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A purely analytical lower bound for L(1, χ)

Olivier Ramaré

Abstract. We give a simple proof of L(1, χ)
√

q � 2ω(q) when χ
is an odd primitiv quadratic Dirichlet character of conductor q. In
particular we do not use the Dirichlet class-number formula.

Résumé. Nous donnons une preuve simple de l'inégalité L(1, χ)
√

q �
2ω(q) lorsque χ est un caractère quadratique primitif impair. En par-

ticulier, nous n'utilisons pas la formule de Dirichlet liant L(1, χ) et e
nombre de classes.

1. Main results

For a Dirichlet quadratic character χ of conductor q, several techniques
were devised to get a lower bound for L(1, χ). One of them consists in
estimating

S(α) =
∑
n≥1

( ∑
d|n

χ(d)
)
e−αn (1.1)

in two ways, where α > 0 is a parameter to be chosen. We �rst notice that
(1?χ)(n) ≥ 0 and even ≥ 1 if n is a square, thus obtaining the lower bound

S(α)� α−1/2. On an other side, reversing the inner summation yields

S(α) = L(1, χ)α−1 +
∑
d≥1

χ(d)
(

1
eαd − 1

− 1
αd

)
. (1.2)

Using partial summation and the Polya-Vinogradov inequality, the "re-
mainder term" isO(

√
q Log q). Taking α−1 = c

√
q Log2 q for a large enough

constant c yields L(1, χ)
√

q � 1/ Log q. It is fairly easy to remove this Log q
by noticing that only a smoothed version of the Polya-Vinogradov inequal-
ity is required, thus getting L(1, χ)

√
q ≥ c for some positive constant c.
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The next question is to evaluate c. Recalling the Dirichlet class number
formula

L(1, χ)
√

q =

{
πh(−q) if χ(−1) = −1, q ≥ 5
Log εq h(q) if χ(−1) = +1,

(1.3)

we see that c > π for q larger than an explicit value would give another
solution of the class number 1 problem. As it turns out the previous method
can be made to yield the bound c = π − o(1). Such a result is a priori
surprising since the method being analytical, the smoothing e−x can be
modi�ed. We have not been able to solve the resulting extremal problem
in order to get the best possible smoothing, but we have tried numerically
several of them (including all the smoothings of the form P (x)e−x where P
is a polynomial) and found no better one, which suggests that this choice
is (sadly) optimal. The general case being cumbersome, we have chosen to
present a shorter proof which is well adapted to this particular choice and
enables us to give a more complete description. We shall however restrict
our attention to odd characters.

Using genus theory of quadratic forms, one can deduce from the Dirichlet
class number formula that L(1, χ) ≥ π

2 2ω(q)/
√

q and it turns out that the
previous method can be modi�ed to yield a bound of similar strength,
without any appeal either to the theory of quadratic forms, nor to the
Dirichlet class number formula.

Theorem 1.1. When q goes to in�nity and χ is a primitive quadratic
Dirichlet character such that χ(−1) = −1, we have

L(1, χ) ≥ (1 + o(1))π/
√

q.

Moreover, uniformly for q ≥ 3, we have

L(1, χ) ≥ 2ω(q)−1π

7.5
√

q
.

To do so we �rst rewrite the above proof. The function

Φ(s) = (2π/
√

q)−s Γ(s)ζ(s)L(s, χ), (1.4)

veri�es the relation Φ(1 − s) = Φ(s). Consequently and following Hecke's
theory on Dirichlet series having a functional equation, we deduce that the
function of the variable τ = x + iy with y > 0

f(τ) =
√

q

2π
L(1, χ) +

∑
n≥1

(1 ? χ)(n)e2iπnτ/
√

q, (1.5)
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veri�es f(−1/τ) = (τ/i)f(τ). To get these relations, we simply express f
in term of Φ by the Mellin formula and use the functional equation for Φ.

The next step consists in elaborating on the argument (1 ? χ)(n2) ≥ 1.
To do so let λ be Liouville's function (whose associated Dirichlet series is
ζ(2s)ζ(s)−1). We check that µ2 is the convolution inverse of λ and that
1 ? λ is the characteristic function of the squares. De�ning ν = µ2 ? χ ≥ 0,
we get

1 ? χ = 1 ? λ ? µ2 ? χ = ν ? (1 ? λ)

which yields

f(iz) =
√

q

2π
L(1, χ) +

∑
m≥1

ν(m)θ0(2πmz/(k
√

q)) (1.6)

where

θ0(z) =
∑
n≥1

e−zn2
. (1.7)

On using the functional equation of f , we infer

1− x

2

√
q

π
L(1, χ) =

∑
m≥1

ν(m)H(x, 2πmx/
√

q) (1.8)

where

H(x, y) = xθ0(y)− θ0(y/x2). (1.9)

The point is that H(x, y) ≥ 0 as soon as x is not too close neither to 1
nor to 0. This property is highly non-obvious since the main terms ( as y
is close to 0) of both summands of the RHS of (1.9) cancel each other as
may be seen in the proof below. H(x, y) is then about (1− x)/2 when y is
small and then decays to 0.

Lemma 1.2. For x = 0.1987, we have H(x, y) ≥ 0 for y ≥ 0. Moreover
the estimate H(x, y) = 1−x

2 +O(y) holds. Finally we have

min
y≤2πx

H(x, y) ≥ 1− x

15
.

We believe much more to be true:

Conjecture 1.3. We have H(x, y) ≥ 0 for every x ∈ [0, 1] and y ≥ 0.
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Proof. We assume throughout that 0 < x < 1. The proof is separated in
two parts according as to y is small or not. We start with the case of small
y's. By Euler-MacLaurin summation formula, we get

θ0(y) =
∫ ∞

0
e−yt2dt− 1

2
+

(−1)h+1

h!

∫ ∞

0
Bh(t)f (h)(t)dt (h ≥ 2)

where Bh is the h-th Bernoulli function and f(t) = exp(−yt2). This formula
is that simple because f is even: this implies that f (r)(0)Br+1(0) = 0
when r ≥ 1. We use the above expression with h = 3. Recalling that
B3(t) = t3 − 3t2/2 + t/2 for t ∈ [0, 1], we get |B3(t)| ≤ 1/(12

√
3) and thus

θ0(y) = y−1/2Γ(3/2)− 1
2 +O∗(Cy)

where f(t) = O∗(g(t)) means |f(t)| ≤ g(t) and where

C =
1

72
√

3

∫ ∞

0

∣∣∣∣∣ d3

dt3
e−t2

∣∣∣∣∣ dt =
4e−3/2 + 1

36
√

3
= 0.030351 +O∗(10−6).

Details of this computation can be found in the appendix. We thus get

H(x, y) ≥ 1− x

2

(
1− 2C y

x + x−2

1− x

)
. (1.10)

From this expression it follows that H(x, y) ≥ 0 as soon as

y/x2 ≤ w(x) =
1− x

2C (1 + x3)
.

Let us assume now that y/x2 ≥ w(x). Using geometrical progressions,
we get

θ0(y/x2) ≤ e−y/x2
+ e−4y/x2

+
∑
n≥3

e−n2y/x2

≤ e−y/x2
+ e−4y/x2

+
∑
n≥3

e−3ny/x2 ≤ e−y/x2
+ e−3y/x2

1− e−3y/x2 .

We use xθ0(y) ≥ xe−y, and thus H(x, y) ≥ 0 as soon as

1− e−3w(x)

1 + e−2w(x)
e(x−2−1)y ≥ x−1

(we have used the fact that ρ 7→ (1 − ρ3)/(1 + ρ2) is non-increasing on
[0, 1], as a computation of its derivative readily shows). Since we want to
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cover the range y ∈]0,∞[, the condition on x reads

1− e−3w(x)

1 + e−2w(x)
e(1−x2)w(x) ≥ x−1 (1.11)

which holds for the chosen value of x. See the Appendix for further details.
We now aim at a lower bound of the shapeH(x, y) ≥ κ(1−x) valid for every
y ≤ 2πx. We �rst check that (1.10) implies it when y ≤ (1 − 2κ)x2w(x).
We extend this range by using

H(x, y) ≥ xe−y − e−y/x2
+ e−3y/x2

1− e−3ξ/x
for y ≥ ξx. (1.12)

This lower bound, say H0(x, y, ξ), is �rst increasing and then decreasing
as a function of y, as an examination of its derivative readily shows. This
implies that

min
ξ1x≤y≤ξ2x

H(x, y) ≥ min
(
H0(x, ξ1x, ξ1),H0(x, ξ2x, ξ1)

)
. (1.13)

We then select x = 0.1987 and κ = 1/15. The lower bound stemming
from (1.13) gives our lower bound when y lies in [1.7, 2π] and we extend
this bound by using (1.10) since (1− 2κ)xw(x) > 1.7. Let us mention that
we could have split the range [1.7, 2π] of ξ in several subintervals. The
Lemma follows readily. �

We now continue the proof of Theorem 1.1. Using (1.8) and the Lemma,
we get

L(1, χ)
√

q ≥ π
(
1 +O(1/

√
q)

)
by discarding all the terms except the one corresponding to m = 1. By
discarding only the terms corresponding to m >

√
q, we get

Theorem 1.4. We have

L(1, χ)
√

q ≥ 2π

15

∑
m≤√q

ν(m)

To end the proof of Theorem 1.1, note that ν(p) = 1 if p|q. Since half
the divisors of q are less than

√
q, we conclude easily.

Theorem 1.4 is to be compared with what one can get by using the
theory of quadratic forms. For instance (cf [2, (1.4)]), Oesterlé proves

L(1, χ)
√

q/π ≥
∑

m≤√q/2

ν(m),
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and Goldfeld in [1] already proved similar inequalities. Modifying this tech-
nique we can extend the range of summation to m ≤ √q if we divide the
lower bound by 3.

2. Numerical Appendix

Computing C

With g(t) = e−t2 , we get

g′′(t) = (−2 + 4t2)g(t), g′′′(t) = 4t(3− 2t2)g(t).

The function g′′′(t) is negative except for t ∈ [0,
√

3/2] where it is non-

negative. The L1-norm of g′′′ is −g′′(0) + 2g′′(
√

3/2) = 2(4e−3/2 + 1),
which gives the values of C.

Checking the positivity

Note that the RHS of (1.11) is increasing as a function of w and that
w(x) is a decreasing function of x. By splitting the interval [0, 1] in 1 000
subintervals [x−, x+], and using the fact that the RHS of (1.12) is non-
negative as soon as

1− e−3w(x−)

1 + e2w(x−)
e(1−x2

+)w(x+) − x−1
− ≥ 0 (x− ≤ x ≤ x+) (2.1)

we check that H(x, y) ≥ 0 for all y ≥ 0 provided x veri�es:

0.001 ≤ x ≤ 0.882.

Plotting H(x, y)

We have presented a simple approach, but we could have relied more heav-
ily on computational material. The function θ0 satis�es a functional equa-
tion inherited from the one of the theta function (and the latter is equiva-
lent via Hecke's correspondence to the one of the Riemann zeta function).
It reads:

θ0(y) =
√

π

y
θ0(π2/y) +

√
π

2
√

y
− 1

2
.

This leads to the following GP/PARI-script:
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{thetabase0(y)= sumpos(n = 1, exp(-n^2*y))}

{theta0(y)=

if(y < Pi,

return(thetabase0(Pi^2/y)/sqrt(y/Pi)-1/2+1/2/sqrt(y/Pi)),

return(thetabase0(y)))}

{IH(x,y)=(x*theta0(y)-theta0(y/x^2))/(1-x)}

ploth(y = 0.1, 2*Pi*0.1987, IH(0.1987, y));

This produces a high de�nition plot of H(0.1987, y)/(1 − 0.1987). We see
on this that we can replace the 15 in our bound by a 14.

Bibliography

[1] D. Goldfeld. Gauss's class number problem for imaginary quadratic
�elds. Bull. Amer. Math. Soc. (1), 13:23�37, 1985.

[2] J. Oesterlé. Nombres de classes des corps quadratiques imaginaires.
Astérisque, 121/122:309�323, 1985.

Olivier Ramaré

Laboratoire CNRS Paul Painlevé

Université Lille I

59 655 Villeneuve d'Ascq Cedex

ramare@math.univ-lille1.fr

7


