A Greedy Sparse Approximation Algorithm Based On L1-Norm Selection Rules - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

A Greedy Sparse Approximation Algorithm Based On L1-Norm Selection Rules

Résumé

We propose a new greedy sparse approximation algorithm, called SLS for Single L1 Selection, that addresses a least squares optimization problem under a cardinality constraint. The specificity and increased efficiency of SLS originate from the atom selection step, based on exploiting L1-norm solutions. At each iteration, the regularization path of a least-squares criterion penalized by the L-norm of the remaining variables is built. Then, the selected atom is chosen according to a scoring function defined over the solution path. Simulation results on difficult sparse deconvolution problems involving a highly correlated dictionary reveal the efficiency of the method, which outperforms popular greedy algorithms when the solution is sparse.
Fichier principal
Vignette du fichier
benmhenni20.pdf (540.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02563553 , version 1 (11-01-2021)

Licence

Identifiants

Citer

Ramzi Ben Mhenni, Sébastien Bourguignon, Jérôme Idier. A Greedy Sparse Approximation Algorithm Based On L1-Norm Selection Rules. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain. pp.5390-5394, ⟨10.1109/ICASSP40776.2020.9054670⟩. ⟨hal-02563553⟩
134 Consultations
300 Téléchargements

Altmetric

Partager

More