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A GREEDY SPARSE APPROXIMATION ALGORITHM BASED ON L1-NORM SELECTION
RULES

Ramzi Ben Mhenni1 Sébastien Bourguignon1 Jérôme Idier1

1 École Centrale de Nantes – CNRS, LS2N, 1 rue de la Noë, F-44321 Nantes, France

ABSTRACT

We propose a new greedy sparse approximation algorithm, called
SLS for Single L1 Selection, that addresses a least squares optimiza-
tion problem under a cardinality constraint. The specificity and in-
creased efficiency of SLS originate from the atom selection step,
based on exploiting `1-norm solutions. At each iteration, the regu-
larization path of a least-squares criterion penalized by the `1 norm
of the remaining variables is built. Then, the selected atom is chosen
according to a scoring function defined over the solution path. Sim-
ulation results on difficult sparse deconvolution problems involving
a highly correlated dictionary reveal the efficiency of the method,
which outperforms popular greedy algorithms when the solution is
sparse.

Index Terms— Sparse optimization, greedy algorithm, `1-norm
regularization, deconvolution.

1. INTRODUCTION

Sparse approximation is a very active research topic, in which we
search for a sparse vector x ∈ RM (i.e., with a large number of
zero components), to approximate data y ∈ RN as a linear combi-
nation of a small number of atoms, i.e., columns from a dictionary
H ∈ RN×M . Applications range from sparsity-enhancing inverse
problems in geophysics [1, 2] or nondestructive testing [3, 4], com-
pression and denoising [5], or subset selection in Statistics [6].

The sparse approximation problem can be formulated by mini-
mizing the least-squares approximation error and imposing an upper
bound on the number of non-zero elements of the solution [7]:

min
x

1
2
‖y −Hx‖22 subject to (s.t.) ‖x‖0 ≤ K, (1)

where ‖x‖0 denotes the `0 “norm”: ‖x‖0 := Card{xj |xj 6= 0}.
Finding the best K-sparse solution essentially resorts to combinato-
rial optimization, which is often not possible for high-dimensional
problems—the problem (1) is NP-hard [8]. Therefore, many works
in signal processing and statistics have proposed computationally
efficient, suboptimal, methods, that can be classified into two cat-
egories [7].

On the one hand, continuous relaxation methods replace the `0
norm by a continuous surrogate function. Problem (1) is then con-
verted into a continuous optimization problem. In particular, many
works have considered the convex case with the `1 norm ‖x‖1 :=∑
n |xn| [7].

On the other hand, partial combinatorial exploration strate-
gies generate a sequence of sparse iterates by performing simple
transitions on the support (the set of non-zero components) of x.
Among this category fall the well-known Matching Pursuit (MP)
[9], Orthogonal Matching Pursuit (OMP) [10] and Orthogonal Least
Squares (OLS) [11] greedy methods. However, the selection step

of a new atom in such methods is very sensitive to interferences
between the different atoms, in particular in the case of highly
correlated dictionaries [12]. More sophisticated strategies try to
circumvent this issue (see for example [13]). Among them, the
Single Best Replacement (SBR) algorithm [12] includes possible
removal steps allowing to correct erroneously detected components,
CoSAMP [14] considers including 2K components at each iteration
and selects the K most likely ones, and A?OMP [15] performs a
partial tree-search exploration step for the selection step.

While the `1-norm convex formulation exactly solves an approx-
imate problem, the second class of methods returns a local optimum
for the exact problem. In the compressed sensing framework [5],
conditions on H have been established, for which such approaches
are ensured to solve the initial problem (1). However, in the case of
inverse problems where H is ill-conditioned, or if the mutual corre-
lation of its columns is high, such guarantees are lost and, in practice,
they often fail in finding the global optimum [16]. The relative per-
formance of methods is then evaluated under a compromise criterion
between the quality of the solution and its computational cost.

In this paper, we propose an algorithm which gathers advantages
of the two classes of methods. It essentially consists of a greedy
strategy, where the selection rule at each iteration is based on ex-
ploiting `1-norm solutions. The number of iterations is then con-
trolled by the sparsity level K of the searched solution, limiting the
computational burden. Moreover, the selection of each new atom,
based on solving a convex optimization problem, is expected to be
more robust to interferences (high correlations) between the differ-
ent atoms than standard greedy methods. More precisely, at a given
iteration, an `1-norm-penalized problem is built, where the `1 norm
operates on the non-selected variables, and the regularization path
is computed by an homotopy continuation algorithm [17, 18]. A
heuristic selection rule is then proposed, which considers the pre-
dominant variable along the regularization path.

Section 2 presents classical greedy forward algorithms and dis-
cusses the limitations of their variable selection rules. In Section 3,
we introduce our new selection rule, and implementation issues are
addressed. The resulting algorithm, called SLS for Single `1 Selec-
tion, is then evaluated and compared to other sparse approximation
algorithms in Section 4.

2. LIMITATIONS OF FORWARD GREEDY ALGORITHMS

Forward greedy methods start from an empty set and iteratively con-
struct a sparse solution, by alternating between two steps: a new
atom is selected by maximizing a score function, denoted by F , and
then the model is updated. Let S denote the index set of the vari-
ables already selected (the current support of the solution), and let
HS denote the matrix composed of the columns of H indexed by S.
Similarly, S indexes the remaining variables. We also denote the size
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of S (respectively, of S) by k (respectively, k̄). The general principle
of forward selection algorithms is given in Algorithm 1.

Algorithm 1: Forward Selection greedy algorithm

1 Initialization: S = ∅
2 while |S| < K do
3 Variable selection: ̂ = argmaxj∈S F(j) ;
4 Support update: S← S ∪ {̂};
5 (If needed) update the estimate xS and the residual

r = y −HSxS ;
6 end

Result: support S and solution xS

In the sequel, we suppose that all columns in H have unit norm.
For both MP and OMP algorithms, the selected atom is the most
correlated to the residual:

F(O)MP(j) = |hTj r|, j ∈ RM , (2)

where hj is the j-th column of H. OMP includes an additional or-
thogonalization step, which updates the current solution on its sup-
port by:

xS = argmin
xS∈Rk

‖y −HSxS‖22 = (HT
S HS)

−1
HT

S y,

such that the residual is orthogonal to the model HSxS. In this case,
the score function (2) is computed only for j ∈ S.

For OLS [11], the approximation error is minimized among all
possible supports including one new component:

̂ = argmin
j∈S

min
xS∈Rk

‖y −HS∪{j}xS∪{j}‖22,

which amounts to

FOLS(j) = ‖HS∪{j}(H
T
S∪{j}HS∪{j})

−1HT
S∪{j}y‖2.

The atom selection stage of MP, OMP and OLS is a one-step
procedure, which is a short-term vision of the selection issue. In the
case of highly correlated dictionaries, this represents a major lim-
itation of such greedy algorithms. For illustration purposes, let us
consider a sparse deconvolution problem, where H is composed of
shifted versions of the impulse response of the filter, and adjacent
atoms give very close contributions to the model. The toy example
in Figure 1 (a) and (b) illustrates a situation where x is composed of
two close spikes, giving strongly overlapping echoes in the data y.
The score function for the first iteration of both OMP and OLS is
F(j) = |hTj y|, and is shown in Figure 1 (c). It is maximal for the
index located in the middle of the two true indices, thus selecting a
wrong atom – even in the noiseless case.

3. SINGLE L1 SELECTION (SLS)

In this Section, we build a new forward method, where a more accu-
rate selection rule is proposed, based on a global, convex, formula-
tion of the problem.

3.1. Selection rule based on `1 problems

Our selection rule exploits the solutions of `1-norm-based problems.
Recall the example in Figure 1. It is clear that a joint approach to the
sparse estimation problem would be less sensitive to interferences
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Fig. 1. a) Toy example where standard greedy selection fails.
(a) Contribution of two atoms and (b) corresponding noise-free data.
(c) Scoring function for OMP and OLS at first iteration and (d) OLS
solution after two iterations. (e) Scoring function at the first iteration
of the proposed SLS algorithm and (f) SLS solution after two itera-
tions. Circles (resp. stars) locate the true (resp. estimated) spikes.

between the atom contributions, by allowing non-zero weights to the
true atom locations. Therefore, we propose to base the selection
of a new atom by considering the following `1-norm optimization
problem at each iteration of a greedy forward procedure:

min
xS∈Rk,xS∈R

k̄

1
2
‖y −HSxS −HS xS‖

2
2 + λ‖xS‖1, (3)

Similarly to OLS, such a criterion allows the joint re-estimation of
the amplitudes of previously selected components (whereas they are
fixed in the residual for the selection rule of OMP). It also jointly es-
timates a sparse vector for the remaining ones, which is not restricted
to a single non-zero component as in OLS.

We remark first that the problem in Eq. (3) can be recast as an
optimization problem in variables xS only: indeed, for a given xS,
the solution in xS is explicit. Its expression can be inserted into
the least-squares term in (3), so that the problem amounts to the
following standard `1-norm-penalized problem:

Pλ : min
xS∈R

k̄

1
2
‖y −HS xS‖

2

2 + λ‖xS‖1, (4)

where y := Py, HS := PHS and P := Ik −HS(H
T
S HS)

−1HT
S ,

with Ik the k × k identity matrix.

3.2. Exploiting the regularization path

We now build a selection rule based on problemPλ in (4). Instead of
considering a particular solution for a given value of λ, we propose
the following two-step strategy.

Homotopy – We first build the solution path, that is, the set of so-
lutions of Pλ for λ ∈ [λmin, λmax], by the homotopy continuation
algorithm, which is acknowledged as a very efficient algorithm for
`1-norm optimization problems when the solution is sparse [17, 18].
Starting from λmax := ‖HT

S y‖∞ (such that the solution is identi-
cally zero for λ ≥ λmax), homotopy iteratively identifies the differ-
ent breakpoints, denoted λ(p), p = 1, . . . , P , that lead to changes in
the support configuration (the set of positive, negative and zero vari-
ables). Between two breakpoints, the solution is linear in λ and has
an analytical expression. Implementation details can be found, e.g.,
in [18]. Figure 2 illustrates the iterations performed by the homotopy
algorithm.
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Fig. 2. Selection rule computed over the solution path obtained by
the homotopy method, as λ decreases from λ(0) = λmax to λ(P ).
Path corresponding to non-zero variables in x∗, renamed x∗1 to x∗5.
Although x1 is the first component to be non-zero, x2 is the most
prominent variable on [λ(P ), λ(0)].

Scoring – Then, we use the score function defined over the set
of solutions for λ ∈ [λmin, λmax] by:

FSLS(j) =

P∑
p=0

|x?(p)j |, j ∈ S, (5)

where x?(p) denotes the solution of Pλ at the breakpoint λ = λ(p).
The score function can be updated recursively at each iteration of the
homotopy algorithm. This heuristic rule aims at selecting the most
prominent component over the regularization path [λmin, λmax].

In order to control the computing time with a simple rule, we
limit the number P of iterations of the homotopy algorithm (which
defines λmin), to P = c(K − k), where K − k is the number of
components that still need to be included in the greedy search, and c
is a parameter whose tuning will be discussed in Section 4. Such an
empirical rule follows the idea that a larger solution path is preferred
for the first iterations of the greedy procedure, because more compe-
tition may exist between atoms, so the solution may be less stable as
a function of λ.

The SLS selection rule is illustrated on a simulated regulariza-
tion path in Figure 2. Remark that in the limiting case c → 0
(λ → λmax), it corresponds to selecting the first non-zero com-
ponent in the regularization path, that is, arg maxj∈S h

T
Sjy, corre-

sponds to the OMP selection rule. On the toy example of Section 2,
the first iteration of the SLS algorithm allows the correct selection of
one true atom — see Figure 1 (e). Then, after two iterations, the true
support is correctly estimated, as shows Figure 1 (f). Algorithm 2
summarizes the computation of FSLS via the homotopy algorithm.

At each iteration k of SLS, we call the homotopy algorithm to
build the solution path in [λ(P ), λ(0)]. From the computational point
of view, each step of the homotopy algorithm essentially involves
the rank-one update of a linear system to compute d. Our imple-
mentation makes use of the blockwise inversion technique to solve
the linear systems in an incremental way.

4. SIMULATION RESULTS

We evaluate the performance of the SLS algorithm, compared to
several well-known sparse estimation algorithms: OMP [10], `1-

Algorithm 2: Homotopy algorithm for computing the
score function F . Indexation by I returns non-zero vari-
ables.
1 Set p = 0, s(0) = 0 and x?(0) = 0.

2 Initialize λ(0) = λmax and I = {arg maxj∈S h
T
Sjy}.

3 while p ≤ P do
4 p← p+ 1
5 % Compute the change of direction %

6 d
(p)
I =

(
H
T
I HI

)−1sgn
(
x

(p−1)
I

)
7 % Compute the step length γ(p) %
8 γ(p): smallest decrease in λ to reach a new breakpoint
9 % Update the solution %

10 x
(p)
I = x

(p−1)
I + γ(p)d

(p)
I ;

11 % Recursive computation of the score function %
12 F (p)

I = F (p−1)
I + |x(p)

I |;
13 % Update I %
14 end
15 Return the score F .

norm regularization or BP (Basis Pursuit), computed here by the
homopotopy algorithm [17], OLS [11], SBR1 [12], Subspace Pur-
suit2 [14], accelerated Iterative Hard Thresholding3 (IHT) [19] and
A?OMP4 [15]. All algorithms are implemented in Matlab and are
tuned in order to obtain solutions with the true sparsity level K.

Algorithms are tested on difficult sparse deconvolution prob-
lems, with an up-sampled convolution model in order to achieve
high-resolution spike locations [20]. The problem is underdeter-
mined with M = 1, 000 and N = 350. Columns of H are
then highly correlated, with mutual coherence maxi 6=j |hTi hj | =
0.81. White Gaussian noise ε is then added with SNRdB =

10 log ‖Hx‖
2

‖ε‖2 = 20 dB. Results are averaged over 50 random
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Fig. 3. Typical sparse deconvolution data y.

realizations of the sparse sequence and of noise. A typical signal is
shown in Figure 3.

We respectively denote by x and xtrue the estimated and the true
solutions. In order to focus on the capacity of the methods to find the
best solution and to detect the correct support, we consider several
error measures:

• the quadratic error EQ = ‖y −Hx‖22;

• the support error ES = ‖b − btrue‖0, where bj = 1 (respec-
tively, bj = 0) if xj 6= 0 (respectively, if xj = 0);

1Implementation was taken from the multimedia material linked to [12].
2B. Sturm’s implementation taken at http://media.aau.dk/null_

space_pursuits/2011/07/08/subspacepursuit.m
3T. Blumensath’s implementation AIHT.m taken at http://www.

personal.soton.ac.uk/tb1m08/sparsify/sparsify.htm
4N. B. Karahonoğlu’s implementation taken at http://myweb.

sabanciuniv.edu/karahanoglu/research



• the exact recovery rate Eexact, which is the average number of
instances for which the algorithm correctly locates the sup-
port of the true sequence.

We first analyze the efficiency of our SLS algorithm as a func-
tion of the control parameter c. Figure 4 shows errors EQ and ES
by varying c from 0.5 to 5, as a function of the computation time,
compared to the previously introduced algorithms, and for sparsity
levels K ranging from 10 to 40.
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Fig. 4. Performance of SLS (*) as a function of the computation
time, by varying parameter c from 0.5 (left) to 5 (right), compared
to different sparse approximation methods. The tuning with c = 3 is
highlighted with a red marker.

For small c, SLS still behaves as a fast and poorly performing
algorithm on such difficult problems (recall that for c = 0, SLS
identifies with OMP). As could be expected, the quality of the so-
lution improves as c increases, at the expense of the increase of the
computation time. In particular, forK ≤ 30, the quality of solutions
provided by OLS and SBR is achieved with smaller computation
time (c ∼ 1.5), and much better solutions than OLS and SBR are ob-
tained for their respective computation time (c ∼ 3). For less sparse
solutions (K ≥ 40), SLS behaves like OLS and SBR on such “qual-
ity vs. time diagram”, although better solutions can be obtained with
higher computation times. A?OMP competes with SLS forK = 20,
but takes much more time for greater values of K.

From Figure 4, we remark that the value of c = 3 is a good
compromise between computation time and solution quality. Thus,
we fix it at this value for the next comparisons. Figure 5 presents
quantitative results for all algorithms as a function ofK. The perfor-
mance of SLS is clearly the best one in terms of solution quality with
respect to the three error criteria. Finally, SLS has a lower computa-
tion time than OLS and SBR up to K = 30 and slightly higher for
K = 40. Compared to A?OMP, SLS has a slightly higher computa-
tion time up to K = 20, but A?OMP becomes computationally too
expensive. Note that other fast algorithms (OMP, BP, IHT and SP)

are always much faster than SLS—but always give worse solutions.
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Fig. 5. Estimation errors and computation time as a function of K
for SLS with c = 3 (*) and other sparse approximation methods.

5. CONCLUSIONS

We proposed a novel sparse approximation greedy algorithm, called
SLS for Single L1 Selection, whose atom selection rule is based on
the `1-norm solutions. This selection rule exploits the regularization
path of the least squares criterion penalized by the `1-norm, with a
view to improve the robustness of the selection step. We empiri-
cally showed that SLS outperforms other standard greedy methods
to solve difficult inverse problems where the dictionary columns are
highly correlated such as in deconvolution. Moreover, the computing
cost of SLS can be made comparable to that of OLS and SBR, ex-
ploiting the fact that only partial `1 regularization paths are needed.
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