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On the Galois group of Generalised Laguerre

polynomials II

Shanta Laishram, Saranya G. Nair and T. N. Shorey

Dedicated to the memory of Alan Baker

Abstract. For real number α, Generalised Laguerre Polynomials (GLP) is a family of polynomials defined by

L
(α)
n (x) = (−1)n

n∑
j=0

(n+ α

n− j

) (−x)j

j!
.

These orthogonal polynomials are extensively studied in Numerical Analysis and Mathematical Physics. In 1926, Schur initiated the

study of algebraic properties of these polynomials. We consider the Galois group of Generalised Laguerre Polynomials L
( 1
2
+u)

n (x)
when u is a negative integer.
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1. Introduction

For real number α and integer n ≥ 1, the Generalised Laguerre Polynomials (GLP) is a family of
polynomials defined by

L(α)
n (x) = (−1)n

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
.

These orthogonal polynomials have been extensively studied in various branches of analysis and
mathematical physics where they play an important role. They are used in Gaussian quadrature to

numerically compute integrals of the form

∫ ∞
0

f(x)e−xdx. They satisfy second order linear differential

equation

xy
′′

+ (α+ 1− x)y
′
+ ny = 0, y = L(α)

n (x)

and the difference equation

L(α)
n (x)− L(α−1)

n (x) = L
(α)
n−1(x).

Schur [Sch29], [Sch21] was the first to establish interesting and important algebraic properties of these

polynomials. Schur gave a formula for the discriminant ∆
(α)
n of L(α)

n (x) = n!L
(α)
n (x) by

∆(α)
n =

n∏
j=1

jj(α+ j)j−1
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and calculated their associated Galois groups. Schur [Sch29], [Sch21] showed that for every positive

integer n, the polynomial L
(0)
n (x) is irreducible and has associated Galois group the symmetric group

Sn. He showed that L
(1)
n (x) is irreducible for all positive integers n and has associated Galois group

the alternating group An if n > 1 and n is odd, and Sn otherwise. Further, he showed that the

polynomials L
(−1−n)
n (x) have associated Galois group An if n ≡ 0 (mod 4) and Sn otherwise. Gow

[Gow89] showed that if n is an even integer > 2, then the Galois group associated with L
(n)
n (x) is

An provided that the polynomial L
(n)
n (x) is irreducible. Filaseta, Kidd and Trifonov [FKT12] proved

that for every integer n > 2 with n ≡ 2 (mod 4), the polynomial L
(n)
n (x) is irreducible. For n = 2,

L
(2)
2 (x) is reducible but its Galois group is A2 = {e}. These results settled the inverse Galois problem

for An explicitly that for every positive integer n > 1, there exists an explicit Laguerre polynomial of
degree n whose Galois group is the alternating group An.

From now on wards, we always assume that

α = u+
1

2
(1.1)

where u is an integer. We define

L(u)
n (x) =

n∑
j=0

(
n

j

)
(1 + 2(u+ n))(1 + 2(u+ n− 1)) · · · (1 + 2(u+ j + 1))xj

and observe that (−1)nL(u)
n (2x) = 2nn!L

(α)
n (−x) and thus the irreducibility of L(u)

n (x) implies irre-

ducibility of L
(α)
n (x) and their associated Galois groups are same.

We recall that Hermite polynomials H2n(x) and H2n+1(x) are given by

H2n(x) = (−1)n22nn!L
(− 1

2
)

n (x2) and H2n+1(x) = (−1)n22n+1n!xL
( 1
2

)
n (x2).

Schur [Sch29], [Sch21], proved that L
(− 1

2
)

n (x2) and L
( 1
2

)
n (x2) are irreducible and these imply the

irreducibility of H2n(x) and H2n+1(x)/x. We observe that u ∈ {−1, 0} in these results, and in
[Lai15] Laishram proved that the Galois group is Sn when u ∈ {−1, 0}. Laishram, Nair and Shorey

[LNS16],[LNS18] showed that L
(α)
n (x) with α = u + 1

2 and 1 ≤ u ≤ 45 are irreducible except when
(u, n) = (10, 3) and have associated Galois group Sn other than in the case of (u, n) = (10, 3) where

the Galois group is Z2. Further Nair and Shorey [NaSh18] proved that L
(α)
n (x) with −18 ≤ u ≤ −2

are irreducible. In [Ban18, Corollary 2.3], Banerjee showed that for each u there is a finite set S(u)

such that L
(α)
n (x) has Galois group Sn except for n in S(u). In this paper we explicitly determine

these finite sets S(u) for u in the range −18 ≤ u ≤ −2 and compute the Galois group.

Theorem 1.1. Let α = u + 1
2 and −18 ≤ u ≤ −2. Then the Galois group of L

(α)
n (x) is Sn except

when (n, u) ∈ {(8,−5), (8,−6), (9,−5), (9,−6)(16,−9), (16,−10),
(24,−13), (24,−14), (25,−13), (25,−14), (32,−17), (32,−18)} in which cases the Galois group is An.

2. Preliminaries

We will use a result of Hajir [Haj05] which gives a criterion for an irreducible polynomial to have
large Galois group using Newton polygons. We restate the result which is [Haj05, Lemma 3.1]. For
an integer x, let ν(x) = νp(x) be the highest power of p dividing x and we write ν(0) =∞.

Lemma 2.1. Let f(x) =
∑m

j=0

(
m
j

)
cjx

j ∈ Q[x] be an irreducible polynomial of degree m. Let p be a
prime with m

2 < p < m− 2 such that
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(i) νp(cj) ≥ 0 for j = 0, 1, . . . ,m,

(ii) νp(c0) = 1,

(iii) νp(cj) ≥ 1 for 0 ≤ j ≤ m− p,

(iv) νp(cp) = 0.

Then the Galois group of f contains Am. Further Galois group is Am if discriminant of f ∈ Q∗2 and
Sm otherwise.

Next, we state a result which we deduce from a result due to Harborth and Kemnitz and state it as
a lemma so that we can use it easily.

Lemma 2.2. There exists a prime p satisfying 2
3n ≤ p < n− 2 for n ≥ 14.

Proof. In [HaKe81], Harborth and Kemnitz proved that there exists a prime p satisfying

x < p ≤ 6

5
x for x ≥ 25.

We take x = 3
4n. Then for n ≥ 34, we conclude that there exists a prime p in (3

4n,
9
10n] ⊂ [2

3n, n− 2).
For 14 ≤ n ≤ 33, we check that [2

3n, n− 2) contains a prime.

Lemma 2.3. Let r ∈ {1, 3}. The interval (x, 1.048x] contain primes congruent to r modulo 4 when
x ≥ 887.

This follows from Cullinan and Hajir [CuHa12, Theorem 1] with k = 4.

Lemma 2.4. For −18 ≤ u ≤ −2, the polynomials L
( 1
2

+u)
n (x) are irreducible.

This follows from Nair and Shorey [NaSh18, Theorem 1].

3. Galois group of L
(α)
n (x)

The results in this section are more general than required for the proof of Theorem 1.1. For a fixed
u, if n ≤ 13 we can compute Galois group directly using MAGMA. Thus we assume n ≥ 14 and we
always write

v = −u.

Now we state our main lemma.

Lemma 3.1. Let u ≤ −2 and n ≥ max{14, 2v − 1}. Assume L(u)
n (x) is irreducible. If there exists a

prime ∈ (2v − 3, n− 2), then the Galois group of L(u)
n (x) contains An.

Proof. By Lemma 2.2, there exists a prime ∈ [2
3n, n− 2). So we choose p ∈ (2v − 3, n− 2) such that

p ≥ max

{
2

3
n, 2v − 1

}
. (3.2)

We write

cj =

n∏
i=j+1

(1 + 2(u+ i)) =

n∏
i=j+1

(1 + 2(i− v)),
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p = 2v + l and l ≥ −1. We observe that p < 1 + 2(p− v + 1) since p > 2v − 3. Further

3p > 2(n− v) + 3 (3.3)

since p ≥ 2
3n and v ≥ 2. Therefore, we conclude that p - cp.

Next we show that νp(cj) = 1 for 0 ≤ j ≤ n − p. For 0 ≤ j ≤ n − p, the smallest factor in
n∏

i=j+1

(1 + 2(i − v)) occurs with j = 0 and i = 1 and this is 3 − 2v. The largest occurs with i = n

and this is 2(n− v) + 1. Since −p < 3− 2v and 2(n− v) + 1 < 3p, this product can only involve one
factor of p. Furthermore, for 0 ≤ j ≤ n − p, this product is a product of at least p consecutive odd
numbers, so p divides it. So p exactly divides cj for j in this range. Therefore we conclude that the

Galois group of L(u)
n (x) contains An by Lemma 2.1.

We recall that the discriminant ∆
(u)
n of L(u)

n (x) is given by

∆(u)
n :=

n∏
j=2

jj
(

2u+ 1 + 2j

2

)j−1

.

Lemma 3.2. Let 2n ≥ max{64, 2v − 5}. Then, ∆
(u)
n is not a square for all pairs of (n, u) satisfying

above conditions.

Proof. Given a positive integer n, let no and ne denote the largest odd and even number less than or
equal n respectively. Then

∆(u)
n = 1 · 3 · 5 · · ·no · (2u+ 1 + 4)(2u+ 1 + 8) · · · (2u+ 1 + 2ne)× 2

−ne
2 ×�

where � denotes a term in Q∗2. If n ≡ 2, 3 (mod 4), then ne
2 is odd and hence ∆

(u)
n is not a square.

Hence n ≡ 0, 1 (mod 4). We consider

Dv = 1 · 3 · 5 · · ·no(−2v + 1 + 4)(−2v + 1 + 8) · · · (−2v + 1 + 2ne).

It suffices to show that Dv is not a square. Let r ∈ {1, 3} be such that −2v + 1 ≡ r (mod 4). Then

Dv = 1 · 3 · · ·no(−2v + 1 + 4)(−2v + 1 + 8) · · · (r − 4) · r · (r + 4) · · · (−2v + 1 + 2ne).

Let p0 be the largest prime with 2
3n ≤ p < n and p ≡ 3r (mod 4). We take x = 2

3n and n > 1330 in
Lemma 2.3 to conclude that the interval [2

3n, n−2) contain both primes congruent to 1 and 3 modulo
4. We check that for 32 ≤ n ≤ 1330, the interval [2

3n, n− 2) contain both primes congruent to 1 and
3 modulo 4. Then p0||1 · 3 · 5 · · ·no. Further 3p0 > 2n > 2ne − 2v + 1 and 2v − 5 ≤ 2n < 3p0. Since
p ≡ 3r (mod 4) and −2v + 1 ≡ r (mod 4), the above conditions imply that p0||Dv and hence Dv is

not a square. Therefore ∆
(u)
n is not a square.

The following result is obtained by direct computation using MAGMA.

Lemma 3.3. Let 2 ≤ n ≤ 40 and −18 ≤ u ≤ −2. Then the Galois group of L(α)
n (x) is Sn except when

(n, u) ∈ {(8,−5), (8,−6), (9,−5), (9,−6)(16,−9), (16,−10), (24,−13), (24,−14), (25,−13), (25,−14),
(32,−17), (32,−18)} in which cases the Galois group is An.

We now prove Theorem 1.1.
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Proof of Theorem 1.1:

Let −18 ≤ u ≤ −2. Then L(u)
n (x) are irreducible by Lemma 2.4. Further, by Lemma 3.3, we can

always assume that n ≥ 41. Since v ≤ 18, we have n ≥ 2v− 1. If n ≥ 50, then 2v− 3 < 2
3n and hence

using Lemma 2.2, we conclude that there exists a prime in (2v − 3, n − 2). If 41 ≤ n ≤ 49, then the

prime 37 is in this interval as 2v−3 ≤ 33. Hence, by Lemmas 3.1 and 3.2, the Galois group of L(u)
n (x)

is Sn.
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