Article Dans Une Revue Épijournal de Géométrie Algébrique Année : 2021

Complex reflection groups and K3 surfaces I

Résumé

We construct here many families of K3 surfaces that one can obtain as quotients of algebraic surfaces by some subgroups of the rank four complex reflection groups. We find in total 15 families with at worst ADE-singularities. In particular we classify all the K3 surfaces that can be obtained as quotients by the derived subgroup of the previous complex reflection groups. We prove our results by using the geometry of the weighted projective spaces where these surfaces are embedded and the theory of Springer and Lehrer-Springer on properties of complex reflection groups. This construction generalizes a previous construction by W. Barth and the second author.
Fichier principal
Vignette du fichier
k3-1-arxiv.pdf (459.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02573148 , version 1 (14-05-2020)

Identifiants

Citer

Cédric Bonnafé, Alessandra Sarti. Complex reflection groups and K3 surfaces I. Épijournal de Géométrie Algébrique, 2021, 5, ⟨10.46298/epiga.2021.volume5.6573⟩. ⟨hal-02573148⟩
37 Consultations
99 Téléchargements

Altmetric

Partager

More