Effect of reinforcement shear and mesoscopic defects on the low velocity impact behavior of a GFRP - Archive ouverte HAL
Journal Articles International Journal of Material Forming Year : 2019

Effect of reinforcement shear and mesoscopic defects on the low velocity impact behavior of a GFRP

Bachir Kacimi
  • Function : Author
Arezki Djebbar
  • Function : Author
Gilles Hivet
Fatiha Teklal
  • Function : Author

Abstract

This paper presents an experimental study of the effect of mesoscopic buckles defect and reinforcement shear, which result from forming, on the low velocity impact behavior of a composite laminate. The material studied is a glass/polyester composite with three layers of mat and one layer of taffeta fabric. To assess the properties induced on the final composite, plates with different amplitudes of calibrated defects and deformations were manufactured. First, the healthy material, which serves as a reference, was subjected to three levels of impact energy to observe the evolution of its behavior and damage mechanisms. Results of the impact tests and observations performed on the materials with calibrated defects identified a negative effect of buckling on elastic parameters and revealed greater damage relative to the healthy material. The reinforcement shear had a beneficial effect on the impact properties of the laminate, which was attributed to the increase in local fiber density.
Fichier principal
Vignette du fichier
Article Allaoui _final.pdf (941.99 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02563077 , version 1 (05-09-2021)

Identifiers

Cite

Bachir Kacimi, Arezki Djebbar, Samir Allaoui, Gilles Hivet, Fatiha Teklal. Effect of reinforcement shear and mesoscopic defects on the low velocity impact behavior of a GFRP. International Journal of Material Forming, 2019, pp.3-17. ⟨10.1007/s12289-019-01521-3⟩. ⟨hal-02563077⟩
204 View
89 Download

Altmetric

Share

More