On the Galois group of Generalised Laguerre polynomials II
Résumé
For real number $\alpha,$ Generalised Laguerre Polynomials (GLP) is a family of polynomials defined by
$$
L_n^{(\alpha)}(x)=(-1)^n\displaystyle\sum_{j=0}^{n}\binom{n+\alpha}{n-j}\frac{(-x)^j}{j!}.
$$
These orthogonal polynomials are extensively studied in Numerical Analysis and Mathematical Physics. In 1926, Schur initiated the study of algebraic properties of these polynomials. We consider the Galois group of Generalised Laguerre Polynomials $L_n^{(\frac{1}{2}+u)}(x)$ when $u$ is a negative integer.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...