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Besicovitch pseudodistances with respect to non-Følner sequences

Silvio Capobianco∗† Pierre Guillon‡ Camille Noûs§

Abstract

The Besicovitch pseudodistance defined in [BFK99] for one-dimensional configurations
is invariant by translations. We generalize the definition to arbitrary groups and study
how properties of the pseudodistance, including invariance by translations, are determined
by those of the sequence of finite sets used to define it. In particular, we recover that if
the Besicovitch pseudodistance comes from a nondecreasing exhaustive Følner sequence,
then every shift is an isometry. For non-Følner sequences, we prove that some shifts are
not isometries, and the Besicovitch pseudodistance with respect to some subsequence even
makes them non-continuous.

Keywords: Besicovitch distance, Følner sequences, submeasures, amenability, non-compact
space, symbolic dynamics.

1 Introduction

The Besicovitch pseudodistance was proposed by Blanchard, Formenti and Kůrka in [BFK99]
as an “antidote” to sensitivity of the shift map in the prodiscrete (Cantor) topology of the space
of 1D configurations over a finite alphabet. The idea is to take a window on the integer line,
which gets larger and larger, and compute the probability that in a point under the window,
chosen uniformly at random, two configurations will take different values. The upper limit of
this sequence of probabilities behaves like a distance, except for taking value zero only on pairs
of equal configurations: this defines an equivalence relation, and the resulting quotient space is
a metric space on which the shift is an isometry, or equivalently, the distance is shift-invariant.

The original choice of windows is Xn = [−n : n], the set of integers from −n to n included.
This notion can be easily extended to arbitrary dimension d ≥ 1, taking a sequence of hypercubic
windows. If we allow arbitrary shapes, the notion of Besicovitch space can be extended to
configurations over arbitrary groups; in this case, however, the properties of the group and
the choice of the windows can affect the the distance being or not being shift-invariant. An
example of a Besicovitch pseudodistance which is not shift-invariant is given in [Cap09], where
it is also proved that, if a countable group is amenable (cf. [CGK13] and [CSC10, Chapter 4]),
then the Besicovitch distance with respect to any nondecreasing exhaustive Følner sequence
is shift-invariant. The class of amenable groups is of great interest and importance in group
theory, symbolic dynamics, and cellular automata theory.

In this paper, we explore the relation between the properties of Besicovitch pseudodistances
over configuration spaces with countable base group and those of the sequence of finite sets
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used to define it. In Section 3, we give the main definition and prove that if a sequence of
finite subsets is increasing, then the corresponding Besicovitch space is pathwise connected:
this generalizes [BFK99, Proposition 1]. In Section 4, we introduce a notion of synchronous
Følner equivalence between sequences, and a related order relation where one sequence comes
before another sequence if it is synchronously Følner-equivalent to a subsequence of the latter.
This, on the one hand, generalizes that of Følner sequences, and on the other hand, allows us
to compare the Besicovitch distances and submeasures associated to different sequences. In
particular, we prove that an increasing sequence of finite sets is Følner if and only if every shift
is an isometry for the corresponding Besicovitch distance: this provides the converse of [Cap09,
Theorem 3.5]. Finally, we give conditions for absolute continuity and Lipschitz continuity of
Besicovitch submeasures with respect to each other.

2 Background

We use the notation X b Y to mean that X is a finite subset of Y . We denote the symmetric
difference of two sets X and Y as X∆Y .

Given α ∈ R, its integer part bαc is the largest m ∈ Z such that m ≤ α.
If (αn) and (βn) are nonzero number sequences, we write αn ∼n→∞ βn if limn→∞ αn/βn = 1,

and αn = on→∞βn if limn→∞ αn/βn = 0.

2.1 Submeasures

The following definition appears for instance in [Sab06].

Definition 2.1. A submeasure over a set G is a map µ : 2G → R t {+∞} such that:

1. µ(∅) = 0;

2. µ(W ) <∞ if W is finite;

3. µ(V ∪W ) ≤ µ(V ) + µ(W ) for every V,W ⊂ G.

If G and A are two sets, the difference set of two functions x, y : G→ A is the set ∆(x, y) =
{ i ∈ G|x(i) 6= y(i)}.

Any submeasure over G gives rise to an associated pseudodistance over AG:

dµ(x, y) = µ(∆(x, y)) ∀x, y ∈ AG .

Remark 2.2. The topological space corresponding to such a pseudodistance is homogeneous
in the following sense: the balls around every two points y and z are isometric. Indeed, identify
A with the additive group Z/ |A|Z. Then for every y, z ∈ AG the map ψy,z : AG → AG defined
by ψy,z(x)(i) = x(i) − y(i) + z(i) for every x ∈ AG and i ∈ G is an isometry between any ball
around y and the corresponding one around z.

We say that submeasure µ is absolutely continuous (resp. α-Lipschitz, for some α > 0) with
respect to submeasure ν if ν(W ) = 0 =⇒ µ(W ) = 0 (resp. µ(W ) ≤ αν(W )) for any W ⊂ G.

Remark 2.3. Let ε, δ > 0, µ, ν two submeasures on G, and z ∈ AG. The following are
equivalent.

1. For every set W ⊂ G, µ(W ) ≥ ε =⇒ ν(W ) ≥ δ.

2. For every x, y ∈ AG, dµ(x, y) ≥ ε =⇒ dν(x, y) ≥ δ.
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3. For every x ∈ AG, dµ(x, z) ≥ ε =⇒ dν(x, z) ≥ δ.

Consequently, the identity map, from space AG endowed with dµ onto space AG endowed with
dν , is continuous (resp. α-Lispchitz) if and only if µ is absolutely continuous (resp. α-Lispchitz)
with respect to ν. In that case the identity is even absolutely continuous.

2.2 Shifts and translations

If A is an alphabet, G is a group, and g ∈ G, the shift by g is the function σg : AG → AG defined
by σg(x)(i) = x(gi) for every x ∈ AG and i ∈ G. A map ψ from AG to itself is shift-invariant
if ψσg = σgψ for every g ∈ G. Note that ∆(σg(x), σg(y)) = g−1∆(x, y) for every x, y ∈ AG and
g ∈ G, as:

∆(σg(x), σg(y)) = { i ∈ G|x(gi) 6= y(gi)}
=

{
g−1j

∣∣ j ∈ G, x(j) 6= y(j)
}

= g−1 {j ∈ G|x(j) 6= y(j)}
= g−1∆(x, y) .

Since the maps ψy,z from Remark 2.2 are shift-invariant, one can see that the shift is con-
tinuous, Lipschitz, etc in every x if and only if it is in one x.

The shift by g, within space AG endowed with dµ, is topologically the same as the identity
map, from AG endowed with dµ onto space AG endowed with dν , where ν(W ) = g−1µ(W ) =
µ(g−1W ) for any set W ⊂ G. Remark 2.2 can then be rephrased into the following.

Remark 2.4. If G is a group, g ∈ G, and AG is endowed with dµ, then the shift map by g is
continuous (resp. α-Lispchitz) if and only if µ is absolutely continuous (resp. α-Lispchitz) with
respect to g−1µ. In that case, the shift by g is even absolutely continuous.

3 Besicovitch submeasure and pseudodistance

Among classical examples of submeasures are the ones that induce the Cantor topology, or
shift-invariant Besicovitch, or Weyl pseudodistance (see [HM17, Def 4.1.1]. We will focus on
the Besicovitch topology.

3.1 Definition

Let X and Y be nonempty sets and let (Xn) be a nondecreasing sequence of finite subsets of
X. We may or may not require that (Xn) be exhaustive, that is,

⋃
nXn = X.

Let us denote P (W |V ) = |W∩V |
|V | (by convention, this is +∞ if V = ∅).

Remark 3.1.

1. P (W ∪ U |V ) ≤ P (W |V ) + P (U |V ), and the equality holds if the union is disjoint.

2. If V ⊂ U , then P (V |U)P (W |V ) = P (V ∩W |U) ≤ P (W |U)

The Besicovitch submeasure µ(Xn) : 2X → [0, 1] is defined by:

µ(Xn)(W ) = lim sup
n

P (W |Xn) .

The Besicovitch pseudodistance is d(Xn) = dµ(Xn)
. For example, if X = N, Y = {0, 1}, and

Xn = [0 : n− 1], x(i) = 0 for every i ∈ N and y ∈ {0, 1}N is the characteristic function of the
prime numbers, then d(Xn)(x, y) = 0.

The topology of the quotient space is very different from the prodiscrete (Cantor) topology.
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Remark 3.2. Remark obviously two dual cases (in general we will be in the first case, but not
the second one):

1. If every U b G appears finitely many times in (Xn), then µ(Xn)(W ) = 0 if W is finite.

2. If all U b G appear (or, more generally, if for every n, cofinitely many U b G of cardinality
n appear) in (Xn), then µ(Xn)(W ) = 1 if W is infinite.

We will now concentrate on the nondecreasing case.

3.2 Connectedness

Theorem 3.3. If (Xn) is nondecreasing and has unbounded cardinality, then the Besicovitch
space is pathwise-connected.

Proof. It is enough to build, for every W ⊂ G and for every α ∈ [0, 1], a set V (α) such that:

1. if 0 ≤ α < β ≤ 1 then V (α) ⊂ V (β),

2. V (0) = ∅ and V (1) = W ∩
⋃
nXn (the submeasure does not account for what is outside

the union), and

3. µ(V (α)) = αµ(W ).

Let us assume that there is a total order on each Yn = Xn \
⋃
i<nXi (independent of our α).

Now define, inductively on n ∈ N, the set Un ⊂W ∩ Yn by taking the minimal bα |W ∩Xn|c −∑
i<n |Ui| elements in W ∩Yn. Provided that this definition is valid, it maintains, for all n ∈ N,

the property that
∑

i≤n |Ui| = bα |W ∩Xn|c. It is actually valid because, by induction,

bα |W ∩Xn+1|c −
∑
i≤n
|Ui| = bα |W ∩Xn+1|c − bα |W ∩Xn|c

< α (|W ∩Xn+1| − |W ∩Xn|) + 1

< α (|W ∩ Yn+1|) + 1

< |W ∩ Yn+1|+ 1 .

We now define V (α) =
⊔
n∈N Un. By construction, thanks to the common total order, we

immediately get that α < β =⇒ V (α) ⊂ V (β). Moreover,

µ(V (α)) = lim sup
n∈N

P (V (α)|Xn)

= lim sup
n∈N

∣∣∣⊔i≤n Ui

∣∣∣
|Xn|

= lim sup
n∈N

bα |W ∩Xn|c
|Xn|

Since α |W ∩Xn| − 1 < bα |W ∩Xn|c ≤ α |W ∩Xn| and |Xn| is unbounded, we get that:

µ(V (α)) = αµ(W ) .
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4 Følner equivalence and Besicovitch submeasures

4.1 Følner equivalence

Let (Xn) and (Yn) be nondecreasing sequences of finite subsets of G. We say that they are
synchronously Følner-equivalent if

lim
n→∞

|Xn∆Yn|
|Xn|

= 0 .

Proposition 4.1. Consider nondecreasing sequences (Xn) and (Yn). The following are equiv-
alent.

1. (Xn) and (Yn) are synchronously Følner-equivalent.

2. |Xn ∩ Yn| ∼n→∞ |Xn| ∼n→∞ |Y |n.

3. |Xn| ∼n→∞ |Yn| and |Xn \ Yn| = on→∞(|Xn|).

Proof.

1 =⇒ 2 This follows from the inequalities |X| ≥ |X ∩ Y | ≥ |X|−|X∆Y | and ||X| − |Y || ≤ |X∆Y |
which hold for every finite X and Y .

2 =⇒ 3 Just note that |Xn \ Yn| = |Xn| − |Xn ∩ Yn|.

3 =⇒ 1 Note that:

|Xn∆Yn| = |Xn \ Yn|+ |Yn \Xn|
= |Xn \ Yn|+ |Yn| − |Xn ∩ Yn|
= 2 |Xn \ Yn|+ |Yn| − |Xn|
= on→∞(|Xn|) .

Corollary 4.2. Synchronous Følner equivalence is an equivalence relation.

Proof.

• From Proposition 4.1, note that if (Xn) and (Yn) are synchronously Følner-equivalent,

then |Xn∆Yn|
|Yn| ∼n→∞ |Xn∆Yn|

|Xn| →n→∞ 0. So the relation is symmetric.

• Transitivity follows from Proposition 4.1 and the inclusion X∆Z ⊆ (X∆Y ) ∪ (Y∆Z),
which holds for every X, Y and Z.

• Reflexivity is trivial.

Since the definition involves a lim (and not a lim inf), we immediately note the following.

Remark 4.3. (Xn) and (Yn) are synchronously Følner-equivalent if and only if (Xkn) and (Ykn)
are synchronously Følner-equivalent, for every increasing sequence (kn).

We also denote (Xn) � (Yn) if (Xn) is synchronously Følner-equivalent to a subsequence
(Ymn). Equivalently,

lim
n→∞

min
m∈N

|Xn∆Ym|
|Xn|

= 0 .
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To be convinced of the equivalence, note that the minimum is reached by some mn for each
n ∈ N, because (Ym) is nondecreasing and Xn is finite. Thanks to symmetry of synchronous

equivalence, we also have that (Xn) � (Yn) if and only if limn→∞minm∈N
|Xn∆Ym|
|Ym| = 0. We say

that they are Følner-equivalent, and write (Xn) ∼ (Yn), if both (Xn) � (Yn) and (Yn) � (Xn).
This is the case if they are synchronously Følner equivalent, but the converse is false. As
counterexamples, one can consider twice the same sequence, but with repetitions on both sides
that are longer and longer, and not synchronized. If one wants to obtain strictly increasing
sequences, repetitions can be replaced by very slowly increasing sequences (point by point).

Remark 4.4.

1. � is a preorder relation.

2. Følner-equivalence is an equivalence relation.

Proof.

1. Reflexivity is obvious, and transitivity is not difficult.

2. Følner-equivalence is defined as the equivalence corresponding to a preorder, which is
classical.

Proposition 4.5. Assume that |Xn| ∼n→∞ |Yn|.
Then (Xn) and (Yn) are synchronously Følner-equivalent if and only if (Xn) � (Yn).

Proof. Assume (Xn) � (Yn) (the converse implication is trivial). Let n,m ∈ N. If m ≤ n,
then |Xn \ Yn| ≤ |Xn \ Ym| and |Yn \Xn| ≤ |Yn \ Ym| + |Ym \Xn| since (Yn) is nondecreas-
ing. Summing up, |Xn∆Yn| ≤ |Xn∆Ym| + |Yn \ Ym|. Symmetrically, if n ≤ m, |Xn∆Yn| ≤
|Xn∆Ym|+|Ym \ Yn|. Overall for every m ∈ N, we get |Xn∆Yn| ≤ |Xn∆Ym|+||Ym| − |Yn||. If we
apply this with (mn) the subsequence from the definition of �, which is such that (Xn) ∼ (Ymn),
we have |Xn∆Ymn | = on→∞(|Xn|), and by Proposition 4.1 (applied to (Xn) and (Ymn)),
|Ymn | ∼n→∞ |Xn| ∼n→∞ |Yn|. Summing up, we deduce that |Xn∆Yn| = on→∞(|Xn|).

4.2 Comparing Besicovitch submeasures

A basic tool in our set constructions will be the following elementary remark.

Remark 4.6. If (Xn) is nondecreasing and exhaustive, then for every finite set W and every
ε > 0, there exists n(Xn)(W, ε) such that ∀n ≥ n(Xn)(W, ε),P (W |Xn) < ε and W ⊂ Xn.

We deduce the following, which will be useful in our constructions.

Lemma 4.7. Let (Xn) be a nondecreasing exhaustive sequence of an infinite group G. Let
W =

⋃
i∈NWi where ∅ 6= Wi b G for each i ∈ N, such that, for every n ∈ N, there are at most

finitely many i’s such that Wi ∩Xn 6= ∅ (this is the case, for example, if the Wi’s are pairwise
disjoint); in that case jn = maxWj∩Xn 6=∅ j is well-defined for every n. Then:

1.
µ(Xn)(W ) ≥ lim sup

i→∞
max
m∈N

P (Wi|Xm) .

2. If there is a sequence (εn) converging to 0 such that ∀n ∈ N, n(Xn)(
⋃
i<jn

Wi, εn) ≤ n,
then:

µ(Xn)(W ) = lim sup
i→∞

max
m∈N

P (Wi|Xm) .
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3. In general, there exists a nondecreasing integer sequence l such that, noting Wl =
⋃
i∈NWli:

µ(Xn)(Wl) = lim
i→∞

max
m∈N

P (Wli |Xm) .

Proof.

1. Let (mi)i∈N be a sequence of integers such that P (Wi|Xmi) = maxm∈NP (Wi|Xm). We
know that this sequence goes to infinity (even though it may not be nondecreasing),
because only finitely many Wi’s intersect each Xm, but they all intersect at least one.
Hence, µ(Xn)(W ) = lim supn→∞P (W |Xn) ≥ lim supi→∞P (W |Xmi). We get the desired
inequality by noting that Wi ⊂W .

2. Point 1 already gives one inequality. For the converse:

µ(Xn)(W ) = lim sup
n→∞

P

⋃
i<jn

Wi ∪Wjn ∪
⋃
i>jn

Wi|Xn


≤ lim sup

n→∞

P

⋃
i<jn

Wi|Xn

+ P (Wjn |Xn) + P

⋃
i>jn

Wi|Xn


≤ lim sup

n→∞

(
εn + max

m∈N
P (Wjn |Xm) + 0

)
≤ lim sup

n→∞
εn + lim sup

n→∞
max
m∈N

P (Wjn |Xm)

≤ 0 + lim sup
i→∞

max
m∈N

P (Wi|Xm) .

The last inequality comes from the fact that the sequence (jn) is nondecreasing (because
(Xn) is nondecreasing), and not upper-bounded (because the Wi’s are nonempty), so it
goes to infinity.

3. Let us define some sequence l by recurrence, from any seed l0 ∈ N. Assume that ln is
defined, and write kn = n(Xn)(

⋃
j≤nWlj ). Choose any ln+1 such that for every m ≥ ln+1,

Wm does not intersect Xkn−1 (this is possible by assumption). If jn = maxWlj
∩Xn 6=∅ j,

then n(Xn)(
⋃
j<jn

Wlj ) = kjn−1. By definition, Wljn
does not intersect Xkjn−1−1. Since

Wljn
intersects Xn, we can deduce that n > kjn−1−1. This means that (Wli) satisfies the

hypothesis of Point 2.
Replacing the lim sup by a lim can be achieved by taking, again, a subsequence.

Lemma 4.8. Let ε, δ > 0, and (Xn), (Yn) be nondecreasing and exhaustive. The following are
equivalent.

1. For every W ⊂ G, if µ(Yn)(W ) ≥ ε, then µ(Xn)(W ) ≥ δ.

2. lim infn∈N maxm∈N
ε |Yn| − |Yn \Xm|

|Xm|
≥ δ.

If mn realizes the maximum for each n ∈ N, and if ε < 1, then these properties imply that

δ

ε
≤ lim inf

n∈N

|Yn|
|Xmn |

≤ lim sup
n∈N

|Yn|
|Xmn |

≤ 1− δ
1− ε

.

In particular, the properties imply that δ ≤ ε.
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Proof.

• Let us start by proving the final inequalities. Suppose lim infn∈N
ε|Yn|−|Yn\Xmn |

|Xmn |
≥ δ.

Then on the one hand, it is clear that lim infn∈N
ε|Yn|
|Xmn |

is even bigger, which gives the

first inequality. On the other hand, since |Yn \Xmn | ≥ |Yn| − |Xmn |, we can see that

lim infn∈N(ε−1) Yn
Xmn

+1 ≥ lim infn∈N
ε|Yn|−|Yn\Xmn |

|Xmn |
≥ δ, which gives that lim supn∈N

|Yn|
|Xmn |

≤
1−δ
1−ε , provided that ε < 1.

2⇒1

µ(Xn)(W ) = lim sup
m→∞

P (W |Xm)

≥ lim sup
n→∞

P (W |Xmn)

≥ lim sup
n→∞

|W ∩ Yn ∩Xmn |
|Xmn |

= lim sup
n→∞

|W ∩ Yn| − |W ∩ Yn \Xmn |
|Xmn |

≥ lim sup
n→∞

|W ∩ Yn| − |Yn \Xmn |
|Xmn |

= lim sup
n→∞

(
ε |Yn| − |Yn \Xmn |

|Xmn |
+
|W ∩ Yn| − ε |Yn|

|Yn|
|Yn|
|Xmn |

)
≥ lim inf

n→∞

ε |Yn| − |Yn \Xmn |
|Xmn |

+

(
lim sup
n→∞

|W ∩ Yn|
|Yn|

− ε
)

lim inf
n∈N

|Yn|
|Xmn |

≥ δ + 0
δ

ε
by the two premises and the first inequalities.

1⇒2 Assume that lim infi→∞
ε|Yi|−|Yi\Xki |
|Xki |

< δ. Let us build a set W that contradicts Point 1.

For each n ∈ N, there exists kn = min {k| |Yn \Xk| ≤ ε |Yn|}, because for large k, Yn\Xk =
∅ (because (Xk) is exhaustive and Yn is finite). By noting that (Yn∩Xkn)\Xkn−1 = (Yn \
Xkn−1)\(Yn\Xkn) (by conventionX−1 is empty), we can write that |(Yn ∩Xkn) \Xkn−1| =
|Yn \Xkn−1| − |Yn \Xkn |, which is bigger than ε |Yn| − |Yn \Xkn |, by minimality of kn.
Hence (Yn ∩Xkn) \Xkn−1 admits a subset Zn of cardinality |Zn| = bε |Yn|c − |Yn \Xkn |.
Define Wn = (Yn \Xkn)

⊔
Zn. Note that Wn ⊂ Yn, and that ε− 1

|Yn| < P (Wn|Yn) ≤ ε.
The Wi satisfy the hypotheses of Lemma 4.7, so that Point 3 gives an integer sequence l,
with µ(Xn)(Wl) = limi→∞maxm∈NP (Wli |Xm). By construction, we have:

P (Wi|Xm) = P (Yi \Xki |Xm) + P (Zi|Xm)

=
|Yi ∩Xm \Xki |+ |Zi ∩Xm|

|Xm|
.

If m < ki, then Xm ⊆ Xki , and Zi ∩Xm ⊆ Zi ∩Xki−1 = ∅, so that this quantity is 0. On
the contrary, if m ≥ ki, then Zi ⊆ Xki ⊆ Xm, and Yi ∩Xm \Xki = (Yi \Xki) \ (Yi \Xm),
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so that:

P (Wi|Xm) =
|Yi ∩Xm \Xki |+ |Zi ∩Xm|

|Xm|

=
|Yi ∩Xm \Xki |+ |Zi|

|Xm|

=
|Yi \Xki | − |Yi \Xm|+ bε |Yi|c − |Yi \Xki |

|Xm|

≤ max
m∈N

|bε |Yi|c| − |Yi \Xm|
|Xm|

< δ by hypothesis.

Taking the limit, we get that µ(Xn)(Wl) < δ.
On the other hand, applying now Point 1 of Lemma 4.7 to sequence (Yn):

µ(Yn)(Wl) ≥ lim
i∈N

max
m∈N

P (Wli |Ym) ≥ P (Wli |Yli) = ε .

The previous lemma now allows to characterize the main properties of interest for comparing
two Besicovitch submeasures.

Proposition 4.9. Let (Xn) and (Yn) be nondecreasing and exhaustive.

1. µ(Yn) is λ-Lipschitz with respect to µ(Xn), where λ > 0, if and only if

∀ε > 0, lim inf
n→∞

max
m∈N

|Yn| − 1
ε |Yn \Xm|
|Xm|

≥ 1

λ
.

2. µ(Yn) is absolutely continuous with respect to µ(Xn) if and only if it is Lipschitz.

3. µ(Yn) ≤ µ(Xn) if and only if (Yn) � (Xn).

4. µ(Yn) = µ(Xn) if and only if (Yn) ∼ (Xn).

One can even see from the proof that (Yn) � (Xn) if and only if there exists ε ∈]0, 1[ such
that ∀W ⊂ G,µ(Xn)(W ) < ε =⇒ µ(Yn)(W ) < ε.

Proof.

1. Just note that the λ-Lipschitz property of µ(Yn) is equivalent to the properties in Lemma 4.8,
for every δ and ε = λδ, and hence to:

lim inf
n∈N

max
m∈N

|Yn| − 1
ε |Yn \Xm|
|Xm|

≥ 1

λ
.

2. From Lemma 4.8, µ(Yn) is absolutely continuous with respect to µ(Xn) if and only if

∀ε > 0, lim inf
n→∞

max
m∈N

|Yn| − 1
ε |Yn \Xm|
|Xm|

> 0 .

From Point 1, this is equivalent to the existence of some λ such that µ(Yn) is λ-Lipschitz
with respect to µ(Xn).
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3. Consider a sequence (mn) which witnesses that (Yn) � (Xn): limn→∞
|Yn∆Xmn |
|Yn| = 0. Then

lim
n∈N

|Yn| − 1
ε |Yn \Xmn |
|Xmn |

= lim
n∈N

|Yn|
|Xmn |

(
1− 1

ε
lim
n∈N

|Yn \Xmn |
|Yn|

)
= 1 .

We can conclude by Point 1.
Conversely, suppose that

lim inf
n∈N

|Yn| − 1
ε |Yn \Xmn |
|Xmn |

≥ 1 .

By the last inequalities in Lemma 4.8, we know that limn∈N
|Yn|
|Xmn |

= 1. Moreover,

lim
n→∞

|Yn \Xmn |
|Xmn |

≤ lim
n→∞

ε |Yn|
|Xmn |

− ε lim inf
n∈N

|Yn| − 1
ε |Yn \Xmn |
|Xmn |

= ε− ε = 0 .

By Point 3 of Proposition 4.1, we obtain that (Yn) � (Xn).

4. This is direct from the definitions and the Point 3.

The following is direct from Proposition 4.9 and Remark 2.3.

Corollary 4.10. Let (Xn) and (Yn) be nondecreasing and exhaustive. Then (Yn) � (Xn) (resp.
(Yn) ∼ (Xn)) if and only if the identity map from space AG endowed with d(Xn) onto space AG

endowed with d(Yn) is 1-Lipschitz (resp. an isometry).

Here are particular classes of sequences, where the proposition can be applied.

Corollary 4.11. Let (Xn) and (Yn) be nondecreasing and exhaustive.

1. If there exist a real number λ > 0 and a sequence (mn) such that lim infn→∞P (Xn|Ymn) ≥
1
λ and Xn ⊂ Ymn, then µ(Xn) is λ-Lipschitz with respect to µ(Yn).

2. If for cofinitely many n ∈ N, Yn ⊂ Xn+1 and lim infn→∞P (Xn|Xn+1) ≥ λ, then µ(Xn) is
λ-Lipschitz with respect to µ(Yn).

3. On the other hand, if |Xn| ∼n→∞ |Yn| but (Xn) and (Yn) are not (synchronously) Følner-
equivalent , and n(Ym)(Xn, εn) = n+ 1 for some real sequence (εn) converging to 0, then
µ(Xn) is not absolutely continuous with respect to µ(Yn).

Proof.

1. For every ε > 0,

lim inf
n→∞

max
m∈N

|Xn| − 1
ε |Xn \ Ym|
|Ym|

≥ lim inf
n→∞

|Xn| − 1
ε |Xn \ Ymn |
|Ymn |

= lim inf
n→∞

|Xn|
|Ymn |

≥ 1

λ
.

2. Apply Point 1 with mn = min {m ∈ N|Xn ⊂ Ym}; the hypothesis is that mn is ultimately
n+ 1.
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3. Suppose |Xn| ∼n→∞ |Yn| and (Xn) and (Yn) are not synchronously Følner-equivalent.

By Proposition 4.5, (Xn) 6� (Yn), that is, ε = lim supn→∞
|Xn\Yn|
|Yn| > 0. We can write

lim infn→∞
|Xn|− 1

ε
|Xn\Yn|
|Yn| = 0.

By the second assumption, for every m > n, Xn \ Ym = ∅ and |Xn|
|Ym| ≤ εn. We get:

max
m∈N

|Xn| − 1
ε |Xn \ Ym|
|Ym|

≤ max

(
|Xn| − 1

ε |Xn \ Yn|
|Yn|

, εn

)
.

Putting things together, lim infn→∞maxm∈N
|Xn|− 1

ε
|Xn\Ym|
|Ym| is 0. We conclude by Point 2

of Proposition 4.9.

Corollary 4.12. Let (Xn) and (Yn) be nondecreasing and exhaustive. Assume that |Xn| ∼n→∞
|Yn|. Then the following are equivalent.

1. (Xn) and (Yn) are synchronously Følner-equivalent.

2. µ(Yln ) = µ(Xln ), for every increasing sequence (ln) ∈ NN.

3. µ(Yln ) is absolutely continuous with respect to µ(Xln ), for every increasing sequence (ln).

Proof.

1 =⇒ 2 By Remark 4.3, synchronous Følner equivalence is transmitted to all subsequences (pro-
vided that one takes the same subsequence for (Xn) and for (Yn)). We conclude thanks
to Proposition 4.9.

2 =⇒ 3 This is obvious.

61 =⇒ 63 If (Xn) and (Yn) are not synchronously Følner-equivalent, then there exists an infinite set

I ⊂ N and a real number α > 0 such that ∀n ∈ I, |Xn∆Yn|
|Xn| ≥ α. This implies that for every

increasing sequence (ln) ∈ IN, (Xln) and (Yln) are not synchronously Følner-equivalent.
We can take an increasing sequence (ln) ∈ IN such that n(Ym)(Xln , εln) = ln+1, for some
real sequence (εn) converging to 0. Then (Xln) and (Yln) satisfy the assumptions for
Point 3 of Corollary 4.11.

4.3 Shift

If G is a group and (Xn) ∼ (gXn), then we say that (Xn) is (left) g-Følner. Since |Xn| = |gXn|,
Proposition 4.5 says that it is enough to require (Xn) � (gXn), and that in this case, (Xn) and
(gXn) are synchronously Følner-equivalent.

A (left) Følner sequence for a countable group G is a g-Følner sequence for every g ∈ G. A
countable group is amenable if and only if it admits a Følner sequence: cf. [CSC10, Chapter
4], in particular for many alternative definitions.

A group G is finitely generated (briefly, f.g.) if E b G exists such that for every g ∈ G
there exists e1, . . . , en ∈ E ∪ E−1 such that e1 · · · en = g. Remarkably (cf. [Pet, Lemma 5.3]) if
a f.g. group is amenable, then it has a nondecreasing exhaustive Følner sequence. In addition,
if the size of the balls grows polynomially with the radius, then they form a Følner sequence,
so Point 3 of Corollary 4.13 generalizes [HM17, Cor 4.1.4].

The following is a rephrasing of Corollary 4.10.

Corollary 4.13. Let G be a countable group and let (Xn) be a nondecreasing exhaustive se-
quence.
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1. (Xn) is g-Følner if and only if µ(Xn) = µ(g−1Xn) if and only if the shift by g is an isometry.

2. (Xn) is Følner if and only if every shift is an isometry.

3. If G is finitely generated, then G is amenable if and only if there exists a nondecreasing
sequence (Xn) of finite subsets of G such that every shift is an isometry.

Note that one implication of Point 3 was already stated in [Cap09, Theorem 3.5], but the
proof contains a confusion between left and right Følner. The full equivalence generalizes [HM17,
Cor 4.1.4] (since balls are Følner in polynomial-growth groups).

Corollary 4.14. Let G be a finitely generated group.

1. If (Xn) is the sequence of balls with respect to some generating set of cardinality α, then
every shift is α-Lipschitz.

2. If g ∈ G, a nondecreasing exhaustive sequence is g-Følner if and only if all of its subse-
quences yield a Besicovitch pseudodistance for which the shift by g is continuous.

3. G is amenable if and only if it admits a nondecreasing exhaustive sequence of finite subsets
of which all subsequences yield a Besicovitch distance for which every shift is continuous.

The first point generalizes [HM17, Prop 4.1.3]. Note that it still applies in nonamenable
groups, but the shifts are no longer isometries, and there is a subsequence of balls with respect
to which the Besicovitch pseudodistance makes them non-continuous.

We remark (cf. [dlH00, VII.34]) that the sequence of balls is Følner if and only if the
group has polynomial growth, and has a Følner subsequence if and only if it has subexponential
growth.

Proof.

1. If E is the generating set and En the corresponding radius-n ball, then E0 = {e} where
e is the identity of G and En+1 = (E ∪ E−1) · En, so |En| ≤ (2 |E| + 1)n. We can apply
Point 2 of Corollary 4.11.

2. This comes from Corollary 4.12.

3. This comes from Point 2 and the characterization of amenability through Følner sequences.

There are nondecreasing non-Følner sequences for which the shift is Lipschitz (but not
an isometry) in Zd. Here’s an example: Xn = (J−n, nK ∪ 2 K−n, nJ)d. Indeed, for every n,

1 +Xn ⊂ X2n and |X2n|
|Xn| = (8n−1)d

(4n−1)d
, which converges to 2d when n goes to infinity. We conclude

by Point 1 of Corollary 4.11, with mn = 2n and α = 2d. But the shift is not an isometry because
the sequence is not Følner: µ((2Z)d) = 2d/3d > µ((2Z + 1)d) = 1/3d.

4.4 Propagations and right Følner sequences

Let G be a group and let g ∈ G. A sequence (Xn) of finite subsets of G is right g-Følner
if (Xn) ∼ (Xng); equivalently, if (X−1

n ) is left g−1-Følner. A right Følner sequence is then a
sequence which is right g-Følner for every g ∈ G.

Let now A be an alphabet. The propagation in direction g ∈ G is the function πg : AG → AG

defined by πg(x)(i) = x(ig−1) for every x ∈ AG and i ∈ G. With this definition, the value of
πg(x) at point ig equals the value of x at point i: that is, the information moves in direction
g. Points 1, 2 and 3 of Corollary 4.13 can then be dualized to right Følner sequences and
propagations:

12



Corollary 4.15. Let G be a group.

1. A nondecreasing exhaustive sequence (Xn) is right g-Følner if and only if µ(Xn) = µ(Xng−1)

if and only if the propagation in direction g is an isometry.

2. A nondecreasing exhaustive sequence is right Følner if and only if every propagation is an
isometry.

3. A finitely generated group is amenable if and only if there exists a nondecreasing exhaustive
sequence (Xn) of finite subsets of G such that every propagation is an isometry.

Proof. The first equivalence of Point 1 is immediate. For the other one, given x ∈ AG, let x(i) =
x(i−1) for every x ∈ AG and i ∈ G: then for every x, y ∈ AG and g ∈ G it is x = x, ∆(x, y) =
(∆(x, y))−1 and πg(x) = σg(x), thus also d(Xn)(x, y) = d(X−1

n )(x, y) and d(Xn)(π
g(x), πg(y)) =

d(X−1
n )(σ

g(x), σg(y)), so that the propagation in direction g is an isometry for d(Xn) if and only
if the shift by g is an isometry for dX−1

n
. Points 2 and 3 follow easily.

4.5 Block maps

A block map on a group G with source alphabet A, target alphabet B, neighborhood N =
{j1, . . . , jk} and local rule φ : Ak → B is a function F : AG → BG defined as the synchronous
application of φ at the “N -shaped neighborhood” of each point of the group: that is, for
every x ∈ AG and i ∈ G, F (x)(i) = φ(x(ij1), . . . , x(ijn)). By the Curtis-Lyndon-Hedlund
theorem [Hed69] (see also [CSC10, Chapter 1]), block maps are all and only those functions
from AG to BG which are continuous in the prodiscrete topology and commute with all the
shifts. Every propagation is a block map, but the shift by g ∈ G is a block map if and only if
g is central in G, that is, gh = hg for every h ∈ G; in this case, σg = πg

−1
. Note that the local

rule φ itself can be identified with a block map Φ with source alphabet Ak, target alphabet B,
and neighborhood N = {e}, where e is the identity element of G. Such a function is surely
1-Lipschitz, but not necessarily an isometry: for example, φ could be constant.

Block maps can be defined equivalently as follows. For f1, . . . , fk : AG → AG define the
product f = f1 × . . .× fk : AG → (Ak)G by f(x)(i) = (f1(x)(i), . . . , fk(x)(i)) for every x ∈ AG
and i ∈ G. Then a block map F with source alphabet A, target alphabet B, neighborhood

N = {j1, . . . , jk} and local rule φ has the form F = Φ ◦ (πj
−1
1 × . . .× πj

−1
k ), where Φ is as in the

previous paragraph.

Lemma 4.16. Suppose f1, . . . , fk : AG → AG are such that fq is αq-Lipschitz with respect to

d(Xn). Then f = f1 × . . . × fk : AG → (Ak)G is (
∑k

q=1 αq)-Lipschitz with respect to d(Xn). In
particular, if αq = α for every q ∈ [1 : k], then f is kα-Lipschitz, and if each fq is an isometry,
then f is k-Lipschitz.

Proof. For every x, y ∈ AG and i ∈ G, we have f(x)(i) 6= f(y)(i) if and only if fq(x)(i) 6= fq(y)(i)

for at least one q ∈ [1 : k], that is, ∆(f(x), f(y)) =
⋃k
q=1 ∆(fq(x), fq(y)). Consequently, for

every n ≥ 1, we have |∆(f(x), f(y)) ∩Xn| ≤
∑k

q=1 |∆(fi(x), fi(y)) ∩Xn|, and the thesis follows
easily.

The composition of an α-Lipschitz function with a β-Lipschitz function is an αβ-Lipschitz
function. As every propagation is a block map, Lemma 4.16 and Point 2 of Corollary 4.15 allow
us to dualize Points 2 and 3 of Corollary 4.14 and recover (cf. [Cap09, Theorem 3.7] and [Cap11,
Theorem 18]) the following characterization.

Corollary 4.17.
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1. A nondecreasing exhaustive sequence of finite subsets of a group G is right Følner if and
only if all of its subsequences yield a Besicovitch pseudodistance for which every block map
is continuous.

2. A finitely generated group is amenable if and only if it admits a nondecreasing exhaustive
sequence (Xn) of finite subsets such that, for every k ≥ 1 and every increasing (ln) ∈ NN,
every block map with neighborhood size k is k-Lipschitz with respect to d(Xln ).

5 Conclusions

We have presented a way to compare Besicovitch submeasures (in terms of absolute continuity,
Lipschitz continuity, equality) thanks to the sequences of finite sets which describe them. In a
shift space (with respect to a countable group) endowed with the Besicovitch topology, we have
derived conditions on the defining sequence for the shift maps to be continuous, Lipschitz or
isometric. As part of this, we gave another characterization of amenable groups.

Possible future work could involve extension to configuration spaces on possibly uncountable
groups. This would require the use of the more general notions of directed set and of net, and
although the definition of Besicovitch pseudodistance and submeasure would be immediate to
extend, the techniques used to prove the main lemmas could need a major revision.
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