Dynamics of the mean-field-interacting quantum kicked rotor
Résumé
We study the dynamics of the many-body atomic kicked rotor with interactions at the mean-field level, governed by the Gross-Pitaevskii equation. We show that dynamical localization is destroyed by the interaction, and replaced by a subdiffusive behavior. In contrast to results previously obtained from a simplified version of the Gross-Pitaevskii equation, the subdiffusive exponent does not appear to be universal. By studying the phase of the mean-field wave function, we propose a new approximation that describes correctly the dynamics at experimentally relevant times close to the start of subdiffusion, while preserving the reduced computational cost of the former approximation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|