
15 x, (x ≥ 9).

We note that 11/15 = 0.7333 . . . while the asymptotically best constant
is rather lower, namely 6/π2 = 0.607927 . . . . Reaching 73/115 = 0.63478 . . .
already requires to take x ≥ 75, and this means we would have to handle
the possible divisibility by 21 primes in section 2. This is out of reach of the
simple-minded method we have at our disposal.

Proof. We use PARI/GP see [7] and the following script:

{check(borneinf, bornesup) =

my(res = 0.0, coef = 0);

res = sum(d = 1, borneinf-1, moebius(d)^2);

for(d = borneinf, bornesup,

res += moebius(d)^2;

coef = max(coef, res/d));

return(coef)}

It is then almost immediate to check our result when x ≤ 107, despite the
lack of refinement of the script proposed. For larger values, the result is an
immediate consequence of Lemma 4.1.
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5 Proof of Theorem 1.1

Lemma 2.1 establishes Theorem 1.1 when x < 10, so we may assume x ≥ 10.
We further may restrict our attention to integer values of x. We start with

S0 =
∑
n≤x

nεgr,ε(n) =
∑
n≤x

∑
d|n,

(d,r)=1

µ(d)(n/d)ε.

Using the first expression yields 0 ≤ S0 as well as

S0/x
ε ≤ 1 +

∑
2≤n≤x

(
gr,ε(n) +

11(n,r)=1µ
2(n)

nε

)
−

∑
2≤n≤x,
(n,r)=1

µ2(n)

nε

Each summand in the second sum is bounded above by 1 by Lemma 3.8.
We get

0 ≤ S0/xε ≤ x−
∑

2≤n≤x,
(n,r)=1

µ2(n)

nε
.

Let us write the second expression for S0:

S0 =
∑
d≤x,

(d,r)=1

µ(d)
∑

m≤x/d

mε.

We employ Lemma 3.1; we treat the case d = 1 separately for the lower
bound to reach

x1+ε

1 + ε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
− xε

∑
2≤d≤x,
(d,r)=1

µ2(d)d
−ε ≤ S0

≤ x1+ε

1 + ε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
+ xε

∑
d≤x,

(d,r)=1

µ2(d)d
−ε
.

The lower bound requires x to be an integer, but not the upper bound. We
rewite the above as

S0 − xε
∑
d≤x,

(d,r)=1

µ2(d)d
−ε ≤ x1+ε

1 + ε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
≤ S0 + xε

∑
2≤d≤x,
(d,r)=1

µ2(d)d
−ε
.

By conjugating both estimates, we get,

−xε
∑
d≤x,

(d,r)=1

µ2(d)d
−ε ≤ x1+ε

1 + ε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
≤ x1+ε.
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The right hand side is easily handled. We use Lemma 4.3 for the left hand
side via, when x ≥ 9: ∑

d≤x,
(d,r)=1

µ2(d)d
−ε ≤

∑
d≤x

µ2(d) ≤ 11
15x.

By conjugating both estimates, we get

−11
15(1 + ε) ≤

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
≤ 1 + ε. (x ≥ 9) (10)

Theorem 1.1 is proved.

6 Proof of Theorem 1.2

The proof relies on two ways of writing the sum

S1 =
∑
n≤x

nεfr,ε(n) =
∑
n≤x

∑
d|n,

(d,r)=1

µ(d)(n/d)ετ(n/d).

The first form shows that 0 ≤ S1 ≤ x1+2εr1+ε/φ1+ε(r) by combining Lemma 3.2
together with Lemma 3.6. Let us write this sum differently:

S1 =
∑
d≤x,

(d,r)=1

µ(d)
∑

m≤x/d

mετ(m)

and we use Lemma 3.7 to reach

S1 =
x1+ε

1 + ε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε

(
log

x

d
+2γ− 1

1 + ε

)
+O∗

(
0.961×1.33 (1+2ε)x1+ε

)

since
∑

d≤x µ
2(d)/

√
d ≤ 1.33

√
x by Lemma 4.2. We set

α = 2γ − 1

1 + ε
∈ [0, 1]. (11)

All of that amounts to:

S1 =
x1+ε

1 + ε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε

(
log

x

d
+ α

)
+O∗

(
1.279(1 + 2ε)x1+ε

)
= S∗1 + αS0 +O∗

(
1.279(1 + 2ε)x1+ε

)
10



say. We thus have

−1.279(1 + 2ε)x1+ε ≤ S∗1 + αS0 ≤ 1.279(1 + 2ε)x1+ε + x1+2ε r1+ε

φ1+ε(r)
.

We use (10) and Lemma 2.1, and reach

−1.279(1 + 2ε)− α ≤ x−1−εS∗1 ≤ 1.279(1 + 2ε) + 11
15α+ xε

r1+ε

φ1+ε(r)
.

We use α ≤ 2γ − 1 + ε. This gives

− 1.434− 4.992ε− 3.558ε2 ≤
∑
d≤x,

(d,r)=1

µ(d)

d1+ε
log

x

d

≤ 1.393 + 4.684ε+ 3.292ε2 + (1 + ε)
xεr1+ε

φ1+ε(r)
.

Since xεr1+ε/φ1+ε(r) ≥ 1, we check that the right hand side is larger than
minus times the left hand side. Theorem 1.2 follows.

7 A generalization and a remark

It is not difficult to get along these lines the following Lemma:

Lemma 7.1. When r ≥ 1 and k ≥ 1, we have∑
d≤x,

(d,r)=1

µ(d)

d1+ε
logk

x

d
�k

( r

φ(r)

)k
(log x)k−1.

Such quantities appear for instance in [10] where cases k = 0 and k = 1
are used, while case k = 2 is evaluated (there is a main term), but all with
no coprimality conditions (i.e. r = 1) and no ε. The reader will find in [3,
Chapter 1] the evaluation of case k = 3, r = 1 and ε = 0. [6] also pertains
to these quantities.

Proof. Indeed, we first prove that∑
n≤x

∑
d|n,

(d,r)=1

µ(d)(n/d)ετk+1(n/d)�
( r

φ(r)

)k
x(log x)k−1.

We then continue as in section 6.

Here is a surprising elementary consequence.

11



Lemma 7.2. For any c > 0, we have∑
d≤x,

(d,r)=1

µ(d)

d
− xε

∑
d≤x,

(d,r)=1

µ(d)

d1+ε
�c ε

r

φ(r)

provided that 0 ≤ ε ≤ c(log x)−1.

Proof. It is enough to consider∫ ε

0

∑
d≤x,

(d,r)=1

µ(d)xη

d1+η
log(x/d)dη � ε

r

φ(r)
.
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[5] A. Granville and O. Ramaré. Explicit bounds on exponential sums and
the scarcity of squarefree binomial coefficients. Mathematika, 43(1):73–
107, 1996.
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