Geometry and identity theorems for bicomplex functions and functions of a hyperbolic variable - Archive ouverte HAL
Article Dans Une Revue Milan Journal of Mathematics Année : 2020

Geometry and identity theorems for bicomplex functions and functions of a hyperbolic variable

M. E. E Luna-Elizarrarás
  • Fonction : Auteur
  • PersonId : 1068706
M. Shapiro
  • Fonction : Auteur
  • PersonId : 1068707
D. C. Struppa
  • Fonction : Auteur
  • PersonId : 1068708

Résumé

Let D be the two-dimensional real algebra generated by 1 and by a hyperbolic unit k such that k 2 = 1. This algebra is often referred to as the algebra of hyperbolic numbers. A function f : D → D is called D-holomorphic in a domain Ω ⊂ D if it admits derivative in the sense that lim h→0 f (z 0 +h)−f (z 0) h exists for every point z0 in Ω, and when h is only allowed to be an invertible hyperbolic number. In this paper we prove that D-holomorphic functions satisfy an unexpected limited version of the identity theorem. We will offer two distinct proofs that shed some light on the geometry of D. Since hyperbolic numbers are naturally embedded in the four-dimensional algebra of bicomplex numbers, we use our approach to state and prove an identity theorem for the bicomplex case as well.
Fichier principal
Vignette du fichier
hyperbolic-identity-final(HAL).pdf (308.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02554022 , version 1 (24-04-2020)
hal-02554022 , version 2 (07-05-2020)

Identifiants

  • HAL Id : hal-02554022 , version 2

Citer

M. E. E Luna-Elizarrarás, Marco Panza, M. Shapiro, D. C. Struppa. Geometry and identity theorems for bicomplex functions and functions of a hyperbolic variable. Milan Journal of Mathematics, 2020, 88 (1), pp.247-261. ⟨hal-02554022v2⟩
130 Consultations
638 Téléchargements

Partager

More