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We present a generalized formalism to describe the optical energy flow and spatially resolved
absorption in arbitrarily anisotropic layered structures. The algorithm is capable of treating any
number of layers of arbitrarily anisotropic, birefringent, and absorbing media and is implemented in
an open access computer program. We derive explicit expressions for the transmitted and absorbed
power at any point in the multilayer structure, using the electric field distribution from a 4×4 transfer
matrix formalism. As a test ground, we study three nanophotonic device structures featuring unique
layer-resolved absorption characteristics, making use of (i) in-plane hyperbolic phonon polaritons, (ii)
layer-selective, cavity-enhanced exciton absorption in transition metal dichalcogenide monolayers,
and (iii) intersubband-cavity polaritons in quantum wells. Covering such a broad spectral range from
the far-infrared to the visible, the case studies demonstrate the generality and wide applicability of
our approach.

I. INTRODUCTION

The absorption of light in thin layers of strongly
anisotropic materials has received enormous atten-
tion since the dawn of two-dimensional (2D) ma-
terials and their heterostructures1. Tremendous
progress has been reported using 2D materials for
numerous nanophotonic applications such as hybrid
graphene-based photodetectors2,3, optoelectronic4,5 and
photovoltaic6,7 devices employing transition metal
dichalcogenide (TMDC) monolayers, enhanced light-
matter interaction using photonic integration with
optical cavities8,9, approaches towards TMDC-based
nanolasers10,11, hyperlensing12,13 based on hyperbolic
polaritons14, bio-sensing15, and thermoelectric applica-
tions using black phosphorus (BP) monolayers16,17. In
light of these thriving developments and the great poten-
tial entailed in nanophotonic technology, a robust and
consistent theoretical framework for the description of
light-matter interaction in layered heterostructures of
anisotropic materials is of central importance.

In order to understand, analyze and predict the optical
response of multilayer structures, the transfer matrix for-
malism has proven to be of great utility18–20. In isotropic
layered media, a 2×2 transfer matrix fully describes any
light-matter interaction, and with knowledge of the lo-
cal electric and magnetic fields, the optical power flow
can be described by the Pointing vector S21,22. However,
what already proves intricate in isotropic multilayers, be-
comes even more cumbersome when the materials are
uniaxial or even biaxial requiring a 4× 4 transfer matrix
formalism23–25, as it is the case for many state-of-the-
art nanophotonic materials like hexagonal boron nitride
(hBN)26, molybdenum trioxide (MoO3)27, or BP28. In
consequence, to the best of our knowledge, previous ap-
proaches aiming at the analytical computation of light
absorption in anisotropic multilayers are restricted to
special cases29–32, whereas a fully generalized formalism
applicable to any number of layers of media with arbi-

trary permittivity has not been proposed so far.
In this work, we derive explicit expressions for the

layer-resolved transmittance and absorption in stratified
heterostructures of arbitrarily anisotropic, birefringent,
and absorbing media, using the electric field distribution
provided by our previous transfer matrix formalism25,33.
Our algorithm is numerically stable, yields continuous
solutions, and is implemented in an open access com-
puter program34,35, enabling a robust and consistent
framework that is capable of treating light of any po-
larization impinging at any incident angle onto any num-
ber of arbitrarily anisotropic, birefringent, and absorb-
ing layers. To demonstrate the capabilities of our algo-
rithm, we present and discuss simulation results for three
nanophotonic device structures, featuring several phe-
nomena such as azimuth-dependent hyperbolic phonon
polaritons in a MoO3 / aluminum nitride (AlN) / sili-
con carbide (SiC) heterostructure, layer-selective exciton
absorption of molybdenum disulfide (MoS2) monolayers
in a Fabry-Pérot cavity, and strong light-matter coupling
between a cavity mode and an epsilon-near-zero mode in
a doped gallium nitride (GaN) multi-quantum well sys-
tem. Section II summarizes the transfer matrix frame-
work that is used to calculate the electric field distribu-
tion and the momenta of the eigenmodes in an anisotropic
multilayer system. Based on this theory, section III intro-
duces the calculation of the layer-resolved transmittance
and absorption. In section IV, the simulation results are
presented.

II. TRANFER MATRIX FRAMEWORK

The 4 × 4 transfer matrix formalism comprising the
calculation and sorting of the eigenmodes and the treat-
ment of singularities (Section II A), the calculation of re-
flection and transmission coefficients (Section II B) and
of the electric fields (Section II C) is based on our previ-
ous work25, and therefore is here only briefly summarized
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in order to provide the necessary framework for the cal-
culation of the layer-resolved absorption (Section III).

A. Matrix Formalism

The incident medium is taken to be non-absorptive
with isotropic (relative) permittivity εinc, while all other
media can feature absorption and fully anisotropic (rel-
ative) permittivity tensors ε̄. Each permittivity tensor
ε̄i of medium i with principle relative permittivities in
the crystal frame εx, εy, and εz can be rotated into the
lab frame using a three-dimensional coordinate rotation
matrix24 (Eq. 2 in Ref.25). In the following, media with
a diagonal permittivity tensor in the lab frame are re-
ferred to as non-birefringent, while media with a per-
mittivity tensor that features non-zero off-diagonal ele-
ments is called birefringent. Furthermore, all media are
assumed to have an isotropic magnetic permeability µ.

The coordinate system in the lab frame is defined
such that the multilayer interfaces are parallel to the x-
y-plane, while the z-direction points from the incident
medium towards the substrate and has its origin at the
first interface between incident medium and layer i = 1.
The layers are indexed from i = 1 to i = N , and the
thickness of each layer is di. Furthermore, i = 0 refers to
the incident medium and i = N+1 to the substrate. The
plane of incidence is the x-z-plane, yielding the following

wavevector ~ki in layer i:

~ki =
ω

c
(ξ, 0, qi), (1)

where ω is the circular frequency of the incident light, c
is the speed of light in vacuum, ξ =

√
εinc sin(θ) is the in-

plane x-component of the wavevector which is conserved
throughout the entire multilayer system, θ is the incident
angle, and qi is the dimensionless z-component of the
wavevector in layer i.

In any medium, the propagation of an electromagnetic
wave is described by exactly four eigenmodes j = 1, 2, 3, 4
with different z-components qij of the wavevector. These
four qij can be obtained for each medium i individually
by solving the eigenvalue problem of a characteristic ma-
trix ∆ (Eq. 11 in Ref.25), as has been derived originally
by Berreman23. However, for media with highly disper-
sive permittivities, the four obtained eigenvalues qij and
their related eigenmodes can switch their order as a func-
tion of frequency, and thus have to be identified in an un-
ambiguous manner. Following Li et al.36, the modes are
separated into forward and backward propagating waves
according to the sign of qij (Eq. 12 in Ref.25). We as-
sign the forward propagating (transmitted) waves to be
described by qi1 and qi2, and the backward propagat-
ing (reflected) waves by qi3 and qi4. Furthermore, each
pair is sorted by the polarization of the corresponding
mode, utilizing the electric fields given by the eigenvec-
tors Ψij (Eq. 13 in Ref.25). In non-birefringent media,
the two modes are separated into p-polarized (qi1 and qi3)

and s-polarized (qi2 and qi4) waves by analyzing the x-
component of their electric fields. For birefringent media,
on the other hand, the sorting is realized by analyzing the

x-component of the Poynting vector ~Sij = ~Eij× ~Hij , and
the modes are separated into ordinary (qi1 and qi3) and
extraordinary (qi2 and qi4) waves25.

In the case of non-birefringent media, the four solu-
tions qij become degenerate, leading to singularities in
the formalisms of previous works23,24,37. To resolve this
problem, we follow the solution presented by Xu et al.38.
Using the appropriately sorted qij , obtained as described
above, the eigenvectors ~γij of the four eigenmodes in each
layer i are:

~γij =

γij1

γij2

γij3

 , (2)

with the values of γijk given by Xu et al.38 (Eq. 20 in
Ref.25), and k = 1, 2, 3 being the x, y, and z components
of ~γij . Furthermore, ~γij has to be normalized:

~̂γij =
~γij
|~γij |

. (3)

We note that this normalization is essential to ensure a
correct calculation of the cross-polarization components
of the transfer matrix. The normalized electric field
eigenvectors ~̂γij , being free from singularities, replace the
eigenvectors Ψij for all further calculations in the formal-
ism.

At each interface, the boundary conditions for electric
and magnetic fields allow to connect the fields of the two
adjacent layers i−1 and i. Formulated for all four modes
simultaneously, the boundary conditions are:

Ai−1
~Ei−1 = Ai

~Ei, (4)

where Ai is a 4× 4 matrix calculated from the eigenvec-

tors γijk
38 (Eq. 22 in Ref.25), and ~Ei is a dimensionless

4-component electric field vector containing the ampli-
tudes of the resulting electric fields of all four modes. In

the following, we refer to ~Ei as the amplitude vector, and
its components are sorted as follows:

~E ≡


Ep/o
⇒

Es/e
⇒

Ep/o
⇐

Es/e
⇐

 , (5)

where ⇒ (⇐) stands for the forward propagating, trans-
mitted (backward propagating, reflected) modes, and p, s
refers to the p- and s-polarized modes in non-birefringent
media, while o, e indicates the ordinary and extraor-
dinary modes in birefringent media. By multiplying
Ai−1

−1 on both sides of Eq. 4, we find the implicit defi-
nition of the interface matrix Li, which projects the am-
plitude vector in medium i onto the amplitude vector in
medium i− 1:

~Ei−1 = Ai−1
−1Ai

~Ei ≡ Li
~Ei. (6)
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For the transition between two birefringent or between
two non-birefringent media, the projection of a wave of
one particular polarization in layer i only yields a finite
amplitude in layer i−1 of the mode of same polarization,
i.e. s/e ↔ s/e, and p/o ↔ p/o. For the transition be-
tween a birefringent and a non-birefringent medium, on
the other hand, the interface matrix Li projects a mode of
one particular polarization in layer i onto both polariza-
tion states in layer i− 1. This cross-polarized projection
occurs because in birefringent media, the in-plane direc-
tions of the ordinary and extraordinary eigenmodes are
rotated ( 6= nπ, n ∈ N0) with respect to the directions of
the p- and s-polarized eigenmodes in the non-birefringent
medium.

The propagation of all four eigenmodes through layer
i is described by the propagation matrix Pi

24:

Pi =


e−i

ω
c qi1di 0 0 0
0 e−i

ω
c qi2di 0 0

0 0 e−i
ω
c qi3di 0

0 0 0 e−i
ω
c qi4di

, (7)

where the rotation of polarization in birefringent media
arises due to a phase difference that is accumulated dur-
ing propagation through the medium, because of differ-
ent propagation speeds of the ordinary and extraordinary
modes (qi1 6= qi2 and qi3 6= qi4).

The transfer matrix Ti of a single layer i is defined as:

Ti = AiPiAi
−1, (8)

and the full transfer matrix Γ of all N layers is

Γ = A0
−1

(
N∏
i=1

Ti

)
AN+1, (9)

where A0
−1 (AN+1) ensures the correct mode projection

between the multilayer system and the incident medium
(substrate).

B. Reflection and Transmission Coefficients

The full transfer matrix Γ projects the amplitude vec-

tor in the substrate ~E+
N+1 onto the amplitude vector in

the incident medium ~E−0 :

~E−0 = Γ ~E+
N+1, (10)

where ~E−i−1 and ~E+
i denote the fields on both sides of

the interface between layer i− 1 and i, respectively. Fol-
lowing the equations presented by Yeh24, the transmis-
sion (t) and reflection (r) coefficients for incident p- or
s-polarization can be calculated in terms of the matrix

elements of Γ as follows:

rpp =
Γ31Γ22 − Γ32Γ21

Γ11Γ22 − Γ12Γ21
tp(p/o) =

Γ22

Γ11Γ22 − Γ12Γ21

(11)

rss =
Γ11Γ42 − Γ41Γ12

Γ11Γ22 − Γ12Γ21
ts(s/e) =

Γ11

Γ11Γ22 − Γ12Γ21

(12)

rps =
Γ41Γ22 − Γ42Γ21

Γ11Γ22 − Γ12Γ21
tp(s/e) =

−Γ21

Γ11Γ22 − Γ12Γ21

(13)

rsp =
Γ11Γ32 − Γ31Γ12

Γ11Γ22 − Γ12Γ21
ts(p/o) =

−Γ12

Γ11Γ22 − Γ12Γ21
,

(14)

where the subscripts refer to the incoming and outgo-
ing polarization state, respectively. The transmission
coefficients describe the transmitted electric field ampli-
tude into p- and s-polarized states in the case of a non-
birefringent substrate, and into the ordinary and extraor-
dinary eigenstates in the case of a birefringent substrate.
We note that the indices of Γ differ from the equations
reported by Yeh24 in order to account for a different order
of the eigenmodes in the amplitude vector (Eq. 5).

C. Electric Field Distribution

Employing the interface and propagation matrices
Li and Pi, respectively, an amplitude vector can be pro-
jected to any z-point in the multilayer system (please
note the published erratum that corrects the calculation
of the electric field distribution in our original work33).
However, due to the rotation of polarization in birefrin-
gent media and thus the mixing of polarization states, in
general, the cases of incident p- and s-polarization have
to be treated seperately. As a starting point, the trans-
mission coefficients can be utilized to formulate the am-
plitude vector ~E+

N+1 for either p- or s-polarized incident
light in the substrate at the interface with layer N as
follows:

(
~E+
N+1

)
p in

=


Ep/o
⇒

Es/e
⇒

Ep/o
⇐

Es/e
⇐

 =

tp(p/o)

tp(s/e)

0
0


(
~E+
N+1

)
s in

=


Ep/o
⇒

Es/e
⇒

Ep/o
⇐

Es/e
⇐

 =

ts(p/o)

ts(s/e)

0
0

 ,

(15)

where the reflected (⇐) components are set to zero, since
no light source is assumed to be on the substrate side of
the multilayer system. Furthermore, in order to obtain
the electric field amplitudes as a function of z, the prop-
agation through layer i is calculated by means of the



4

propagation matrix Pi:

~Ei(z) = Pi(z) ~E
−
i

=


e−i

ω
c qi1z 0 0 0
0 e−i

ω
c qi2z 0 0

0 0 e−i
ω
c qi3z 0

0 0 0 e−i
ω
c qi4z

 ~E−i ,

(16)

with 0 < z < di being the relative z-position in layer i.

Starting from ~E+
N+1, the interface matrices Li and prop-

agation matrices Pi subsequently propagate the ampli-
tude vector towards the incident medium. In the reverse
direction, the inverse propagation matrix PN+1

−1 allows

to calculate the ~E-fields in the substrate. As a result,
the four mode amplitudes Ep/o

⇒ , Es/e
⇒ , Ep/o

⇐ , and Es/e
⇐

are obtained as a function of z within each layer.
In order to obtain the three-components Ex, Ey, and

Ez of the electric field for each of the four modes j, the
four mode amplitudes have to be multiplied with their

respective eigenmode vector ~̂γij (Eq. 3). This yields for

the electric fields ~E of the four modes for each layer i, as
a function of z, and for either p- or s-polarized incident
light:

(
~Ep/o⇒

)
p/s in

=
(
Ep/o
⇒

)
p/s in

γ̂i11

γ̂i12

γ̂i13

 , j = 1

(
~Es/e⇒

)
p/s in

=
(
Es/e
⇒

)
p/s in

γ̂i21

γ̂i22

γ̂i23

 , j = 2

(
~Ep/o⇐

)
p/s in

=
(
Ep/o
⇐

)
p/s in

γ̂i31

γ̂i32

γ̂i33

 , j = 3

(
~Es/e⇐

)
p/s in

=
(
Es/e
⇐

)
p/s in

γ̂i41

γ̂i42

γ̂i43

 , j = 4,

(17)

where we have omitted the index i and the z dependence

for the sake of readability. The full electric field ~Ei(z) for
either p- or s-polarized incident light in layer i at point
z is given by the sum of all four electric field vectors:

~Ei(z) = ~Ep/o⇒,i(z) + ~Es/e⇒,i(z) + ~Ep/o⇐,i(z) + ~Es/e⇐,i(z). (18)

The in-plane components of the sum, Ex and Ey, are con-
tinuous throughout the entire multilayer structure, as it
is required by Maxwells boundary conditions.

III. LAYER-RESOLVED TRANSMITTANCE
AND ABSORPTION

The total reflectance R of the multilayer system for a
given ingoing and outgoing polarization a and b, respec-
tively, can be readily calculated from the corresponding

reflection coefficient (Eqs. 11-14):

Rab = |rab|2, a, b = p, s. (19)

The transmittance T , which is the transmitted power
into the substrate, on the other hand, in general is not
given by the electric field intensity T 6= |t|2 (except for
the special case if the substrate is vacuum, ε = 1). In-
stead, T can be calculated from the time-averaged Poynt-

ing vector ~S39–41, which describes the direction and mag-
nitude of the energy flux of an electromagnetic wave at
any point z in the structure:

~Si(z) =
1

2
Re
[
~Ei(z)× ~H∗i (z)

]
. (20)

The full electric field ~E (for incident polarization a) as a
function of z in each layer i was calculated in the previous

section (Eq. 18), and the full magnetic field ~H is obtained
as follows using Maxwells equations:

~Hi(z) =
1

ωµi

(
~ki1 × ~Ep/o⇒,i(z) + ~ki2 × ~Es/e⇒,i(z)

+~ki3 × ~Ep/o⇐,i(z) + ~ki4 × ~Es/e⇐,i(z)
)
,

(21)

where ~kij are the wavevectors in layer i of the four modes

j, see Eq. 1. Because ~E and ~H are known in each layer i
and as a function of z from the transfer matrix formalism,
the Poynting vector can be evaluated likewise yielding
~Si(z), which will be used in the following to calculate
the transmittance and absorption at any point z in the
multilayer system.

It is important to note that while ~E and ~H can be
calulcated for each of the four modes j individually, this
mode separation in general – specifically, in the case of
birefringent media – is not possible for the Poynting vec-

tor ~S. In other words, in birefringent media, the sum
of the Poynting vectors of the four modes is not equal
to the Poynting vector calculated from the total fields
~E (Eq. 18) and ~H (Eq. 21). The difference arises be-

cause in birefringent media, ~E 6⊥ ~H. Therefore, the cross

products ~E × ~H between different modes j are no longer
zero. For the correct calculation of the Poynting vector
in birefringent media, it is thus necessary to calculate the

cross product of the total fields ~E and ~H, as shown in Eq.
20. Interestingly, this means that the energy flux in bire-
fringent media cannot be split up into the ordinary and
extraordinary eigenmodes, but has to be considered as
a single quantity. In the following, we therefore discuss
the transmittance and absorption for s- or p-polarized
incident light without differentiating between the eigen-
modes anymore.

An exception is the incident medium, which is set to be
isotropic. Here, the Poynting vector can be calculated for
each mode individually, and for the purpose of normal-
izing the transmitted power, we calculate the Poynting

vector of the incident light ~Sinc (in layer i = 0 at position
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z = 0) for either p- or s-polarization as follows:

~Spinc =
1

2
Re
[
~Ep⇒,0(0)×

(
~k01 × ~Ep⇒,0(0)

)∗]
~Ssinc =

1

2
Re
[
~Es⇒,0(0)×

(
~k02 × ~Es⇒,0(0)

)∗]
.

(22)

In a stratified multilayer system, the transmitted en-
ergy is given by the z-component of the Poynting vec-
tor. Thus, we note that alternatively to Eq. 19, the
reflectance R can be calculated from the Poynting vec-
tor:

Rab =
−Sbrefl,z

Sainc,z

, (23)

where the minus sign accounts for the negative z-
direction of the reflected light. Sbrefl,z is the z-component
of the Poynting vector of the reflected light of polariza-
tion b = p, s (in layer i = 0 at position z = 0) given
by:

~Sprefl =
1

2
Re
[
~Ep⇐,0(0)×

(
~k03 × ~Ep⇐,0(0)

)∗]
~Ssrefl =

1

2
Re
[
~Es⇐,0(0)×

(
~k04 × ~Es⇐,0(0)

)∗]
.

(24)

As discussed above, for anisotropic media, a separation of
the energy flow into the different eigenmodes of polariza-
tion b is not generally possible. Therefore, all following
equations calculate the total transmittance or absorption
for the respective incident polarization a.

The transmittance T into the substrate i = N + 1 at
the interface with layer N for incident light of polariza-
tion a is given by:

T a =
SaN+1,z(D)

Sainc,z

, (25)

where D =
∑N

i=1 di is the thickness of the multilayer
system. The full z-dependence of the transmittance can
be evaluated by using the z-component of the Poynting
vector Si,z(z) at a certain z-position in layer i:

T a
i (z) =

Sai,z(z)

Sainc,z

. (26)

With this, the absorption A of the entire multilayer sys-
tem, that is up to the last interface between layer N and
the substrate, is given by

Aa = 1−Ra − T a, (27)

and the z-resolved absorption Ai(z) in each layer i is

Aa
i (z) = 1−Ra − T a

i (z), (28)

where Ra = Rap + Ras is the total reflectance. Note
that Eq. 28 describes the total absorption starting from
z = 0 at the first interface up to the specified position z

in layer i. The layer-i-resolved absorption, on the other
hand, is given by:

Aa
i = T a

i (d1..i−1)− T a
i (d1..i−1 + di)

= Aa
i (d1..i−1 + di)−Aa

i (d1..i−1),
(29)

where d1..i−1 =
∑i−1

i=1 di is the thickness of all layers
through which the incident light has propagated before
reaching the layer i.

Before we study three nanophotonic device structures
in the following section, we calculate the layer-resolved
absorption for two simple test structures in Fig. 1.
The first is a typical TMDC heterostructure, compris-
ing monolayers of tungsten diselenide (WSe2), MoS2,
and tungsten disulfide (WS2) sandwiched between hBN
monolayers (sketched in Fig. 1a), where each TMDC
monolayer features individual exciton absorption lines.
In Fig. 1b, the reflection and transmittance of the entire
structure is plotted, and Fig. 1c shows the absorption
spectra of each TMDC monolayer. The total absorp-
tion (gray line in Fig. 1c) obtained from the reflectance
and transmittance spectra (Eq. 27) exhibits three in-
distinguishable absorption features, whereas the layer-
resolved absorption calculations unravel the absorption
spectrum, allowing to identify the contribution of each
TMDC monolayer.

In Fig. 1d-f, we show the absorption in a polar dielec-
tric heterostructure of SiC, AlN, and GaN thin films on
a Si substrate probed at infrared (IR) frequencies. Polar
dielectric crystals feature an IR-active transverse optical
(TO) phonon mode, where light is predominantly ab-
sorbed, whereas the longitudinal optical (LO) phonon
mode is not IR-active and thus featureless in a bulk
crystal. Thin films, on the other hand, support the
so called Berreman mode in proximity to the LO fre-
quency, leading to a strong absorption feature at oblique
incidence43–46. Thus, the reflectance and transmittance
spectra (Fig. 1e) of the polar dielectric heterostructure
are of complicated shape, exhibiting six different features
arising from the three different polar crystal thin films.
The layer-resolved absorption calculations split these fea-
tures into three spectra with two absorption peaks each
(Fig. 1f), allowing to identify the respective polar crystal
thin film that leads to the absorption at its respective
TO and LO frequencies.

IV. SIMULATIONS OF NANOPHOTONIC
DEVICES

The transfer matrix formalism and the calculation
of the layer-resolved absorption and transmittance pre-
sented in the previous section can be applied for any
wavelength and any number of layers, consisting of bire-
fringent or non-birefringent media described by an ar-
bitrary permittivity tensor ε̄i. As case studies, in this
section we describe three selected nanophotonic device
structures. The first example discusses the hyperbolic
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FIG. 1: Layer-resolved absorption calculations of two simple test structures. a Sketch of the TMDC
heterostructure comprising monolayers of WSe2, MoS2, and WS2

42 separated by hBN monolayers on a 140 nm thick
SiO2 film on a Si substrate. b Reflectance (black line) and transmittance (blue line) spectra of the system at visible
wavelengths and at an incident angle of 60◦ for s-polarized incident light. c Layer-resolved absorption spectra of the
TMDC monolayers (colored lines), revealing their respective contribution to the overall absorption spectrum (gray

line). d Sketch of the polar dielectric heterostructure comprising 100 nm thin GaN, AlN, and SiC films on a Si
substrate. e Reflectance and transmittance spectra and f layer-resolved absorption spectra of the second system,

enabling identification of the absorbing layer for each of the six absorption lines.

phonon polaritons arising in a MoO3 / AlN / SiC system
excited evanescently at far-IR wavelengths, highlighting
the potential of the formalism for nanophotonic stud-
ies in stratified media. The second example describes
the freespace response in the visible of a van der Waals
heterostructure of monolayers of MoS2 embedded in a
hBN matrix, featuring layer-selective absorption of the
MoS2 excitons. Finally, the third example calculates
the mid-IR absorption of strongly coupled modes formed
from intersuband plasmons in multi-quantum wells em-
bedded in an optical cavity.

A. Hyperbolic Phonon Polaritons in
MoO3/AlN/SiC

Polar crystals such as MoO3, AlN, and SiC support
surface phonon polaritons (SPhP) at frequencies inside
their reststrahlen region between the TO and LO phonon
frequencies48. On smooth surfaces, SPhPs can be excited
via prism coupling in the Otto geometry49,50 as illus-
trated in Fig. 2a, where the air gap width dgap governs
the excitation efficiency and the incident angle θ defines
the in-plane momentum of the launched SPhP51. The
system we investigate here is a multilayer heterostructure
comprising an MoO3 and AlN film on a SiC substrate.
Employing the presented transfer matrix fomalism, the
layer-resolved absorption Ai of such a structure can be
calculated as a function of incident angle θ, incident fre-

quency ω, layer thicknesses di, and azimuthal angle Φ of
the sample.

The absorption in the MoO3, AlN, and SiC layers as
a function of ω and Φ and for fixed θ and di is shown in
Fig. 2d-f. The reflectance of the entire system is plotted
in Fig. 2c. As required by energy conservation, the sum
of the absorbed power in the three polar crystals equals
the attenuated power visible as absorption dips in the
reflectance. However, while the reflectance only yields
the total absorption, the layer-resolved calculations al-
low to identify the exact position of a power drain in a
multilayer system.

In particular, the MoO3/AlN/SiC heterostructure fea-
tures several sharp absorption lines at 660, 800, 920, and
980 cm−1 that are mostly independent of Φ, and one
prominent absorption line that strongly varies with Φ,
indicating that the latter depends on in-plane anisotropy
(εx 6= εy) while the former do not. In the multi-
layer sample, only the MoO3 layer exhibits in-plane
anisotropy, while AlN and SiC are c-cut uniaxial crys-
tals (principle relative permittivities εx, εy, and εz are
shown in Fig. 2b). Indeed, the Φ-dependent feature is
mostly absorbed in the MoO3 layer. This feature is the
hyperbolic phonon polariton (hPhP) supported by the
air/MoO3 interface arising in the in-plane reststrahlen
bands of MoO3. Its tunability in frequency arises from
the large in-plane anisotropy of MoO3, which leads to a
Φ-dependent effective permittivity sensed by the hPhP
upon azimuthal rotation.
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AlN, and SiC layers as a function of ω and Φ.

Notably, below the SiC TO frequencies (∼ 800 cm−1),
a significant part of the hPhP leaks into the SiC sub-
strate, while above ωSiC

TO the mode is mostly confined to
the MoO3 layer. The high confinement above ωSiC

TO oc-
curs because of the negative permittivity in the SiC rest-
strahlen band, while below ωSiC

TO , the mode can penen-
trate the substrate. Interestingly, this mode penetration
happens across the AlN layer, where only a small part of
the mode is absorbed. Since AlN features its reststrahlen
bands across the entire frequency range of the hPhP sup-
ported by the MoO3, and thus evanescently attenuates
all modes, the hPhP appears to tunnel through the AlN
layer to be absorbed by the SiC substrate.

The multilayer system presented here only scratches
the surface of various possible material configura-
tions and compositions that can potentially be em-
ployed for tailoring surface and interface polariton
resonances20,52–57. In particular the emerging field
of volume-confined hyperbolic polaritons14,20,58,59, en-
abled by the anisotropic permittivity of the support-
ing media, holds great potential for future nanopho-
tonic applications, such as subdiffraction imaging and
hyperlensing12,13. Providing the full layer-resolved ab-

sorption, our algorithm paves the way to predict and
study hyperbolic polariton modes in any anisotropic
stratified heterostructure.

B. Layer-selective absorption of MoS2 excitons in a
Fabry-Pérot cavity

TMDC monolayers such as MoS2 feature strong ex-
citon resonances at visible frequencies42,47. By insert-
ing these monolayers into van der Waals heterostruc-
tures forming a Fabry-Pérot cavity, the light-matter in-
teraction enabled by the TMDC exciton can be strongly
enhanced60. Here, we embed two MoS2 monolayers into
a dc = 1.9− 2.4 µm thick hBN cavity with a SiO2 back-
reflector on a Si substrate61, as sketched in Fig. 3a. Em-
ploying the presented formalism, the absorption Ai in
the two MoS2 monolayers as a function of photon energy
and cavity thickness dc can be calculated.

In the photon energy range of 1.7− 2.2 eV, MoS2 fea-
tures two excitons (A and B) at ∼ 1.9 and ∼ 2.1 eV.
These excitons are apparent as resonance peaks in the
isotropic relative permittivity plotted in Fig. 3b and re-
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47. d Absorption spectra of the two MoS2 monolayers for s-polarized incident light, for a cavity

thickness of dc = 2.15 µm (dc = 2.128 µm) optimized for layer-selective absorption of the two MoS2 excitons,
calculated with the MoS2 permittivities of Jung et al. (Funke et al.). e Analogous calculations as in subfigure d but
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substrate, respectively. The maps of R, A, and T are all plotted as a function of the incident photon energy and the
cavity thickness dc.

sulting in peaks in an absorption spectrum. However,
the Fabry-Pérot cavity creates a static modulation of
the electric field enhancement with peaks and nodes as a
function of z position, and thus the resulting absorption
in a MoS2 monolayer not only depends on the photon en-
ergy, but also sensitively depends on the z position of the
MoS2 monolayer in the cavity. Taking advantage of this
field modulation, we place one MoS2 monolayer (layer 4)

at the center of the cavity where the cavity modes alter-
nate between node and peak with maximal amplitude,
and the other MoS2 monolayer (layer 2) in close proxim-
ity where the cavity features a node when there is a peak
in the center, and vice versa.

The cavity modes yield the periodic modulation in pho-
ton energy and cavity thickness dc that can be seen in
the reflectance (transmittance) maps shown in Fig. 3f
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and g (l and m), for incoming s- and p-polarized light,
respectively. The different modulation contrast for Rs

and Rp (T s and T p) arises from the large incident angle
of θ = 70◦, which was chosen to optimize the absorp-
tion As in the MoS2 monolayers for s-polarized incident
light. For smaller incident angles, the differences for s-
and p-polarization decrease, but with a reduction in the
absorption As.

In Fig. 3h,i (j,k) the absorption for s- and p-polarized
incident light in the first MoS2 monolayer, As,p

2 (second
MoS2 monolayer, As,p

4 ), is shown. Due to the choice of
the z positions of the two MoS2 monolayers, each film is
sensitive to only every second cavity mode, where layer
2 (first MoS2 monolayer) absorbs those modes that are
not absorbed by layer 4 (second MoS2 monolayer). Ad-
ditionally to the absorption modulation imposed by the
cavity, the A and B excitons of MoS2 yield two absorp-
tion features at their respective energies, marked by dot-
ted vertical lines in Fig. 3h-k. For the optimized case
of s-polarized incident light, the MoS2 monolayers reach
cavity-enhanced absorption values of up to 20% at both
exciton energies. At a cavity thickness of dc = 2.15 µm
for s-polarization, layer 2 only absorbs at the energy of
exciton A, while in layer 4, absorption only occurs at the
energy of exciton B. This layer-selective absorption is fur-
ther illustrated in the absorption spectra (solid lines) for
a fixed cavity thickness of dc = 2.15 µm shown in Fig. 3d
and e for s- and p-polarized light, respectively. For both
polarizations, a high contrast between the two layers at
each exciton absorption line is achieved, yielding efficient
layer-selectivity.

Finally, we compare these results obtained for an
isotropic permittivity model42 with the same calcula-
tions performed for an anisotropic model of MoS2

47. In
Fig. 3c, the in-plane (εx,y) and out-of-plane (εz) per-
mittivity values taken from Funke et al.47 are plotted.
While εx,y are qualitatively the same as the values from
Jung et al.42 (Fig. 3b), εz differs strongly, taking the
almost constant value of εz = 1 + 0 i. Even though
the difference in εz is substantial, the absorption spec-
tra shown in Fig. 3d,e (dashed lines) are qualitatively
identical to the spectra calculated from an isotropic per-
mittivity model (solid lines). This confirms that spectro-
scopic measurements of TMDC monolayers are mostly
insensitive to their out-of-plane permittivity42, with the
exception of cases where εz features a zero-crossing, the
so-called epsilon-near-zero (ENZ) frequency, giving rise
to drastic optical responses such as enhanced higher-
harmonic generation45,62,63. However, this is not the case
for MoS2, and therefore the spectra are almost identical.

In this example, the layer-resolved absorption calcu-
lations from our algorithm provide the essential infor-
mation for simulating the layer-selective exciton absorp-
tion and optimizing the system parameters. In the thriv-
ing field of 2D nanophotonics featuring TMDC van der
Waals heterostructures, where structures are optimized
for maximal light harvesting6,7, optoelectronic devices4,5

or nanolasers10,11, such layer-resolved absorption calcu-

lations promise to be of essential importance. Due to the
generality of the presented algorithm, the light-matter
interaction in any 2D heterostructure can be readily in-
vestigated, highlighting the broad applicability of our ap-
proach.

C. Strong Coupling in a Multi Quantum Well -
Cavity System

Doped semiconductor quantum wells (QWs) support
transitions between consecutive quantum-confined elec-
tronic levels, called intraband or inter-subband (ISB)
transitions. Contrary to interband transitions, ISB tran-
sitions do not only depend on the bandgap properties of
the semiconductor, but also on the electronic confinement
inside the QWs, and thus offer a great frequency tun-
ability by changing the width, but also the doping level
inside the QW. They play a major role in semiconductor
optic devices operating in the IR where semiconducting
materials with a suitable bandgap are lacking, and are
the building block of quantum well IR photodetectors64

and quantum cascade lasers65. They also offer a practical
platform to study the optical properties of dense confined
electron gases66, which notably lead to the demonstration
of the strong67,68 and ultra-strong light-matter coupling
regimes69,70. It is remarkable that such fundamental elec-
trodynamical phenomena are directly observable on semi-
conductor devices71–73. One peculiar aspect of these ISB
transitions is that they only couple to the component
of the electric field along the confinement direction of
the QW structure. Hence, the optical properties of a
doped QW can be described by an effective permittiv-
ity tensor with different in-plane (εx,y) and out-of-plane
(εz) values, which has been realized by several permit-
tivity models74–77. The description of light propagation
in stratified anisotropic media containing such QWs re-
quires a complex formalism, such as the transfer matrix
method the here presented algorithm builds on25.

We focus here on an existent experimental configura-
tion to further demonstrate the potential of our formal-
ism for the case of strong light-matter coupling between
a cavity mode and a collective intersubband excitation in
a multi-quantum well (MQW) superlattice. The system
is composed of a GaN cavity formed by a 500 nm thick,
Si-doped GaN slab and a Au mirror, as sketched on the
top of Fig. 4. The doped GaN layer is modeled using
the Drude model, and acts as a low-index mirror. The
two mirrors are separated by a 1 µm thick GaN spacer,
forming an empty cavity. The system sustains a guided
transverse magnetic (TM) mode, where the electric field
is confined mostly between the two mirrors and its out-
of-plane component is maximal near the Au mirror. This
guided mode can be probed in a reectance experiment,
as discussed in the following. In order to probe large in-
ternal angles of incidence experimentally, the sample has
to be prepared in a prism shape, for example by cleaving
the incident GaN layer facets. The calculated p-polarized
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reflectance Rp is shown in Fig. 4a, evidencing the disper-
sion relation of the cavity mode with varying incidence
angle inside the GaN substrate. The layer-resolved ab-
sorption spectra as a function of the angle of incidence
for this system are reported in Fig. 4b,c and reveal that
absorption occurs mostly in the doped GaN mirror. No-
tably, for an internal incidence angle of 48◦ at the guided
mode frequency, all the light is dissipated in the mirrors,
leading to a minimum of zero reflectance in Fig. 4a.

We now turn to the system’s response when the cav-
ity is partially filled with a MQW structure (Fig. 4d-
g). The superlattice is composed of twenty repetitions
of a 3 nm thick GaN QW, Si-doped with a concentra-
tion of 2 × 1013 cm−2 and twenty-one loss-less 10 nm
thick Al0.26Ga0.74N barriers. Since the guided mode is

a TM mode, it naturally provides a component of the
electric field along the z-direction for non-zero angles of
incidence, which fulfills the ISB transition selection rule.
In order to maximize the coupling between the ISB tran-
sition in the MQW and the cavity mode, the superlattice
is placed where the z-component of the electric field is
the largest, that is just below the Au mirror, as shown
at the bottom of Fig. 4. The QW dielectric tensor is
modeled using a semi-classical approach75. We selected
the QW dimension and doping level in a way that it sus-
tains a strong, collective electronic excitation known as
an intersubband plasmon66. The components of the real
part of the dielectric permittivity tensor of all the lay-
ers are presented in Fig. 4h,i. Note that while the ISB
transition in the quantum well has a resonance frequency



11

of ∼ 1600 cm−1, the Coulomb interaction between the
QW electrons results in an ENZ mode at ∼ 2030 cm−1,
marked by the dotted line in Fig. 4i. The ENZ mode
dominates the optical response of the QWs.

We show in Fig. 4d the calculated reflectance Rp of
the cavity containing the MQW. The white dotted line
shows the ENZ frequency. A clear anti-crossing can be
seen between the cavity mode and the ENZ resonance,
which is characteristic of the strong light-matter coupling
regime, resulting in two polariton branches. The minimal
separation between the two branches amounts to a vac-
uum Rabi splitting 2ΩR = 200 cm−1. The layer-resolved
absorption spectra as a function of the angle of incidence
are shown in Fig. 4e-g for the GaN mirror, the MQW
superlattice, and the Au mirror, respectively. When the
cavity mode is far detuned from the ENZ frequency, the
absorption occurs mostly in the two mirrors, and espe-
cially in the GaN mirror, as for the empty cavity case.
The situation changes dramatically when the cavity mode
is tuned near the ENZ frequency. The absorption then
mostly occurs in the MQW. It is however important to
note that the absorption is maximal at the frequencies
of the two polaritons and not at the ENZ frequency, as
it would occur in the case of a weak coupling between
the cavity mode and the QW resonance. For an internal
incidence angle of 48◦, the maximum absorption inside
the MQW stack is now 0.5 at each of the frequencies of
the two polaritons.

The algorithm presented here thus allows to directly
calculate the light absorption in the complex case of a
doped MQW superlattice strongly coupled to a cavity
mode. In addition to the known features, such as the
avoided crossing in the angle-dependent reflectance spec-
trum, we can directly calculate the absorption inside the
MQW active region, which can be usefully linked to the
detected photocurrent in the perspective of using such
structures in photodetector devices67,71,73.

V. DISCUSSION

We have presented three nanophotonic devices based
on anisotropic multilayer structures made from metals,
polar dielectrics, and TMDC monolayers, covering inci-
dent wavelengths from the far-IR up to the visible. Our
formalism allows to calculate the transmittance and ab-
sorption in any layer, giving unprecedented insight into
the physics of light propagation in anisotropic, and even
birefringent, stratified systems.

In recent years, the field of nanophotonics has intensely
investigated the optical response of 2D heterostructures.
A particularly thriving subject has been polaritonic ex-
citations, which can be supported by a broad variety of
systems including slabs of metals, doped semiconductors,
polar dielectrics, 2D materials such as TMDC monolayers
and their stratified heterostructures17,54,78. Key features
of polaritons for nanophotonic technologies are their high
spatial confinement and field enhancement, which are

driven by the particular design of the multilayer materi-
als, stacking order, and layer thicknesses. Potential appli-
cations of such systems range from sensing79,80 and solar
cells81, over optoelectronic devices3 and beam manipula-
tion via metamaterials82, to waveguiding56,83, and ultra-
fast optical components45,84. However, due to the lack of
a general formalism, the optical response of these polari-
tonic multilayer systems is often either approximated by
effective, isotropic permittivity models85–87, or described
by specifically derived formulas29–32. Our generalized
formalism allows for a precise, layer-resolved study that
includes any isotropic, anisotropic or even birefringent re-
sponse of any number of layers, and thus holds great po-
tential for the prediction and analysis of polariton modes
in stratified heterostructures.

This is especially relevant for systems where one
or more materials feature anisotropic permittivity with
spectral regions of hyperbolicity where the principle real
permittivities have opposite signs, such as hBN or MoO3.
Recently, these hyperbolic materials have attracted in-
creasing interest14,20,58,59 due to the existence of hyper-
bolic polaritons, featuring novel properties for nanopho-
tonic applications such as subdiffraction imaging and
hyperlensing12,13. Because of the strong anisotropy of
these systems, an effective permittivity approach is not
purposeful. Here, our formalism provides the essential
theoretical framework that is necessary to model, pre-
dict and analyze the optical response of such hyperbolic
heterostructures, as we have discussed exemplarily for
a MoO3/AlN/SiC system (Fig. 2). Providing the full
layer-resolved information about the field distribution
and power flow of the excited polaritons, our method al-
lows to readily and concisely model and study hyperbolic
polariton modes in any anisotropic stratified heterostruc-
ture.

Furthermore, the layer-resolved absorption formalism
provides a description for designing optoelectronic de-
vices such as detectors, for which the photoresponse is
linked to the light absorption solely in the active region
of the device. In the case of the MQW system, optimiz-
ing the overall light absorption by minimizing both the
reflectance and transmittance of the system would not be
sufficient to model the performances of a photodetector
in the strong light-matter coupling regime71,73. Unfortu-
nately, these are the only quantities that can be probed in
a reflectance experiment. Calculating the layer-resolved
absorption in the structure allows to optimize the cav-
ity and MQW design, aiming at minimizing the light
absorption in the cavity mirrors while maximizing the
absorption in the MQW. This is well exemplified in Fig
4 e,f where we can see that the light is preferably dis-
sipated in either the doped GaN mirror or the MQW
superlattice depending on the detuning between the cav-
ity mode and the QW resonance. This behavior cannot
be deduced only from the reflectance measurement sim-
ulated in Fig. 4d. Fitting experimental reflectance data
using our formalism25 would allow to retrieve the amount
of light dissipated inside the active region only from the
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experimentally observable quantities, and to estimate fig-
ures of merit such as the quantum efficiency of the device.
The present method thus provides a convenient way to
model and optimize complex, optically anisotropic het-
erostructures for optoelectronic devices.

VI. CONCLUSION

In this work, we have derived explicit expressions for
the calculation of the layer-resolved transmittance and
absorption of light propagating in arbitrarily anisotropic,
birefringent, and absorbing multilayer media. The algo-
rithm relies on the electric field distribution computed
from a 4 × 4 transfer matrix formalism25,33, yielding
a robust and consistent framework for light-matter in-
teraction in stratified systems of arbitrary permittiv-
ity, which is implemented in an open access computer
program34,35. As case studies, we applied the algorithm
to simulations of three nanophotonic device structures

featuring hyperbolic phonon polaritons in a polar di-
electric heterostructure, MoS2 excitons in a Fabry-Pérot
cavity, and ENZ resonances in a cavity-coupled multi-
quantum-well, where we observed azimuth-dependent hy-
perbolic polariton tunneling, layer-selective exciton ab-
sorption, and strong coupling between ENZ and cavity
modes. Allowing for a detailed analysis of the layer-
resolved electric field distribution, transmittance, and ab-
sorption of light in any multilayer system, our algorithm
holds great potential for the prediction of nanophotonic
light-matter interactions in arbitrarily anisotropic strat-
ified heterostructures.
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M. Wolf, and A. Paarmann, ACS Photonics 4, 1048
(2017).

52 Y. Jia, H. Zhao, Q. Guo, X. Wang, H. Wang, and F. Xia,
ACS Photonics 2, 907 (2015).

53 S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet,
F. Li, M. Sich, O. Del Pozo-Zamudio, C. Clark, A. Nalitov,
D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M.

Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I.
Tartakovskii, Nature Communications 6, 8579 (2015).

54 T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang,
P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno,
and F. Koppens, Nature Materials 16, 182 (2017).

55 D. Wintz, K. Chaudhary, K. Wang, L. A. Jauregui,
A. Ambrosio, M. Tamagnone, A. Y. Zhu, R. C. Devlin,
J. D. Crossno, K. Pistunova, K. Watanabe, T. Taniguchi,
P. Kim, and F. Capasso, ACS Photonics 5, 1196 (2018).

56 N. C. Passler, A. Heßler, M. Wuttig, T. Taubner, and
A. Paarmann, Advanced Optical Materials 1901056,
1901056 (2019).

57 Q. Zhang, Z. Zhen, C. Liu, D. Jariwala, and X. Cui, Optics
Express 27, 18628 (2019).

58 P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S.
Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann,
and T. Taubner, Nature Communications 6, 7507 (2015).

59 S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal,
K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M.
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