A purely analytical lower bound for $L(1, \chi)$
Abstract
We give a simple proof of $L(1, \chi) \sqrt{q}\gg 2^{\omega(q)}$ when $\chi$ is an odd primitive quadratic Dirichlet character of conductor $q$. In particular we do not use the Dirichlet class-number formula.
Domains
Number Theory [math.NT]Origin | Files produced by the author(s) |
---|
Loading...