Besicovitch pseudodistances with respect to non-Følner sequences - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2020

Besicovitch pseudodistances with respect to non-Følner sequences

Silvio Capobianco
  • Function : Author
  • PersonId : 884133
Pierre Guillon
Camille Noûs

Abstract

The Besicovitch pseudodistance defined in [BFK99] for one-dimensional configurations is invariant by translations. We generalize the definition to arbitrary groups and study how properties of the pseudodistance, including invariance by translations, are determined by those of the sequence of finite sets used to define it. In particular, we recover that if the Besicovitch pseudodistance comes from a nondecreasing exhaustive Følner sequence, then every shift is an isometry. For non-Følner sequences, we prove that some shifts are not isometries, and the Besicovitch pseudodistance with respect to some subsequence even makes them non-continuous.
Fichier principal
Vignette du fichier
folbes.pdf (309.02 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02566187 , version 1 (06-05-2020)

Identifiers

  • HAL Id : hal-02566187 , version 1

Cite

Silvio Capobianco, Pierre Guillon, Camille Noûs. Besicovitch pseudodistances with respect to non-Følner sequences. 2020. ⟨hal-02566187⟩

Relations

159 View
114 Download

Share

Gmail Mastodon Facebook X LinkedIn More