Layer-Resolved Absorption of Light in Arbitrarily Anisotropic Heterostructures
Résumé
We present a generalized formalism to describe the optical energy flow and spatially resolved absorption in arbitrarily anisotropic layered structures. The algorithm is capable of treating any number of layers of arbitrarily anisotropic, birefringent, and absorbing media and is implemented in an open access computer program. We derive explicit expressions for the transmitted and absorbed power at any point in the multilayer structure, using the electric field distribution from a 4×4 transfer matrix formalism. As a test ground, we study three nanophotonic device structures featuring unique layer-resolved absorption characteristics, making use of (i) in-plane hyperbolic phonon polaritons, (ii) layer-selective, cavity-enhanced exciton absorption in transition metal dichalcogenide monolayers, and (iii) intersubband-cavity polaritons in quantum wells. Covering such a broad spectral range from the far-infrared to the visible, the case studies demonstrate the generality and wide applicability of our approach.
Fichier principal
layer_resolved_absorption.pdf (7.92 Mo)
Télécharger le fichier
fig_MQW.pdf (1.81 Mo)
Télécharger le fichier
fig_MoO3.pdf (1.69 Mo)
Télécharger le fichier
fig_MoS2.pdf (2.64 Mo)
Télécharger le fichier
fig_testCases.pdf (1.49 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|