
HAL Id: hal-02573148
https://hal.science/hal-02573148v1

Submitted on 14 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complex reflection groups and K3 surfaces I
Cédric Bonnafé, Alessandra Sarti

To cite this version:
Cédric Bonnafé, Alessandra Sarti. Complex reflection groups and K3 surfaces I. Épijournal de
Géométrie Algébrique, 2021, 5, �10.46298/epiga.2021.volume5.6573�. �hal-02573148�

https://hal.science/hal-02573148v1
https://hal.archives-ouvertes.fr


COMPLEX REFLECTION GROUPS AND K3 SURFACES I

CÉDRIC BONNAFÉ AND ALESSANDRA SARTI

Abstract. We construct here many families of K3 surfaces that one can ob-

tain as quotients of algebraic surfaces by some subgroups of the rank four

complex reflection groups. We find in total 15 families with at worst ADE–
singularities. In particular we classify all the K3 surfaces that can be ob-

tained as quotients by the derived subgroup of the previous complex reflection

groups. We prove our results by using the geometry of the weighted projec-
tive spaces where these surfaces are embedded and the theory of Springer and

Lehrer-Springer on properties of complex reflection groups. This construction

generalizes a previous construction by W. Barth and the second author.

1. Introduction

In this paper we describe a relation between complex reflection groups and K3
surfaces. A relation already appeared recently in the paper [5] by the authors,
where the authors use the reflection group denoted by G29 in the Shepard–Todd
classification [23] to describe K3 surfaces with maximal finite automorphism groups
containing the Mathieu group M20. The motivation for our paper is an early paper
of the second author [21] and of W. Barth and the second author [2] where they
study first one parameter families of surfaces of general type in the three dimensional
complex projective space containing four surfaces with a high number of nodes (i.e.
A1–singularities). Then they study the quotients of these families by some groups
related to the platonic solids: tetrahedron, octahedron and icosahedron and which
they call bipolyhedral groups. These turn out to be subgroups of some complex
reflection groups and they show that the quotients are K3 surfaces with ADE–
singularities. In this paper we show that these examples are only a few examples of
K3 surfaces that one can produce by using complex reflection groups. Moreover the
theory of Springer and Lehrer–Springer and some technical Lemmas allow a deep
understanding of the reason why the quotients have trivial dualizing sheaf and
admint only ADE–singularities. This allows then to conclude that the minimal
resolution are K3 surfaces. We find in total 15 families of K3 surfaces.

More precisely we consider a complex reflection group W acting on a four dimen-
sional complex vector space. By Shephard–Todd/Chevalley/Serre Theorem [9, The-
orem 4.1] there exist four algebraically independent polynomials which are invariant
under the action of W and which generate algebraically the ring of all W -invariant
polynomials. We assume furthermore that W is generated by reflections of order
2 and in Table I we give the list of the degrees of the four invariant polynomials
(observe that these degrees do not depend on the polynomials) and of the codegrees
corresponding to the degrees of four invariant derivatives which generate the ring
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2 CÉDRIC BONNAFÉ AND ALESSANDRA SARTI

of all W -invariant derivatives. The aim of the paper is to study the quotient of
the zero set of some of these invariant polynomials by some subgroup of W : the
derived subgroup W ′ and the group W SL which consists of the matrices of W with
determinant 1. It turns out that if the degrees are ”well chosen” then the quotient
is a K3 surface with ADE–singularities. We give equations for the quotient surfaces
in some weighted projective space. More precisely when we consider the group W SL

we find that the quotient surfaces are double covers of a weighted projective plane
and when the group is W ′ and is different from W SL then the quotient surfaces
are complete intersection in a four dimensional weighted projective space. To show
that we have ADE–singularities on the double covers one has to study carefully
the singularities of the branching curve as well as the singularities that one gets
from the singularities of the weighted projective plane. To do this we use several
ingredients coming from the geometry of weighted projective spaces and the theory
of Springer and Lehrer–Springer on properties of complex reflection groups. Our
main Theorem 5.4 is the following (for the description of the reflection groups see
the Section 3 and for the definition of K3 see the Section 5):

Theorem 1.1. Assume that (W,d) ∈ K3. Let Γ be the subgroup W ′ or W SL of
W and let f be a fundamental invariant of W of degree d such that Z (f) has only
ADE–singularities.

Then Z (f)/Γ is a K3 surface with ADE–singularities.

In particular the theorem allows us to classify all the K3 surfaces that can be
obtained as quotient by W ′ or W SL. Theorem 5.4 is a qualitative result, that
insures that one can build from invariants of some complex reflection groups of
rank 4 several families of K3 surfaces with ADE–singularities. However, it does not
say anything about the types of the singularities and important invariants of their
minimal resolution (rank of the Picard number, description of the transcendental
lattice).

An important feature of the K3 surfaces constructed in Theorem 5.4 is that
most of them have big Picard number, and generally as big as possible compare
to the number of moduli of the family they belong to. In particular, we can build
in this way several K3 surfaces with Picard number 20, often called singular K3
surfaces. This will be explained in the sequel to this paper [6], [7], where we aim
to complete the qualitative result of this first part by quantitative results whenever
W is assumed to be primitive (i.e. W = G28, G29, G30 or G31). Note that the case
where (W,d) = (G28, 6) or (G30, 12) and Γ = W ′ was already treated by Barth and
Sarti [2]: these examples will be revisited, and more geometrical informations will
be given.

The paper is organized as follows: the Section 2 contains basic facts on the
action of groups of matrices on homogeneous polynomials and Section 3 recalls
facts on reflection groups, in particular we find equations for the quotient surfaces
and we recall basic facts from Springer and Lehrer-Springer theory, that we use
in the next sections to describe the singularities that we have on the quotient
surfaces. In Section 4 we give several useful facts to describe the singularities of
the quotient surfaces in particular in the case that these are a double cover of a
weighted projective plane. In Section 5 we describe how to obtain K3 surfaces.
In the Table II we recall the degrees of the equations and the weighted projective
spaces where the (singular) surfaces are embedded. We give in this section the main
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part of the proof of our main theorem 5.4. We finish the proof in Section 6 where
we show that the quotient K3 surfaces have at worst ADE–singularities.

Acknowledgements. We wish to thank S. Brochard for useful discussions about
the results of Appendix B. We thank also Enrica Floris and Étienne Mann for
several interesting discussions.

2. Notation, preliminaries

If d > 1, we denote by µd the group of d-th roots of unity in C× and we fix a
primitive d-th root of unity ζd (we will use the standard notation i = ζ4). If l1,. . . , lr
are non-zero natural numbers, then P(l1, . . . , lr) denotes the corresponding weighted
projective space.

We fix an n-dimensional C-vector space V and we denote by P(V ) its associated
projective space. If v ∈ V \ {0}, we denote by [v] ∈ P(V ) the line it defines (i.e.
[v] = Cv). The group GLC(V ) acts on the algebra C[V ] of polynomial functions
on V as follows: if g ∈ GLC(V ) and f ∈ C[V ], we write

gf(v) = f(g−1 · v).

If g ∈ GLC(V ) and ζ ∈ C×, we denote by V (g, ζ) the ζ-eigenspace of g. If v ∈
V (g, ζ) and f ∈ C[V ]g, then

(2.1) g(∂vf) = ζ∂vf.

If G is a subgroup of GLC(V ), we write PG for its image in PGLC(V ). Recall
that a subgroup G of GLC(V ) is called primitive if there does not exist a decompo-
sition V = V1⊕· · ·⊕Vr with Vi 6= 0 and r > 2 such that G permutes the Vi’s. If S is
a subset of V , we denote by GS (resp. G(S)) the setwise (resp. pointwise) stabilizer
of S (so that G(S) is a normal subgroup of GS and GS/G(S) acts faithfully on S).
Note that GS = GCS and G(S) = G(CS), where CS denotes the linear span of S.
The derived subgroup of G will be denoted by G′, and we set GSL = G ∩ SLC(V ).
Note that G′ ⊂ GSL and that the inclusion might be strict. We state here a totally
trivial result which will be used extensively and freely along this series of papers:

Lemma 2.2. Let g ∈ GLC(V ), let ζ be a root of unity of order d, let v ∈ V be
such that g(v) = ζv and let f ∈ C[V ]g be homogeneous of degree e not divisible by
d. Then f(v) = 0.

Proof. As f ∈ C[V ]g, we have f(g(v)) = f(v). But f(g(v)) = f(ζv) = ζef(v)
because f is homogeneous of degree e. So the result follows from the fact that
ζe 6= 1. �

If X is a complex algebraic variety and x ∈ X, we denote by Tx(X) the tangent
space of X at x. If f ∈ C[V ] is homogeneous, we will denote by Z (f) the projective
(possibly non-reduced) hypersurface in P(V ) ' Pn−1 defined by f . Its singular locus
will be denoted by Zsing(f).

Lemma 2.3. Let G be a finite subgroup of GLC(V ), let f ∈ C[V ]G be homo-
geneous and let v ∈ V G \ {0} be such that f(v) = 0. Then G acts trivially on
T[v](P(V ))/T[v](Z (f)).
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Proof. Since G is finite, there exists a G-stable subspace E of V such that V =
E⊕Cv. We fix v ∈ V G \{0}. Let α ∈ V ∗ be such that α(v) = 1 and α(E) = 0. The
affine chart Uα of P(V ) defined by α 6= 0 is identified with v+E and, after transla-
tion, is identified with E: through this identification, Z (f)∩Uα is the affine surface
defined by the polynomial F ∈ C[E], where F (e) = f(v+e). Since v is G-invariant,
F is also G-invariant. Let us denote by Fi its i-th homogeneous component: it
is G-invariant. Then F0 = 0 because f(v) = 0. Moreover, T[v](P(V )) = E and

T[v](Z (f)) = Ker(F1) (and these identifications are G-equivariant since v ∈ V G).
But CF1 is the dual space to E/Ker(F1): since G acts trivially on CF1, this

shows that G acts trivially on E/Ker(F1) = T[v](P(V ))/T[v](Z (f)). �

The next result is just an easy generalization of [21, §6].

Corollary 2.4. Let G be a finite subgroup of GLC(V ) such that dimV G = 1 and
let f ∈ C[V ]G be non-zero and homogeneous. We assume that f vanishes at V G,
viewed as a point of P(V ). Then V G is a singular point of Z (f).

Proof. Let v ∈ V G \ {0}. We keep the notation of the proof of the previous
Lemma 2.3 (E, α, F , Fi). Since V G = Cv, we have EG = 0 and so, by semisim-
plicity, we have that (E/Ker(F1))G = 0. But G acts trivially on E/Ker(F1) by
Lemma 2.3. Therefore, E/Ker(F1) = 0 so T[v](Z (f)) = Ker(F1) = E and so Z (f)

is singular at [v] = V G. �

Remark 2.5. The previous lemma might be used to explain the construction of
several singular curves and surfaces constructed by the two authors [21], [4]. Let
us explain how to proceed.

Let G be a finite subgroup of GLC(V ), and let H1,. . . , Hr be a set of represen-
tatives of conjugacy classes of maximal subgroups of G among the subgroups H
satisfying dim(V H) = 1. Let Nk = NG(Hk), let vk ∈ V Hk \ {0} and let Ωk denote
the G-orbit of [vk] in P(V ). Then

(2.6) |Ωk| =
|G|
|Nk|

.

For this, it is sufficient to prove that Nk = G[vk]. First, Nk stabilizes V Hk = [vk],
which proves that Nk ⊂ G[vk]. Conversely, G[vk] normalizes Gvk . But Hk ⊂ Gvk
by construction and, by the maximality of Hk, this implies that Hk = Gvk .

Now, we fix two linearly independent homogeneous polynomials f1 and f2 of the
same degree such that f1(vk) 6= 0 for all k. We also set λk = f2(vk)/f1(vk). Then
it follows from Corollary 2.4 that

(2.7) Z (f2 − λkf1) contains Ωk in its singular locus.

It also shows that, if G is defined over a subfield K of C, then the points of Ωk
(which are singular points of Z (f2 − λkf1)) have coordinates in K. �
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Corollary 2.8. Let G be a finite subgroup of GLC(V ) such that dimV G = 2, let
f ∈ C[V ]G be homogeneous and non-zero and let v ∈ V G\{0} be such that f(v) = 0.
Let L be the line P(V G) and assume that [v] is a smooth point of Z (f). Then the
intersection of L with Z (f) is transverse at [v].

Proof. We keep again the notation of the proof of Lemma 2.3 (E, α, F , Fi). Since
dimV G = 2, this forces dimEG = 1. Since [v] is smooth, this means that F1 6= 0.
It then follows from Lemma 2.3 that E = EG ⊕ Ker(F1). But EG = T[v](L) and
Ker(F1) = T[v](Z (f)). This shows the result. �

Corollary 2.9. Let G be a finite subgroup of GLC(V ) such that dimV G = 2, and
let f ∈ C[V ]G be homogeneous and non-zero. Let L be the line P(V G) and assume
that L ⊂ Z (f). Then L ⊂ Zsing(f).

Proof. Let v ∈ V G \ {0} and assume that [v] is a smooth point of Z (f). The
the intersection of L with Z (f) is not transverse at [v] because L ⊂ Z (f): this
contradicts Corollary 2.8. �

3. Reflection groups

We fix a finite subgroup W of GLC(V ) and we set

Ref(W ) = {s ∈W | dim(V s) = n− 1}.

Hypothesis. We assume throughout this paper that

W = 〈Ref(W )〉.
In other words, W is a complex reflection group. The num-
ber codim(VW ) is called the rank of W .

Standard arguments allow to reduce most questions about reflection groups to
questions about irreducible reflection groups. These last ones have been classified
by Shephard-Todd and we refer to Shephard-Todd numbering [23] for such groups:
there is an infinite family G(de, e, r) with d, e, r > 0 (they are of rank r is (d, e) 6=
(1, 1) and of rank r − 1 otherwise) and 34 exceptional ones numbered from G4 to
G37 (they are exactly the primitive complex reflection groups). If W can be realized
over the field of real numbers, then it is a Coxeter group and we will also use the
notation W(Xi) where Xi is the type of some Coxeter graph. For instance, the
group G30 in Shephard-Todd numbering is the Coxeter group W(H4).
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3.1. Invariants. By Shephard-Todd/Chevalley/Serre Theorem [9, Theo. 4.1], there
exist n algebraically independent homogeneous elements f1, f2,. . . , fn of C[V ]W

such that

C[V ]W = C[f1, f2, . . . , fn].

Let di = deg(fi). A family (f1, f2, . . . , fn) satisfying the above property is called
a family of fundamental invariants of W . Observe that by a result of Marin-
Michel [19], these polynomials can be defined over the rational numbers (for more
details, see [6]). A homogeneous element f ∈ C[V ]W is called a fundamental invari-
ant if it belongs to a family of fundamental invariants. Whereas such a family is not
uniquely defined even up to permutation, the list (d1, d2, . . . , dn) is well-defined up
to permutation and is called the list of degrees of W : it will be denoted by Deg(W ).

Notation. From now on, and until the end of this paper, we
fix a family f = (f1, f2, . . . , fn) of fundamental invariants and
we set di = deg(fi).

The following equalities are well-known [9, Theo. 4.1]:

(3.1) |W | = d1d2 · · · dn and |Ref(W )| =
n∑
i=1

(di − 1).

Also, as W acts irreducibly on V , its center |Z(W )| consists of homotheties, so it
is cyclic. Moreover [9, Prop. 4.6],

(3.2) |Z(W )| = Gcd(d1, d2, . . . , dn).

The C[V ]-module Der(C[V ]) of derivatives of the algebra C[V ] is naturally graded
in such a way that ∂v has degree −1 for all v ∈ V . By Solomon Theorem [9,
Theo. 4.44 and §4.5.4], the graded C[V ]W -module Der(C[V ])W of invariant deriva-
tives is free of rank n, hence it admits a homogeneous C[V ]W -basis (D1, . . . , Dn)
whose respective degrees are denoted by d∗1,. . . , d∗n. Again, the family (D1, . . . , Dn)
is not uniquely defined even up to permutation, but the list (d∗1, d

∗
2, . . . , d

∗
n) is well-

defined up to permutation and is called the list of codegrees of W : it will be denoted
by Codeg(W ).

We conclude this subsection by a general easy result which follows immediately
from the fact that C[V ]W is a graded polynomial algebra whose weights are given
by Deg(W ).

Proposition 3.3. The map

πf : P(V ) −→ P(d1, d2, . . . , dn)
[v] 7−→ [f1(v) : f2(v) : · · · : fn(v)]

is well-defined and induces an isomorphism

P(V )/W
∼−→ P(d1, d2, . . . , dn).

Moreover, πf induces by restriction an isomorphism

Z (f1)/W
∼−→ P(d2, . . . , dn).
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3.2. Reflecting hyperplanes. If s ∈ Ref(W ), then the hyperplane V s is called
the reflecting hyperplane of s (or a reflecting hyperplane of W ). We denote by A
the set of reflecting hyperplanes of W . If X is a subset of V , then, by Steinberg-
Serre Theorem [9, Theo. 4.7], W (X) is generated by reflections and so is generated
by the reflections whose reflecting hyperplane contains X: such a subgroup is called
a parabolic subgroup of W .

If H ∈ A , then the group W (H) is cyclic (indeed, by semisimplicity, it acts
faithfully on V/H which has dimension 1) and we denote its order by eH . Note
that WH \ {1} is the set of reflections of W whose reflecting hyperplane is H, so

(3.4) |Ref(W )| =
∑
H∈A

(eH − 1).

We denote by αH an element of V ∗ such that H = Ker(αH). In particular, if
all the reflections have order 2, then |Ref(W )| = |A |. Finally, note the following
equality [9, Rem. 4.4.8]

(3.5) |A | =
n∑
i=1

(d∗i + 1).

If Ω is a W -orbit in A , then we denote by eΩ the common value of the eH ’s for
H ∈ Ω. We then set

JΩ =
∏
H∈Ω

αH .

Then there exists a unique polynomial Pf ,Ω in variables x1,. . . , xn of respective
weights d1,. . . , dn such that

(3.6) JeΩΩ = Pf ,Ω(f1, . . . , fn).

Note that Pf ,Ω is homogeneous of degree eΩ|Ω|. Then [9, §4.3.2]

(3.7) C[V ]W
′

= C[f1, . . . , fn, (JΩ)Ω∈A /W ]

and a presentation of C[V ]W
′

is given by the relations (3.6). This has the following
consequence:

Proposition 3.8. Let Ω1,. . . , Ωr denote the W -orbits in A . Then the map

π′f : P(V ) −→ P(d1, d2, . . . , dn, |Ω1|, . . . , |Ωr|)
[v] 7−→ [f1(v) : f2(v) : · · · : fn(v) : JΩ1(v) : · · · : JΩr (v)]

is well-defined and induces an isomorphism

P(V )/W ′
∼−→ {[x1 : · · · : xn : j1 : · · · : jr] ∈ P(d1, . . . , dn, |Ω1|, . . . , |Ωr|) |

∀ 1 6 k 6 r, j
eΩk

k = Pf ,Ωk
(x1, . . . , xn)}.

Moreover, π′f induces by restriction an isomorphism

Z (f1)/W ′
∼−→ {[x2 : · · · : xn : j1 : · · · : jr] ∈ P(d2, . . . , dn, |Ω1|, . . . , |Ωr|) |

∀ 1 6 k 6 r, j
eΩk

k = Pf ,Ωk
(0, x2, . . . , xn)}.
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Note that W/W SL is cyclic but W SL is not necessarily equal to the derived
subgroup W ′ of W . We have W ′ = W SL if and only if |A /W | = 1. Now, we define
the following element

J =
∏
H∈A

αH =
∏

Ω∈A /W

JΩ ∈ C[V ].

It is well-defined up to a scalar and homogeneous of degree |A |. It is the generator
of the ideal of the reduced subscheme of the ramification locus of the morphism
V → V/W . Then [9, Rem. 3.10 and Prop. 4.4]

(3.9) wJ = det(w)−1J

for all w ∈ W . In particular J ∈ C[V ]W
SL

and J |W/W
SL| ∈ C[V ]W . So there

exists a unique polynomial Pf ∈ C[X1, . . . , Xn], which is homogeneous of degree
|W/W SL| · |A | if we assign to Xi the degree di, and such that

(3.10) J |W/W
SL| = Pf (f1, . . . , fn).

Proposition 3.11. Assume that the map H 7→ eH is constant on A (and let

e denote this constant value, which coincides with |W/W SL|). Then C[V ]W
SL

=
C[f1, f2, . . . , fn, J ] and a presentation is given by the single equation (3.10).

So the map

πSL

f : P(V ) −→ P(d1, d2, . . . , dn, |A |)
[v] 7−→ [f1(v) : f2(v) : · · · : fn(v) : J(v)]

is well-defined and induces an isomorphism

P(V )/W SL ∼−→ {[x1 : · · · : xn : j] ∈ P(d1, . . . , dn, |A |) | je = Pf (x1, . . . , xn)}.
Moreover, πSL

f induces by restriction an isomorphism

Z (f1)/W SL ∼−→ {[x2 : · · · : xn : j] ∈ P(d2, . . . , dn, |A |) | je = Pf (0, x2, . . . , xn)}.

3.3. Eigenspaces. We now recall the basics of Springer and Lehrer-Springer the-
ory: all the results stated in this subsection can be found in [24], [17], [18]. Note
that some of the proofs have been simplified in [16]. Let us fix now a natural
number e. We set

∆(e) = {1 6 k 6 n | e divides dk},
∆∗(e) = {1 6 k 6 n | e divides d∗k},

δ(e) = |∆(e)| and δ∗(e) = |∆∗(e)|.
With this notation, we have

(3.12) δ(e) = max
w∈W

(
dimV (w, ζe)

)
.

In particular, ζe is an eigenvalue of some element of W if and only if δ(e) 6= 0 that
is, if and only if e divides some degree of W . In this case, we fix an element we of
W such that

dimV (we, ζe) = δ(e).

We set for simplification V (e) = V (we, ζe) and W (e) = WV (e)/W (V (e)): this
subquotient of W acts faithfully on V (e).
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If f ∈ C[V ], we denote by f [e] its restriction to V (e). Note that if i 6∈ ∆(e), then

f
[e]
i = 0 by Lemma 2.2.

Theorem 3.13 (Springer, Lehrer-Springer). Assume that δ(e) 6= 0. Then:

(a) If w ∈W , then there exists x ∈W such that x(V (w, ζe)) ⊂ V (e).
(b) W (e) acts (faithfully) on V (e) as a group generated by reflections.

(c) The family (f
[e]
k )k∈∆(e) is a family of fundamental invaraints of W (e). In

particular, the list of degrees of W (e) consists of the degrees of W which
are divisible by e (i.e. Deg(W (e)) = (dk)k∈∆(e)).

(d) We have⋃
w∈W

V (w, ζe) =
⋃
x∈W

x(V (e)) = {v ∈ V | ∀ k ∈ {1, 2, . . . , n} \∆(e), fk(v) = 0}.

(e) δ∗(e) > δ(e) with equality if and only if W (V (we, ζe)) = 1.
(f) If δ∗(e) = δ(e), then W (e) = WV (e) = CW (we) and the family of eigenval-

ues (with multiplicity) of we is equal to (ζ1−dk
e )1 6 k 6 n. Moreover, if w is

such that dimV (w, ζe) = δ(e), then w is conjugate to we.

Remark 3.14. Let k ∈ {1, 2, . . . , n} be such that δ(dk) = δ∗(dk) = 1. Then zk =
V (dk) is a line in V , so we can view it as an element of P(V ). By Theorem 3.13(f),
the stabilizer Wzk of zk acts faithfully on V (dk), so it is cyclic and contains wdk .
In fact,

Wzk = 〈wdk〉.
Indeed, let e = |Wzk |. Then dk divides e and ζe is the eigenvalue of some elements
of W . So e divides some dj . Therefore, dk divides dj and so dk = dj because
δ(dk) = 1. This proves that e = dk, as desired. �

Corollary 3.15. Assume that δ(e) = δ∗(e) 6= 0 and let k0 ∈ {1, 2, . . . , n} be such
that dk0

is divisible by e. Let v ∈ V (e) \ {0} and let z = [z].

(a) The family of eigenvalues of we for its action on the tangent space Tz(P(V ))
is equal to (ζ−dke )k 6=i0 .

(b) Let f ∈ C[V ]W be homogeneous of degree d and assume that f(v) = 0.
Then:
(b1) If d 6≡ dk mod e for all k 6= k0, then Z (f) is singular at z.
(b2) Assume that Z (f) is smooth at z and let k1 6= k0 be such that d ≡ dk1

mod e (the existence of k1 is guaranted by (b1)). Then the family of
eigenvalues of we for its action on the tangent space Tz(Z (f)) is equal
to (ζ−dke )k 6=k0,k1

.

Proof. By permuting if necessary the degrees, we may assume that k0 = 1. Note
that ζ1−d1

e = ζe. Choose a basis (v1, . . . , vn) of V such that v = v1 and w(vk) =
ζ1−dk
e vk for all k ∈ {1, 2, . . . , n} (see Theorem 3.13(e)).

(a) Identify P(V ) with Pn−1(C) through the choice of this basis. Then the action
of we is transported to

we·[x1 : x2 : · · · : xn] = [ζex1 : ζ1−d2
e x2 : · · · : ζ1−dn

e xn] = [x1 : ζ−d2
e x2 : · · · : ζ−dne xn].
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Since z = [1 : 0 : · · · : 0], this shows (a).

(b) Let us work in the affine chart “x1 = 1”, identified with An−1(C) through
the coordinates (x2, . . . , xn). The equation of the tangent space Tz(Z (f)) is given
in this chart by

n∑
k=2

(∂vkf)(v)xk = 0.

By (2.1),
w(∂vkf)(v) = ζ1−dk

e (∂vkf)(v).

But
w(∂vkf)(v) = (∂vkf)(w−1(v)) = (∂vkf)(ζ−1

e v).

As ∂vkf is homogeneous of degree d− 1, this implies that

ζ1−dk
e (∂vkf)(v) = ζ1−d

e (∂vkf)(v).

Therefore, if d 6≡ dk mod e for all k ∈ {2, . . . , n}, we get (∂vkf)(v) = 0 for all
k ∈ {2, . . . , n}, and so Z (f) is singular ar [v]. This shows (b1).

Now, if Z (f) is smooth at z, then there exists k1 ∈ {2, . . . , n} such that
∂vk1

f(v) 6= 0, and in particular d ≡ dk1 mod e. Since Z (f) is smooth at z,

then there exists k ∈ {2, . . . , n} such that ∂vkf(v) 6= 0. This shows that the action
of we on the one-dimensional space Tz(P(V ))/T[v](Z (f)) is given by multiplication

by ζ
−dk1
e = ζ−de . The proof of (b2) is complete. �

4. Determining singularities

An important step for analyzing the properties of the K3 surfaces constructed in
the next section is to determine the singularities of the variety Z (f)/Γ in the cases
we are interested in (here, f is a fundamental invariant of W and Γ is a subgroup
of W ). We provide in this section two different tools that will be used in the sequel
to this paper [6], [7], where particular examples will be studied.

4.1. Stabilizers. The singularity of Z (f)/Γ at the Γ-orbit of z ∈ Z (f) depends
on the singularity of Z (f) at z and the action of Γz on this (eventually trivial)
singularity. We investigate here some facts about the stabilizers Wz and their action
on the tangent space Tz(Z (f)).

Let f denote a homogeneous invariant of W , let d denote its degree and let v ∈
V \ {0} such that v ∈ Z (f). We set z = [v] ∈ P(V ). We denote by θz : Wz −→ C×
the linear character defined by w(v) = θz(w)v for all w ∈Wz. Then Wv = Ker(θz)
and we denote by ez = |Im(θz)|. So there exists w ∈ Wz such that θz(w) = ζez .
In other words, v ∈ V (w, ζez ) and so, by Theorem 3.13(a), we may, and we will,
assume that v ∈ V (wez , ζez ) = V (ez). This shows that

(4.1) Wz = Wv〈wez 〉.
Recall from §3.2 that Wv is a parabolic subgroup of W and so is generated by
reflections. Note the following useful facts:

(a) Let m = |Z(W )| (recall from (3.2) that m = gcd(Deg(W ))). Then m
divides ez, because µm = Z(W ) ⊂Wz.
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(b) If δ(ez) = δ∗(ez), f(v) = 0 and Z (f) is smooth at z, then the eigenvalues
of wez on the tangent space Tz(Z (f)) are given by Corollary 3.15.

(c) Let P be a parabolic subgroup of W of rank n− 2 and assume that Z (f)
is smooth. Then dimV P = 2 and so L = P(V P ) is a line in P(V ). Then L
intersects Z (f) transversally by Corollary 2.8, so |L ∩Z (f)| = d because
f has degree d. Moreover,

(4.2) If z ∈ L ∩Z (f), then Wv = P .

Indeed, P ⊂ Wv by construction and, if this inclusion is strict, this means
that Wv has rank 3 or 4. But it cannot have rank 4 for otherwise Wv = W
and so v = 0 (which is impossible). And it cannot have rank 3 because
Corollary 2.4 would imply that Z (f) is singular at z, contrarily to the
hypothesis. This implies for instance that two points in L ∩ Z (f) are in
the same Γ-orbit if and only if they are in the same NΓ(P )-orbit.

Moreover, in this case, we have a P -equivariant isomorphism

(4.3) T[v](Z (f)) ' V/V P

(see the proof of Corollary 2.8).

4.2. Singularities of double covers. If n = 4, Γ = W SL and W is generated by
reflections of order 2, then the surface Z (f)/Γ is the double cover of a weighted
projective plane. Most of (but not all) the singularities of Z (f)/Γ may be then
analyzed through the singularities of the ramification locus of this cover.

So we fix a double cover π : Y → X between two irreducible algebraic surfaces
and we assume that Y is normal and X is smooth. By the purity of the branch
locus, the ramification locus R of π is empty or pure of codimension 1 (i.e. pure of
dimension 1). The next well-known fact (see for instance [1, Part III, §7]) will help
us in our explicit computations:

Proposition 4.4. Let y ∈ Y be such that x = π(y) belongs to R. We assume
that x is an ADE curve singularity of the ramification locus R. Then y is an ADE
surface singularity of the same type.

5. Invariant K3 surfaces

Hypothesis. In this section, and only in this section, we
assume that n = 4 and that W is irreducible and generated by
reflections of order 2.

5.1. Classification. We provide in Table I the list of irreducible complex reflection
groups W of rank 4 which are generated by reflections of order 2 together with the
following informations: the order of W , the order of W/Z(W ) (which is the group
that acts faithfully on P(V )), the order of W ′ and the lists of degrees and codegrees.
We also recall their notation in Shephard-Todd classification [23] as well as their
Coxeter name whenever they are real.
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W |W | |W/Z(W )| |W ′| Deg(W )
Codeg(W )

G(1, 1, 5) = W(A4) ' S5 120 120 60
2, 3, 4, 5
0, 1, 2, 3

G(e, e, 4), e > 2 24e3 24e3/gcd(e, 4) 12e3 e, 2e, 3e, 4
0, e, 2e, 3e− 4

G(2e, e, 4), e > 1 384e3 192e3/gcd(e, 4) 96e3 2e, 4e, 6e, 8
0, 2e, 4e, 6e

G28 = W(F4) 1 152 576 288
2, 6, 8, 12
0, 4, 6, 10

G29 7 680 1 920 3 840
4, 8, 12, 20
0, 8, 12, 16

G30 = W(H4) 14 400 7 200 7 200
2, 12, 20, 30
0, 10, 18, 28

G31 46 080 11 520 23 040
8, 12, 20, 24
0, 12, 16, 28

Table I. Irreducible complex reflection groups of rank 4 generated
by reflections of order 2

Recall that G(2, 1, 4) = W(B4) and G(2, 2, 4) = W(D4). Note that the hypoth-
esis on the order of the reflections implies that

(5.2) |W SL| = |W |
2
.

In particular, W ′ 6= W SL if and only if W = G(2, 1, 4), G(4, 4, 4) or G28. Also,
note the following diagram of non-trivial inclusions between those of the complex

reflection groups which are contained in a primitive one (here, H
C
↪−→ G means

that H is a normal subgroup of G).

(5.3)

G(2, 1, 4)
� � //
� s

&&

G29 � r

$$
G(2, 2, 4)� s

&&

+ �

C
88

� � C // G28
� � // G31

G(4, 4, 4) �
� C // G(4, 2, 4)

, �

::

5.2. K3 surfaces. Equations of surfaces of the form Z (f)/W ′ or Z (f)/W SL

(where f is a fundamental invariant of degree d) in a weighted projective space
are provided by Propositions 3.8 and 3.11. Whenever some arithmetic conditions
on d and the degrees of W are satisfied, it can then be proven thanks to results of
Appendix A (and particularly Corollary A.3) that the canonical sheaf of Z (f)/W ′

or Z (f)/W SL is trivial (provided that Z (f) is normal, so that the quotient is also
normal and the canonical sheaf is well-defined): it turns out that, in most cases,
the quotient Z (f)/W ′ or Z (f)/W SL has only ADE singularities and positive Euler
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characteristic so that their minimal resolution are K3 surfaces. A particular feature
of these examples is that their minimal resolution have always a big Picard number,
as big as possible compare to the number of moduli of the family. Note that some of
these examples were already studied by Barth and Sarti [2]: we revisit these cases
and simplify some arguments using more theory about complex reflection groups.

We denote by K3 the set of pairs (W,d) where W is an irreducible complex
reflection group of rank 4 and d satisfy one of the following conditions:

• W = G(1, 1, 5), G(4, 2, 4) or G29, and d = 4.
• W = G(2e, 2e, 4) with e odd, and d ∈ {4e, 6e}.
• W = G(4e, 4e, 4), and d = 4e.
• W = G(2, 1, 4), and d ∈ {4, 6}.
• W = G28, and d ∈ {6, 8}.
• W = G30, and d = 12.
• W = G31, and d = 20.

Theorem 5.4. Assume that (W,d) ∈ K3. Let Γ be the subgroup W ′ or W SL of
W and let f be a fundamental invariant of W of degree d such that Z (f) has only
ADE singularities.

Then Z (f)/Γ is a K3 surface with ADE singularities.

The proof of Theorem 5.4 will be given in §5.5 and Section 6. As an immediate
consequence, we get:

Corollary 5.5. Under the hypotheses of Theorem 5.4, the minimal resolution of
Z (f)/Γ is a smooth projective K3 surface.

5.3. Numerical informations. Before proving this Theorem 5.4, let us make
some remarks. By Propositions 3.8 and 3.11, the variety Z (f)/Γ is a weighted
complete intersection (see [11, Section 3.2] for the definition) in a weighted projec-
tive space (it is defined by one or two equations). If Γ = W SL, then Z (f)/Γ is a
weighted hypersurface in a weighted projective space of dimension 3 (see Proposi-
tion 3.11). If Γ = W ′, then Z (f)/Γ is a codimension 2 weighted complete intersec-
tion in a weighted projective space of dimension 4 (see Proposition 3.8). We give in
Table II the list of the weights of the ambient projective space as well as the list of
the degrees of the equations in all the different cases (we also give the description
of Z (f)/W as a weighted projective space).

By looking at this Table II, the reader might think that we have build infin-
itely many families of K3 surfaces, by letting the integer e vary in the fourth and
fifth group considered. However, as it will be explained in §5.4 (see the isomor-
phisms (5.12), (5.13) and (5.15)), the general group with parameter e and the
particular group for e = 1 give exactly the same families of surfaces.

Also, it turns out that G(2, 2, 4)′ = G(2, 1, 4)′, and since invariants of G(2, 1, 4) =
W(B4) are invariants for G(2, 2, 4) = W(D4), this shows that two of the fami-
lies of K3 surfaces constructed with G(2, 1, 4) are contained in families built from
G(2, 2, 4): note however that, for these particular examples, having the two points
of view give different embeddings in weighted projective spaces.
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W d Γ Ambient space
degree(s) of
equation(s)

Z (f)/W

W(A4) ' S5 4 W ′ = W SL P(2, 3, 5, 10) 20 P(2, 3, 5)

G(2, 1, 4)
= W(B4)

4
W ′ P(1, 3, 4, 6, 2) 12, 4 P(1, 3, 4)

W SL P(1, 3, 4, 8) 16

6
W ′ P(1, 1, 2, 3, 1) 6, 2 P(1, 1, 2)

W SL P(1, 1, 2, 4) 8

G(4, 2, 4) 4
W ′ P(2, 3, 2, 1, 6) 2, 12 P(1, 3, 1)

W SL P(2, 3, 2, 7) 14

G(2e, 2e, 4)
e odd

4e W ′ = W SL P(1, 3, 2, 6) 12 P(1, 3, 2)

6e W ′ = W SL P(1, 1, 1, 3) 6 P(1, 1, 1)

G(4e, 4e, 4) 4e W ′ = W SL P(2, 3, 1, 6) 12 P(2, 3, 1)

G28

= W(F4)

6
W ′ P(1, 2, 3, 3, 3) 6, 6 P(1, 2, 3)

W SL P(1, 2, 3, 6) 12

8
W ′ P(1, 1, 2, 2, 2) 4, 4 P(1, 1, 2)

W SL P(1, 1, 2, 4) 8

G29 4 W ′ = W SL P(2, 3, 5, 10) 20 P(2, 3, 5)

G30 = W(H4) 12 W ′ = W SL P(1, 2, 3, 6) 12 P(1, 2, 3)

G31 20 W ′ = W SL P(2, 1, 2, 5) 10 P(1, 1, 1)

Table II. Weights of ambient projective spaces and degree(s) of
equation(s) of Z (f)/Γ

As a consequence, we have build 15 families of K3 surfaces (note that the families
corresponding to the groups G(4, 2, 4) and G29 are 0-dimensional, as there is, up to
scalar, a single quartic polynomial invariant by each of these groups). If we exclude
the “easy” case of the quotient of a quartic by a finite subgroup of SL4(C) (see §6.1),
it remains 8 non-zero dimensional families of K3 surfaces whose construction is non-
trivial.
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Hypothesis and notation. From now on, and until the end
of this paper, we assume that (W,d) ∈ K3, that Γ is the sub-
group W ′ or W SL of W , and that f is a fundamental invariant
of W of degree d such that Z (f) has only ADE singularities.
We also fix a family f = (f, f1, f2, f3) of fundamental invari-
ants containing f and we set di = deg(fi).

Proof of the results given in Table II. The proof follows from Table I and a case-
by-case analysis. We will not give details for all cases, we will only treat three cases
(the reader can easily check that all other cases can be treated similarly).

• Assume that (W,d) = (G31, 20) and that Γ = W ′ (= W SL). Then (d1, d2, d3) =
(8, 12, 24) by Table I and |A | = 60 by (3.1) and (3.4). It then follows from Propo-
sition 3.11 that

Z (f)/Γ = {[x1 : x2 : x3 : j] ∈ P(8, 12, 24, 60) | j2 = Pf (0, x1, x2, x3)}.
But P(8, 12, 24, 60) = P(2, 3, 6, 15) = P(2, 1, 2, 5), so that

Z (f)/Γ = {[y1 : y2 : y3 : j] ∈ P(2, 1, 2, 5) | j2 = Q(y1, y2, y3)}
for some polynomial Q ∈ C[Y1, Y2, Y3]. Hence Z (f)/Γ is defined by an equation of
degree 10 in P(2, 1, 2, 5), as expected.

Finally, by Proposition 3.11, Z (f)/W ' P(8, 12, 24) = P(2, 3, 6) ' P(2, 1, 2) '
P(1, 1, 1), as expected.

• Assume that (W,d) = (G28, 6) and Γ = W ′. Then (d1, d2, d3) = (2, 8, 12)
by Table I. Note that W ′ 6= W SL and that there are two W -orbits Ω1 and Ω2

of reflecting hyperplanes, which are both of cardinality 12. It then follows from
Proposition 3.8, that

Z (f)/Γ = {[x1 : x2 : x3 : j1 : j2] ∈ P(2, 8, 12, 12, 12) | j2
1 = Pf ,Ω1

(0, x1, x2, x3)

and j2
2 = Pf ,Ω2(0, x1, x2, x3)}.

But P(2, 8, 12, 12, 12) = P(1, 4, 6, 6, 6) = P(1, 2, 3, 3, 3), so that

Z (f)/Γ = {[y1 : y2 : y3 : j1 : j2] ∈ P(1, 2, 3, 3, 3) | j2
1 = Q1(y1, y2, y3)

and j2
2 = Q2(y1, y3, y4)}

for some polynomials Q1 and Q2 in C[Y1, Y2, Y3]. So Z (f)/Γ is defined by two
equations of degree 6 in P(1, 2, 3, 3, 3), as expected.

Finally, by Proposition 3.8, Z (f)/W ' P(2, 8, 12) = P(1, 4, 6) ' P(1, 2, 3), as
expected. �

Remark 5.7. The arithmetic of degrees and the classification of reflection groups
imply that it does not seem possible to find a complex reflection W and a degree
d of W such that W is not generated by reflections of order 2 and Z (f)/Γ has a
trivial canonical sheaf, except whenever d = 4. But this is in some sense the less
exciting case, as it is shown by the argument given in §6.1 below.

Also, note that if e 6∈ {1, 2, 4}, then G(e, e, 4) has a unique invariant of degree
4 that defines a quartic in P3(C), but this invariant is equal to xyzt, and so Z (f)
is not irreducible and does not fulfill the hypothesis of Theorem 5.4. That is why
this case does not appear in the list K3. �
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Remark 5.8. If (W,d) = (G28, 6) or (G30, 12), and Γ = W ′, then the above result
was obtained by Barth and Sarti [2]: the group Γ was denoted by Gd in their paper
(this must not be confused with Shephard-Todd notation). �

5.4. About the families attached to G(2e, 2e, 4). Assume in this subsec-
tion, and only in this subsection, that W = G(2e, 2e, 4) for some e. Recall that
G(2e, 2e, 4) is the group of monomial matrices in GL4(C) with coefficients in µ2e

and such that the product of the non-zero coefficients is equal to 1. Note that this
implies that W ′ = W SL.

If 1 6 k 6 4, we denote by σk the j-th elementary symmetric function in the
variables x, y, z, t, and let

J1 = (x− y)(x− z)(x− t)(y − z)(y − t)(z − t).
If p ∈ C[x, y, z, t] and l > 1 an integer, we set p[l] = p(xl, yl, zl, tl) ∈ C[x, y, z, t]. For
instance, σ1[l] = Σ(xl). Then (σ1, σ1[2], σ1[3], σ4) is a family of fundamental invari-
ants of G(1, 1, 4) ' S4. So there exists a unique polynomial P ∈ C[x1, x2, x3, x4]
such that

(5.9) J2
1 = P (σ1, σ1[2], σ1[3], σ4).

We do not need here the explicit form of P . If a, b, c ∈ C, we set

Fa,b,c = aσ1[4] + bσ4 + cσ1[2]2 = aΣ(x4) + bxyzt+ c(Σ(x2))2,

Ga,b,c = σ1[6] + aσ1[4]σ1[2] + bσ1[2]3 + cσ1[2]σ4.

With this notation, we may, and we will, choose as a family of fundamental in-
variants of W the family (σ1[2e], σ1[4e], σ1[6e], σ4). Note that the element J ∈
C[x, y, z, t]W

′
defined in §3.2 is equal to J1[2e] (up to a scalar). Applying the endo-

morphism p 7→ p[2e] of C[x, y, z, t] to the formula (5.9) and using Proposition 3.11
gives

(5.10) P(V )/W ′'{[x1 :x2 :x3 :x4 :j] ∈ P(2e, 4e, 6e, 4, 12e)|j2 =P (x1, x2, x3, x
2e
4 )},

because σ4[2e] = σ2e
4 . Let us examine the situation according to the parity of e.

5.4.1. The case where e is odd. Assume here that e is odd. Then P(2e, 4e, 6e, 4, 12e) =
P(e, 2e, 3e, 2, 6e) ' P(1, 2, 3, 2, 6). So it follows from (5.10) that

(5.11) P(V )/W ′ ' {[x1 : x2 : x3 : x4 : j] ∈ P(1, 2, 3, 2, 6) | j2 = P (x1, x2, x3, x
2
4)}.

Now, a fundamental invariant of degree 6e of W if of the form Ga,b,c[e]. We deduce
from (5.11) that

Z (Ga,b,c[e])/W
′ ' {[x1 : x2 : x4 : j] ∈ P(1, 2, 2, 6) |

j2 = P (x1, x2,−ax1x2 − bx3
1 − cx1x4, x

2
4)}

and in particular

(5.12) Z (Ga,b,c[e])/G(2e, 2e, 4)′ = Z (Ga,b,c)/G(2, 2, 4)′.

Similarly, a fundamental invariant of degree 4e of W is of the form Fa,b,c[e] with
(a, b) 6= 0 and

(5.13) Z (Fa,b,c[e])/G(2e, 2e, 4)′ = Z (Fa,b,c)/G(2, 2, 4)′.

This shows that the varieties Z (Ga,b,c[e])/G(2e, 2e, 4)′ and Z (Fa,b,c[e])/G(2e, 2e, 4)′

do not depend on e.
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5.4.2. The case where e is even. Assume here that e = 2e′ for some e′ > 1. Then
P(2e, 4e, 6e, 4, 12e) = P(e′, 2e′, 3e′, 1, 6e′) = P(1, 2, 3, 1, 6). So it follows from (5.10)
that

(5.14) P(V )/W ′ ' {[x1 : x2 : x3 : x4 : j] ∈ P(1, 2, 3, 1, 6) | j2 = P (x1, x2, x3, x
4
4)}.

Now, a fundamental invariant of G(4e′, 4e′, 4) of degree 4e′ is of the form Fa,b,c[e
′]

and a similar argument as before shows that

(5.15) Z (Fa,b,c[e
′])/G(4e′, 4e′, 4)′ = Z (Fa,b,c)/G(4, 4, 4)′.

Again, the variety Z (Fa,b,c[e
′])/G(4e′, 4e′, 4)′ does not depend on e′.

5.4.3. Complements. Note for future reference (see §6.3) the following fact:

Lemma 5.16. If Z (Fa,b,c) is irreducible, then it is smooth or has only A1 singu-
larities.

Proof. Assume that Z (Fa,b,c) is irreducible and singular. Let us first assume that
a = 0. Then we may assume that b = 1 and the irreducibility of Z (F0,1,c) forces
c 6= 0. An easy computation then shows that the only singular points of Z (F0,1,c)
are the ones belonging to the G(2, 2, 4)-orbit of p = [0 : 0 : i : 1]. But the
homogeneous component of degree 2 of F0,1,c(x, y, i+ z, 1) is ixy − 4z2, which is a
non-degenerate quadratic form in x, y, z. So p is an A1 singularity of Z (F ), as
expected.

Le us now assume that a 6= 0, and even that a = 1. Assume that we have found
(b0, c0) ∈ C2 such that Z (F1,b0,c0) admits a singular point q = [x0 : y0 : z0 : t0]
which is not an A1 singularity. Then, by permuting the coordinates if necessary,
we may assume that t0 6= 0. So let us work in the affine chart t 6= 0 and set F ◦b,c =

F1,b,c(x, y, z, 1). Let Hb,c denote the Hessian matrix of F ◦b,c. Then (x0, y0, z0, b0, c0)
belongs to the variety

X = {(x, y, z, b, c) ∈ A5(C) | F ◦b,c(x, y, z) =
∂F ◦b,c
∂x

(x, y, z) =

∂F ◦b,c
∂y

(x, y, z) =
∂F ◦b,c
∂z

(x, y, z) = det(Hb,c(x, y, z)) = 0}.

Now let π : A5(C) → A2(C), (x, y, z, β, γ) 7→ (β, γ). A Magma [8] computation
shows that π(X ) = {(4,−1/2), (−4,−1/2)}:

> A5<x,y,z,b,c>:=AffineSpace(Rationals(),5);

> A2<b0,c0>:=AffineSpace(Rationals(),2);

> pi:=map<A5 -> A2 | [b,c]>;

> Fbco:=(x^4+y^4+z^4+1)+b*x*y*z+c*(x^2+y^2+z^2+1)^2;

> Hbc:=Matrix(CoordinateRing(A5),3,3,

> [[Derivative(Derivative(Fbco,k),l) :

> k in [1..3]] : l in [1..3]]);

> X:=Scheme(A5,[Fbco] cat [Derivative(Fbco,k) : k in [1,2,3]]

> cat [Determinant(Hbc)]);

> MinimalBasis(ReducedSubscheme(pi(X)));

[

c0 + 1/2,

b0^2 - 16

]
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This shows that (b0, c0) ∈ {(4,−1/2), (−4,−1/2)}. But F4,−1/2 and F−4,−1/2 are
not irreducible (they are divisible by x− y − z + t and x+ y + z − t respectively):
this contradicts the hypothesis. �

Remark 5.17. Observe that the previous family Z (Fa,b,c) with (a, b) = (1, 0) was
studied in [22], where it is shown that the family contains exactly four singular
surfaces with 4, 8, 12, 16 A1–singularities. In particular the surface with 16 A1–
singularities is a Kummer K3 surface. �

5.5. Proof of Theorem 5.4. The rest of this paper is devoted to the proof of this
Theorem 5.4. Note that it proceeds by a case-by-case analysis, but this case-by-case
analysis is widely simplified by the general facts about complex reflection groups
recalled in the previous sections.

Proof of Theorem 5.4. Assume that the hypotheses of Theorem 5.4 are satisfied.
For proving that Z (f)/Γ is a K3 surface with ADE singularities, we need to show
the following facts:

(S) The surface Z (f)/Γ has only ADE singularities.
(E) The Euler characteristic of Z (f)/Γ is positive.
(C) The canonical divisor of Z (f)/Γ is trivial.

Indeed, if X̃ denotes the minimal resolution of Z (f)/Γ and if (S), (E) and (C) are

proved, then X̃ has a trivial canonical sheaf by (S) and (C), so by the classification

of smooth algebraic surfaces X̃ is a K3 surface or an abelian surface. But, by (S),

the Euler characteristic of X̃ is greater than or equal to the one of Z (f)/Γ, so is
also positive by (E). Since the Euler characteristic of an abelian surface is 0, we

deduce that X̃ is a smooth K3 surface.

The technical step is to prove (S), namely that Z (f)/Γ has only ADE singu-
larities. This will be postponed to the next Section 6. So assume here that (S) is
proved.

Let us now prove the statement (E), namely that the Euler characteristic of
Z (f)/Γ is positive. Since Z (f) has only isolated singularities by (S), it follows
from [10, Theo. 4.3] that H1(Z (f),C) = 0. Since Z (f) has only ADE singularities,
it is rationally smooth [15, Def. A1]. As it is also projective, one can apply Poincaré
duality and so H3(Z (f),C) is the dual of H1(Z (f),C), hence is equal to 0. So Z (f)
has no odd cohomology and since Hj(Z (f)/Γ,C) = Hj(Z (f),C)Γ, this shows that
Z (f)/Γ has no odd cohomology. So its Euler characteristic is positive.

Now it remains to prove (C), namely that the canonical sheaf of X = Z (f)/Γ
is trivial. For this, we use Corollary A.3, so we need to prove that X satisfies the
hypotheses (H1), (H2), (H3), (H4) and (H5) of Appendix A. Statements (H1), (H2)
and (H4) are easily checked thanks to Table II while (H5) follows from (S). So it
remains to prove (H3), namely that X is a well-formed weighted complete intersec-
tion. There are two cases:

• If Γ = W SL, then X is a weighted hypersurface of degree e in some
P(l0, l1, l2, l3), and, according to [14, §6.10], X is well-formed if, for all
0 6 a < b 6 3, gcd(la, lb) divides e. This is easily checked with Table II.
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• If Γ = W ′ 6= W SL, then X is a weighted complete intersection defined by
two equations of degree e1 and e2 in some P(l0, l1, l2, l3, l4), and, according
to [14, §6.11], X is well-formed if the following two properties are satisfied:

– For all 0 6 a < b 6 4, gcd(la, lb) divides e1 or e2.
– For all 0 6 a < b < c 6 4, gcd(la, lb, lc) divides e1 and e2.

Again, this is easily checked with Table II.

The proof of Theorem 5.4 is complete, up to the proof of (S). �

6. Singularities of Z (f)/Γ

The aim of this section is to complete the proof of Theorem 5.4, by proving that,
under its hypotheses, the surface Z (f)/Γ has only ADE singularities. The first
subsection is devoted to the (easy) case where d = 4 while the second subsection
deal with the case where (W,d) = (G(2e, 2e, 4), 4e) for some odd e by reduction to
the d = 4 case. The other cases are treated in the third section.

6.1. The case d = 4. Assume in this subsection, and only in this subsection, that
d = 4. This case is somewhat particular and requires its own treatment. It is also
well known in the literature, but we recall the discussion for convenience of the
reader. First, note that the hypothesis implies that Z (f) is already a K3 surface
(with eventually ADE singularities) and we denote by ω a non-degenerate global
holomorphic 2-form on the smooth locus (it is well-defined up to a scalar). By
hypothesis, Γ ⊂ SL4(C), so Γ preserves ω. So Z (f)/Γ inherits a non-degenerate
global holomorphic 2-form ωΓ on its smooth locus.

Now, let p : X → Z (f) denote a minimal resolution of Z (f), and let ωX denote
the unique non-degenerate 2-form on X extending ω. Then X is a K3 surface which
inherits an action of Γ which stabilizes ω: so this is a symplectic action and so X/Γ
is a K3 surface with ADE singularities [20, Section 5]. Let q : Y → X/Γ denote a
minimal resolution. We have a commutative diagram

X
p //

��

Z (f)

��
Y

q // X/Γ
pΓ // Z (f)/Γ,

where pΓ is induced by p. This shows that pΓ ◦ q : Y → Z (f)/Γ is a symplectic
resolution, so Z (f)/Γ is a K3 surface with ADE singularities (and Y is its minimal
resolution). This completes the proof of Theorem 5.4 whenever d = 4.

6.2. The case where Z (f)/W is smooth. Assume in this subsection, and only
in this subsection, that Z (f)/W is smooth. By examining Table II, this occurs
only if (W,d) = (G(2e, 2e, 4), 6e) or (G31, 20). In both cases, Γ = W ′ = W SL is of
index 2 in W , and so the result follows from Corollary B.7.



20 CÉDRIC BONNAFÉ AND ALESSANDRA SARTI

6.3. The case where W = G(2e, 2e, 4). Assume in this subsection, and only
in this subsection, that W = G(2e, 2e, 4). The case where e is odd and d = 6e is
treated in the previous subsection 6.2. If e is odd and d = 4e, then it follows from
the isomorphism (5.13) and Lemma 5.16 that we may assume that e = 1. Then
d = 4 and this case is treated in §6.1. If e = 2e′ is even and d = 4e′, then it follows
from the isomorphism (5.13) and Lemma 5.16 that we may assume that e′ = 1.
Then d = 4 and this case is treated in §6.1.

6.4. Remaining cases. According to the cases treated in §6.1, §6.2 and §6.3, we
may now work under the following hypothesis:

Hypothesis. From now on, and until the end of this section,
we assume that d 6= 4 and W ∈ {G(2, 1, 4), G28, G30}.

6.4.1. The case where Γ = W SL. Assume in this subsection, and only in this sub-
section, that Γ = W SL. In this case, Γ is a subgroup of index 2 of W . Recall from
Propositions 3.3 and 3.11 that

(6.1) Z (f)/W ' P(d1, d2, d3)

and

(6.2) Z (f)/W SL ' {[x1 : x2 : x3 : j] ∈ P(d1, d2, d3, |A |) | j2 = Pf (0, x1, x2, x3)}.
We denote by ρ : Z (f)/W SL −→ Z (f)/W the canonical map, let U denote
the smooth locus of P(d1, d2, d3) and let S denote the set of singular points of
P(d1, d2, d3).

Now, U = π−1
f (U )/W is smooth so ρ−1(U ) = π−1

f (U )/Γ contains only ADE
singularities by Corollary B.7 (because Γ = W SL has index 2 in W ). Hence, it
remains to show that the points in ρ−1(S ) are smooth or ADE singularities. Let
p1 = [1 : 0 : 0], p2 = [0 : 1 : 0] and p3 = [0 : 0 : 1] in P(d1, d2, d3). Then
S ⊂ {p1, p2, p3}. The following fact is checked by a case-by-case analysis:

Lemma 6.3. Assume that d 6= 4 and W ∈ {G(2, 1, 4), G28, G30}. If pk ∈ P(d1, d2, d3)
is singular, then:

(a) δ(dk) = δ∗(dk) = 1.
(b) det(wdk) = 1.
(c) pk is an Aj singularity of P(d1, d2, d3) for some j > 1.

The proof will be given below. Let us first explain why this lemma might help to
check that the points in ρ−1(S ) are smooth or ADE singularities. So let pk ∈ S
and let Ωk = π−1

f (pk). Then

Ωk = {p ∈ P(V ) | ∀ 1 6 j 6= k 6 3, fj(p) = fk(p) = 0}.
By Lemma 6.3, dimV (dk) = 1, so we might view V (dk) ∈ P(V ) as a point zk ∈
Z (f). We denote by zSL

k the image of zk in Z (f)/Γ. By Theorem 3.13(d), we
have that Ωk is the W -orbit of zk. But the stabilizer of zk in W is 〈wdk〉 by
Remark 3.14, so it is contained in Γ by Lemma 6.3. So the map ρ is étale at
zSL

k , and so the singularity of Z (f)/Γ at zSL

k is equivalent to the singularity of
P(d1, d2, d3) at pk, hence is an Aj singularity by Lemma 6.3. This completes the
proof of Theorem 5.4 whenever Γ = W SL and (W,d) 6= (G(2e, 2e, 4), 4e), provided
that Lemma 6.3 is proved. This is done just below:
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Proof of Lemma 6.3. Let us examine the different cases:

• Type G(2, 1, 4). Assume here that W = G(2, 1, 4). Then d = 6 and
(d1, d2, d3) = (2, 4, 8). But P(2, 4, 8) ' P(1, 2, 4) ' P(1, 1, 2), so S = {p3}
and p3 is an A1 singularity. Moreover, d3 = 8 and it follows from Table I
that δ(8) = δ∗(8) = 1. Also, Theorem 3.13(f) implies that the eigenvalues
of w8 are (ζ−5

8 , ζ−1
8 , ζ−3

8 , ζ8), so det(w8) = 1.

• Type G28. Assume here that W = G28. If d = 6, then (d1, d2, d3) =
(2, 8, 12): but P(2, 8, 12) = P(1, 4, 6) = P(1, 2, 3) so S = {p2, p3} and
so dk ∈ {8, 12} (and note that p2 is an A1 singularity, while p3 is an
A2 singularity). If d = 8, then (d1, d2, d3) = (2, 6, 12): but P(2, 6, 12) =
P(1, 3, 6) = P(1, 1, 2) so S = {p3} and so dk = 12 (and note that p3 is an A1

singularity). It follows fom Table I that δ(8) = δ∗(8) = 1 = δ(12) = δ∗(12).

Also, Theorem 3.13(f) implies that det(w8) = ζ4−d−d1−d2−d3
8 = ζ−24

8 = 1

and det(w12) = ζ4−d−d1−d2−d3
12 = ζ−24

12 = 1.

• Type G30. Assume here that W = G30. Then d = 12 and (d1, d2, d3) =
(2, 20, 30). But P(2, 20, 30) = P(1, 10, 15) = P(1, 2, 3) so S = {p2, p3}, so
dk ∈ {20, 30}. Note also that p2 is an A1-singularity while p3 is an A2-
singularity. It follows fom Table I that δ(20) = δ∗(8) = 1 = δ(30) = δ∗(30).

Also, Theorem 3.13(f) implies that det(w20) = ζ4−d−d1−d2−d3
20 = ζ−60

20 = 1

and det(w30) = ζ4−d−d1−d2−d3
30 = ζ−60

30 = 1.

The proof of Lemma 6.3 is complete. �

6.4.2. The case where Γ = W ′ 6= W SL. This case can only occur if W = G(2, 1, 4)
or G28.

• Type G(2, 1, 4). Assume here that W = G(2, 1, 4). Then d = 6 and f is also
an invariant of degree 6 of G(2, 2, 4). Since W ′ = G(2, 2, 4)′ = G(2, 2, 4)SL,
the result follows from the previous subsection.

• Type G28. Then d ∈ {6, 8}. Then d1 = 2, d3 = 12 and d2 is the unique
element of {6, 8} \ {d}. Then

Z (f)/W ′ = {[x1 : x2 : x3 : j1 : j2] ∈ P(2, d2, 12, 12, 12) |

j2
1 = Pf ,Ω1

(0, x1, x2, x3) and j2
2 = Pf ,Ω2

(0, x1, x2, x3)}.
The group W SL/W ′ has order 2 (we denote by σ its non-trivial element)
and it acts on Z (f)/W ′ as follows:

σ([x1 : x2 : x3 : j1 : j2]) = [x1 : x2 : x3 : −j1 : −j2].

So one can check in both cases that the ramification locus R of the mor-
phism θ : Z (f)/W ′ −→ Z (f)/W SL is defined by j1 = j2 = 0. We only
need to prove that R is finite: indeed, if it is finite, then θ is unramified in
codimension 1 and Z (f)/W SL has only ADE singularities as it was shown
in §6.4.1, so Z (f)/W ′ has only ADE singularities by Lemma B.4.

Now,

π′−1
f (R) = {p ∈ P(V ) | j1(p) = j2(p) = f(p) = 0}.
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We only need to prove that π′−1
f (R) is finite. First, let

H = {p ∈ P(V ) | j1(p) = j2(p) = 0}.

Then the irreducible components of H are lines of the form P(H1 ∩H2),
where H1 ∈ Ω1 and H2 ∈ Ω2. This means that we only need to prove that
such a line cannot be entirely contained in Z (f). So, let H1 ∈ Ω1 and
H2 ∈ Ω2 and let sk denote the reflection of W whose reflecting hyperplane
is Hk. Let G = 〈s1, s2〉. Then V G = H1 ∩ H2 so dimV G = 2. If P(V G)
is entirely contained in Z (f), it then follows from Corollary 2.9 that it is
contained in Zsing(f): but this contradicts the fact that Z (f) has only
ADE singularities.

The proof of Theorem 5.4 is complete.

Appendix A. Surfaces in weighted projective spaces

Let m > 3 and let l0, l1,. . . , lm be positive natural numbers. We denote by x0,
x1,. . . , xm the coordinates in the weighted projective space P(l0, l1, . . . , lm) and
we fix m − 2 polynomials F1,. . . , Fm−2 in the variables x0, x1,. . . , xm which are
homogeneous of degree e1,. . . , em−2 (where xi is given the degree li). We consider
the variety

X = {[x0 : x1 : · · · : xm] ∈ P(l0, l1, . . . , lm) |
∀ 1 6 j 6 m− 2, Fj(x0, x1, . . . , xm) = 0}.

Let Psm (resp. Psing) denote the smooth (resp. singular) locus of P(l0, l1, . . . , lm).
We assume throughout this section that the following hold:

(H1) The weighted projective space P(l0, l1, . . . , lm) is well-formed, i.e.

gcd(l0, . . . , lj−1, lj+1, . . . , lm) = 1

for all j ∈ {0, 1, . . . ,m}.
(H2) The variety X is a weighted complete intersection, i.e. dim(X) = 2.
(H3) The variety X is well-formed, i.e codimX(X ∩ Psing) > 2.
(H4) l0 + l1 + · · ·+ lm = e1 + · · ·+ em−2.
(H5) X has only ADE singularities.

Note that we do not assume that X is quasi-smooth (i.e. we do not assume that
the affine cone of X in Cm+1 is smooth outside the origin [11, §3.1.5]). The follow-
ing result is certainly well-known but, due to the lack of an appropriate reference
(particularly in the non-quasi-smooth case), we provide here an explicit proof:

Lemma A.1. Under the hypotheses (H1), (H2), (H3), (H4), (H5), the smooth
locus of the surface X has a non-degenerate 2-form.
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Proof. We set P = P(l0, l1, . . . , lm) for simplification. Let U denote the smooth
locus of X ∩ Psm. By (H3), X ∩ Psing has codimension > 2 in X and so X \ U
has codimension > 2 in X by (H5). Again by (H5), it is sufficient to prove that U
admits a non-degenerate 2-form.

If 0 6 a 6 m and 1 6 j 6 m− 2, we denote P(a) the open subset of P defined by
xa 6= 0: we identify it with Cm/µla , where the coordinates in Cm are denoted by
(x0, . . . , xa−1, xa+1, . . . , xm), and we set

F
(a)
j (x0, . . . , xa−1, xa+1, . . . , xm) = Fj(x0, . . . , xa−1, 1, xa+1, . . . , xm).

The smooth locus of P(a) will de denoted by P(a)
sm and, since P is well-formed by (H1),

the above action of µwa
on Cm contains no reflection and so P(a)

sm is the unramified
locus of the morphism C→ Cµwa

.

Let J (a) =
(
∂F

(a)
j /∂xk

)
1 6 j 6 m−2,0 6 k 6=a 6 m

denote the Jacobian matrix of the

family (F
(a)
1 , . . . , F

(a)
m−2). If b, c are two different elements of {0, 1, . . . ,m} which

are different from a, we denote by J
(a)
b,c the (m−2)× (m−2) minor of J (a) obtained

by removing the two columns numbered by b and c. We set

P(a)
sm,b,c = {p ∈ P(a)

sm | J
(a)
b,c (p) 6= 0}

and U
(a)
b,c = X ∩ P(a)

sm,b,c.

By the above description of P(a)
sm and (H2), we get

U =
⋃

0 6 a,b,c 6 m
|{a,b,c}|=3

U
(a)
b,c .

We now define a 2-form ω
(a)
b,c on P(a)

sm,b,c by

(A.2) ω
(a)
b,c = la

dxb ∧ dxc
J

(a)
b,c

.

Let us first explain why this defines a 2-form on P(a)
sm,b,c. This amounts to show

that ω
(a)
b,c is invariant under the action of µla on the variables (xk)0 6 k 6=a 6 m given

by ξ · xk = ξlkxk. But, if M is a monomial in J
(a)
b,c of degree e in the variables

(xk)0 6 k 6=a 6 m, then

(#) e ≡ e1 + · · ·+ em−2 − (l0 + l1 + · · ·+ lm − la − lb − lc) mod la

because the variable xa is specialized to 1. So ξ ∈ µla acts on J
(a)
b,c by multiplication

by ξlb+lc by (H4). So it acts trivially on ω
(a)
b,c .

We now denote by ω
(a)
U,b,c the restriction of ω

(a)
b,c to U

(a)
b,c . Note that U

(a)
b,c = U

(a)
c,b

but that ω
(a)
U,b,c = −ω(a)

U,c,b, so we have to make some choice. We denote by E the

set of triples (a, b, c) of elements of {0, 1, . . . ,m} such that a < b < c or c < a < b
or b < c < a. Then again

U =
⋃

(a,b,c)∈E

U
(a)
b,c

and we want to show that the family of 2-forms (ω
(a)
U,b,c)(a,b,c)∈E glue together to

define a 2-form on U . The argument is standard and will be done in two steps.
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First step: glueing inside an affine chart. We fix a ∈ {0, 1, . . . ,m} and we set
U (a) = U ∩ P(a). Let b, c, b′, c′ ∈ {0, 1, . . . ,m} be such that (a, b, c), (a, b′, c′) ∈ E .
We need to prove that

(]) ω
(a)
U,b,c|U(a)

b,c ∩U
(a)

b′,c′
= ω

(a)
U,b′,c′ |U(a)

b,c ∩U
(a)

b′,c′
.

Proving (]) is a computation in Cm and amounts to prove that

(]′) J
(a)
b′,c′dxb ∧ dxc = J

(a)
b,c dxb′ ∧ dxc′

on the variety X̂(a) defined by F
(a)
1 = · · · = F

(a)
m−2 = 0 inside Cm. By applying a

power of the cyclic permutation (0, 1, . . . ,m) to the coordinates, we may (and we

will) assume that a = 0 (so that 0 < b < c and 0 < b′ < c′). Since F
(0)
j vanishes on

X̂(0), its differential vanishes also on X, which implies that

∀1 6 j 6 m− 2,

m∑
k=1

∂F
(0)
j

∂xk
dxk = 0 on X̂(0).

Then (]′) is an easy application of generalized Cramer’s rule [12].

Second step: glueing affine charts. We denote by ω
(a)
U the glueing of the 2-forms

ω
(a)
U,b,c, where b, c are such that (a, b, c) ∈ E . Let a, a′ ∈ {0, 1, . . . ,m}. We need to

prove that

([) ω(a)|U(a)∩U(a′) = ω(a′)|U(a)∩U(a′) .

For simplifying the notation, we will assume that (a, a′) = (0, 1), the general case
being treated similarly. We will denote by (xk)0 6 k 6=a 6 m the coordinates on P(a)

and (x′k)0 6 k 6=a′ 6 m the coordinates on P(a′). Also for simplifying the notation, we

will assume that U
(0)
1,2 ∩ U

(1)
(2,0) 6= ∅. So, for proving ([), we only need to prove that

([′) l0J
(1)
2,0dx1 ∧ dx2 = l1J

(0)
1,2dx

′
2 ∧ dx′0 on P(0) ∩ P(1).

The variables (xk)0 6 k 6=a 6 m and (x′k)0 6 k 6=a′ 6 m are related as follows:
x′0 =

1

x
l0/l1
1

,

∀2 6 k 6 m, x′k =
xk

x
lk/l1
1

.

Therefore dx′0 = −(l0/l1)x
−1−l0/l1
1 dx1 and so

([′′) l1dx
′
2 ∧ dx′0 = l0x

−(l0+l1+l2)/l1
1 dx1 ∧ dx2.

Moreover, since Fj is homogeneous of degree ej , we get

F
(0)
j (x1, x2, . . . , xm) = x

ej/l1
1 F

(1)
j (x′0, x

′
2, . . . , x

′
m).

We deduce that
∂F

(0)
j

∂xk
= x

(ej−lk)/l1
1

∂F
(1)
j

∂x′k
for all k > 3 and then

([′′′) J
(0)
1,2 = x

((e1+···+em−2)−(l3+···+lm))/l1
1 J

(1)
2,0 .

So ([′) follows from ([′′) and ([′′′) since e1+· · ·+em−2 = l0+l1+· · ·+lm by (H4). �



REFLECTION GROUPS AND K3 SURFACES 25

Corollary A.3. Under the hypotheses (H1), (H2), (H3), (H4), (H5), the smooth
locus of the surface X has a trivial canonical sheaf and its minimal resolution is a
smooth K3 surface or an abelian variety.

Appendix B. Around ADE singularities

The results of this appendix are certainly well-known. Here, we let GL2(C)
act on the ring of formal power series C[[t, u]] naturally by linear changes of the
variables. We set B = SpecC[[t, u]] and we denote by 0 its unique closed point. We
set B# = B \ {0}: it is an open subscheme of B. Since B is normal, it follows from
Hartog’s Lemma that

(B.1) OB(B#) = C[[t, u]].

Lemma B.2. Let G be a finite subgroup of GL2(C) containing no reflection and
let σ be an automorphism of C[[t, u]]G. Then σ lifts to an automorphism of C[[t, u]].

Remark B.3. If G is a finite subgroup of SL2(C), then G contains no reflection.
This shows that the above lemma applies to ADE singularities C[[t, u]]G. �

Proof. First, note that B has a trivial fundamental group by [13, Exp. I, Th. 6.1].
As it is regular of dimension 2, its open subset B# has also a trivial fundamental
group by [13, Exp. X, Cor. 3.3]. Therefore, the natural map

π : B# −→ B#/G

is a universal covering: indeed, the morphism B → B/G is ramified only at 0
because G does not contain any reflection. In particular, π ◦ σ is also a univer-
sal covering, which means that σ lifts to an automorphism of B# since B#/G is
connected. Taking global sections and using (B.1) yields the result. �

Lemma B.4. Let π : Y → X be a finite morphism of normal surfaces which is
unramified in codimension 1. We assume moreover that X has only ADE singular-
ities. Then Y has only ADE singularities.

Proof. Let y ∈ Y and let x = π(y). Then there exists a finite subgroup G of SL2(C)

such that ÔX,x ' C[[t, u]]G. Therefore, the morphism of schemes

πy : (Spec ÔY,y) \ {y} −→ B#/G

induced by π is unramified by hypothesis, so there exists a morphism of schemes

B# −→ (Spec ÔY,y) \ {y}
whose composition with πy is a universal covering of B#/G (see the proof of
Lemma B.2).

Consequently, there exists a subgroup H of G such that

(Spec ÔY,y) \ {y} = B#/H.

Taking global sections and applying Hartog’s Lemma together with (B.1) yields

that ÔY,y = C[[t, u]]H . �
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Recall that, if G ⊂ GL2(C), then the only point of C2/G that might be singular
is the G-orbit of 0 (denoted by 0̄). The next result is certainly well-known:

Lemma B.5. Let G be a finite subgroup of GL2(C) which is generated by Ref(G)
and let Γ be a subgroup of G of index 1 or 2. Then 0̄ ∈ V/Γ is smooth or an ADE
singularity.

Proof. We argue by induction on the order of G, the case where |G| = 1 being
trivial. Also, if Γ = G, then V/Γ is smooth so we may assume that Γ 6= W . As Γ
is of index 2, it is normal and we denote by τ : W → µ2 the unique morphism such
that Γ = Ker(τ). Let Γr be the subgroup of Γ generated by reflections belonging
to Γ. It is a normal subgroup of G and

V/G = (V/Γr)/(G/Γr) and V/Γ = (V/Γr)/(Γ/Γr).

Two cases may occur:

• If Γr 6= 1, then V/Γr is isomorphic to a vector space on which G/Γr acts
linearly as a reflection group since V/G is smooth (see also [3, Prop. 3.5]).
So the result follows from the induction hypothesis.
• If Γr = 1, then τ(s) 6= 1 for all s ∈ Ref(G). This implies that all reflections

of G have order 2. Indeed, if s ∈ Ref(G), then τ(s2) = 1 so s2 cannot be a
reflection, hence is equal to 1. This shows in particular that τ(s) = det(s)
for all s ∈ Ref(G) and so τ(w) = det(w) for all w ∈ W . In particular,
Γ ⊂ SL2(C) and the result follows.

The proof of the lemma is complete. �

Remark B.6. We explain here why the general result stated in Lemma B.5 is in
some sense optimal. Let d > 3. Then there exists a reflection group W in GL2(C)
admitting a normal subgroup Γ such thatW/Γ is cyclic of order d and C2/Γ admits a
non-simple singularity. Take for instance W = µd×µd embedded through diagonal
matrices, and Γ ' µd embedded through scalar multiplication. Then 0̄ is not an
ADE singularity of C2/Γ.

In the same spirit, there exists a reflection group W in GL2(C) admitting a
normal subgroup Γ such that W/Γ ' µ2 × µ2 and such that V/Γ admits a non-
simple singularity. Take for instance W = G(4, 2, 2). Then W can be generated
by three reflections s1, s2, s3 (of order 2), which lie in three different conjugacy
classes. Take Γ = 〈W ′, s1s2s3〉. Then the tangent space of V/Γ at 0̄ has dimension
5, so 0̄ cannot be an ADE singularity. �

Corollary B.7. Let X be a surface with only ADE singularities and let G be a
group acting on X such that X/G is smooth. Let Γ be a subgroup of G of index 2.
Then X/Γ has only ADE singularities.
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Proof. Let x ∈ X. It is sufficient to show that X/Γx has an ADE singularity at the
image of x. Note that we know that X/Gx is smooth at the image of x. Also, Γx
has index 1 or 2 in Gx. This shows that we may, and we will, assume that G = Gx
(and so Γ = Γx).

By hypothesis, there exists a subgroup H of SL2(C) such that the complete

local ring ÔX,x (the completion of the local ring OX,x of X at x) is isomorphic

to C[[t, u]]H . Let us identify ÔX,x with C[[t, u]]H , so that the group G acts on
C[[t, u]]H . By Lemma B.2, the action of an element g ∈ G on C[[t, u]]H lifts to an
automorphism g̃ of C[[t, u]]: we fix such a g̃ for all g ∈ G. Note that {g̃h | h ∈ H}
is the set of all lifts of g to C[[t, u]]. Let

G̃ = {g̃h | g ∈ G and h ∈ H}.

Then G̃ is a group (as g̃hg̃′h′ is a lift of gg′ so belongs to G̃) and we have an exact
sequence

1 −→ H −→ G̃ −→ G −→ 1.

Let Γ̃ denote the inverse image of Γ in G̃. Note that (C[[t, u]]H)G = C[[t, u]]G̃ and

(C[[t, u]]H)Γ = C[[t, u]]Γ̃.

Now, by hypothesis, (C[[t, u]]H)G is regular. This shows that G̃ acts as a reflec-
tion group on the tangent space of SpecC[[t, u]] at its unique closed point, and so

the result follows from Lemma B.5 because Γ̃ has index 1 or 2 in G̃. �
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