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Abstract

Let D be the two-dimensional real algebra generated by 1 and by a hyperbolic unit k such
that k2 = 1. This algebra is often referred to as the algebra of hyperbolic numbers. A function
f : D→ D is called D-holomorphic in a domain Ω ⊂ D if it admits derivative in the sense that

limh→0
f(z0+h)−f(z0)

h exists for every point z0 in Ω, and when h is only allowed to be an invertible
hyperbolic number. In this paper we prove that D-holomorphic functions satisfy an unexpected
limited version of the identity theorem. We will offer two distinct proofs that shed some light
on the geometry of D. Since hyperbolic numbers are naturally embedded in the four-dimensional
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algebra of bicomplex numbers, we use our approach to state and prove an identity theorem for
the bicomplex case as well.

1 Introduction

Back in the second half of the nineteenth century, the Irish mathematician W.R.Hamilton introduced
what is now called the skew field of quaternions, in a (successful) attempt to describe rotations in the
space. His construction is very well known, and consists in building the real algebra on four units,
1, i, j, k = ij, where i, j, k are imaginary units (i.e their square is equal to −1) which anticommute
(i.e. ij = −ji, ik = −ki, jk = −kj). The lack of commutativity was an obstacle that hindered
Hamilton’s progress, until he was able to surrender the comfort of a commutative setting, something
he discussed at great length in his famous letters to his son [7].

Concurrently with Hamilton, a much less famous, and much less talented, English mathematician
under the name of James Cockle, developed a parallel theory (that he saw as inspired by Hamilton’s
quaternions), and applied it to new numbers that he called ‘tessarines’ (see, among others, [2], [3],
[4]; on Cockle’s results, see also [1]). The collection of works of Cockle will receive a more detailed
treatment in a forthcoming work by Panza and Struppa. At this point we will limit ourselves to
mentioning that Cockle’s tessarines were born almost out of luck, as they are the consequence of a
series of ill-conceived ideas. Nevertheless, they are an object worth of study, and that is in fact now
the subject of significant research under the name of bicomplex numbers (see [9], for example).

The idea is simple. The algebra of bicomplex numbers, or tessarines as Cockle called them, is the
four dimensional real algebra over the units 1, i, j, k = ij, but this time while i and j are (complex)
imaginary units, k is not, since i and j are asked to commute (ij = ji = k), and this makes k is
what is now referred to as a hyperbolic imaginary unit, namely, a non-real number such that k2 = 1.
The resulting algebra is, in some elementary sense, an easier object to study because it preserves
the commutative nature of complex numbers, but on the other hand, as we will see shortly, it offers
a new set of problems because the commutativity leads to the existence of zero-divisors, a most
inconvenient byproduct.

In [2], Cockle also implies that within the real algebra of tessarines, one can identify an interesting
subalgebra (he does not quite use such a precise language, but certainly understands the idea), if
one considers the two-dimensional real algebra over 1 and k. This algebra is modernly referred to
as the real algebra of hyperbolic numbers.

If one now moves to the twentieth century, one can see that many mathematicians (mostly from
the Italian algebra and analysis schools) developed a fairly sophisticated theory of holomorphicity for
functions defined on various algebras. They understood the subtleties that emerge from the specific
properties of each algebra, and possibly the best work in this area, though somewhat forgotten, is
the one of Sce, which has recently been translated and commented upon in [5].

In particular, a theory was developed for functions that satisfy holomorphicity conditions on
bicomplex functions, as well as those that satisfy similar conditions for functions on the algebra of
hyperbolic numbers. The modern theory of those functions for the bicomplex case is described in
a fairly complete way in [9], and the beginning of the theory for the hyperbolic case is discussed in
[10]. We should also point to reader to [8] where additional work is done on the geometry of the
hyperbolic plane.
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In this article we consider a natural question that has different answers in the bicomplex and the
hyperbolic cases, namely, the question of whether an identity theorem may exist for functions that
satisfy holomorphicity conditions. The question was stimulated by a close reading of the original
work of Cockle.

His approach in [2] consists in distinguishing “unreal” quantities, depending on the imaginary
unit i, from “impossible” ones depending on another non-real unit k (we are using here the modern
notation in order to avoid confusion among the units), which commutes with i, and such that k2 = 1.
This leads him to a four-dimensional real algebra, generated by 1, i, j := −ik, and k. This is the
algebra of bicomplex numbers (in modern terms) or of tessarines (in Cockle’s terms).

Cockle then proceeds ([2], p. 438) to claim that any “impossible quantity [. . . ] altogether disap-

pears” from the sum ekx + e−kx and from the quotient
ekx − e−kx

2k
, where x is any real number. To

justify this conclusion he simply assumes that the function of a hyperbolic variable ekx develops as
the real exponential, i.e., that

ekx =
∞∑
n=0

(kx)n

n!
,

from which it immediately follows, by simple replacement, that

ekx + e−kx = 2
∞∑
n=0

x2n

(2n)!
;

ekx − e−kx
2k

=
∞∑
n=0

x2n+1

(2n+ 1)!
. (1.1)

Cockle’s process, here, is essentially the same used by Euler’s in [6] (vol. 1, chapter VIII),
when he derives his classical results about imaginary exponentials and trigonometric functions. In
doing that, Euler implicitly assumes that the real exponential function ex (x ∈ R) plainly extends
to the the new function eix : R → C, having the same power series development as ex, under
the replacement of x with ix. He is silent about how this last function is defined, but we might
suppose he was considering it directly defined by this same development (that can be rewritten as
∞∑
h=0

(−1)h
x2h

(2h)!
+ i

∞∑
h=0

(−1)2h+1 x2h+1

(2h+ 1)!
, where the two real series are provably convergent). This

would leave still open both the problem of defining a complex function (conveniently denoted by
ez), extending ex to the whole C, and the question whether this function is unique. We know today
how to solve this problem—by simply defining ez = ex+iy = exeiy (x, y ∈ R), and taking eiy as
defined by its power series development, just as Euler presumably did—and answer this question in
the affirmative—by appealing to the identity theorem for (complex) holomorphic functions, which
Euler, however, could not have proved.

By (apparently) following Euler’s approach, Cockle utilizes equalities (1.1) and, is then led to the
search for a function f(x+ ky) (x, y ∈ R) of a hyperbolic variable whose restriction to R is exactly
ex. To obtain this function, it is enough to consider the function ex (cosh y + k sinh y), which clearly
satisfies the requirements ([10]). Note however that Cockle had no definition for holomorphicity of
functions of hyperbolic variables, and therefore his approach is simply algebraic, with no reference
to any analytical properties.

It is therefore natural to ask whether this function is unique, once we impose some holomorphicity
property on it. It turns out that the answer is somewhat surprising, in fact quite counterintuitive,
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and for that reason worthy of a complete discussion.
The plan of the paper is as follows: in Section 2, we give a quick summary on holomorphic

functions of bicomplex and hyperbolic variables. Nothing in this section is new, and the reader
interested in further details should look at [10] and [9]. Section 3 is the core of the paper. In it
we prove an identity theorem for holomorphic functions of a hyperbolic variable. As it will become
apparent, this theorem is much weaker than its complex counterpart, but it is still strong enough
to ensure the unicity of a holomorphic hyperbolic continuation of the exponential function. After
giving the proof of the identity theorem, we explore a bit more the geometry of the hyperbolic
plane, and we offer some interesting generalizations of the identity theorem itself. The last section
of the paper offers some variants of the identity theorem in the bicomplex setting. Even though it is
rather obvious that a more general identity theorem holds for holomorphic functions of a bicomplex
variable (almost an immediate consequence of the identithy theorem for holomorphic functions in
the complex plane), this last section allows us to make some interesting geometrical considerations
on the bicomplex plane.

2 Holomorphic functions on the algebras of bicomplex and hyperbolic numbers

The set BC of bicomplex numbers is defined by

BC := {z1 + jz2 | z1, z2 ∈ C}

where C = {x1 + ix2 |x1, x2 ∈ R} is the set of complex numbers with the imaginary unit i and
where i and j 6= i are commuting imaginary units, i.e., ij = ji, i2 = j2 = −1. The addition and
multiplication are defined in a clear way. We will write sometimes C(i) instead of C since the set
C(j) := {x1 + jx2 | x1, x2 ∈ R} can be equally called the set of complex numbers; both C(i) and
C(j) are isomorphic fields, and although coexisting inside BC, they are different.

The set of hyperbolic numbers can be defined intrinsically (independently of BC) as

D := {x+ ky | x, y ∈ R}

where k is a hyperbolic imaginary unit, i.e., k2 = 1, k 6= ±1, commuting with both real numbers x
and y. Again, it is clear how to add and to multiply the hyperbolic numbers.

Working with BC, a hyperbolic unit k emerges as the product of the two complex imaginary
units: k := ij. Thus the ring BC contains a ring, which is isomorphic to the ring of hyperbolic
numbers defined by

D := {x+ ijy | x, y ∈ R} .
Let S denote the set of zero-divisors in BC. A bicomplex number z1 + jz2 is a zero-divisor if

and only if z2
1 + z2

2 = 0. There are two very special zero-divisors: e :=
1

2
(1 + k) and e† :=

1

2
(1− k);

they have the properties: ee† = 0, e2 = e, (e†)2 = e†, e + e† = 1, e− e† = k. Finally,

S = (C \ {0})e ∪ (C \ {0})e†.

For any bicomplex number Z = z1 + jz2 one can write:

Z = β1e + β2e
† (2.1)
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where β1 = z1 − iz2, β2 = z1 + iz2. It is obvious that Z = 0 if and only if β1 = β2 = 0. Many
operations with bicomplex numbers can be performed term-wise using the idempotent representation.

It is worth noting that e and e† are hyperbolic numbers inside BC which leads to the idempotent
representation for hyperbolic numbers as well; such representation has the same form as (2.1) but
with β1 and β2 real numbers; if z = x+ ky, then β1 = x+ y, β2 = x− y.

Consider a bicomplex function F : Ω ⊂ BC −→ BC. The derivative F ′(Z0) of F at a point
Z0 ∈ Ω is defined as the limit, if it exists,

F ′(Z0) := lim
Z→Z0

F (Z)− F (Z0)

Z − Z0
= lim

S0 63H→0

F (Z0 +H)− F (Z0)

H
.

Such a derivative maintains many properties of real and complex derivatives; in particular, the
arithmetic operations look exactly the same. A function F with derivative at Z0 is called derivable
at Z0. If F has bicomplex derivative at each point of Ω, then we will say that F is a bicomplex
holomorphic, or BC–holomorphic, function.

The following bicomplex Cauchy–Riemann operators are introduced by means of the usual com-
plex derivatives in z and z̄:

∂

∂Z
:=

1

2

(
∂

∂z1
− j ∂

∂z2

)
;

∂

∂Z†
:=

1

2

(
∂

∂z1
+ j

∂

∂z2

)
;

∂

∂Z
:=

1

2

(
∂

∂z1
− j ∂

∂z2

)
;

∂

∂Z∗
:=

1

2

(
∂

∂z1
+ j

∂

∂z2

)
.

Let F ∈ C1(Ω,BC), F is BC–holomorphic if and only if

∂F

∂Z†
(Z) =

∂F

∂Z
(Z) =

∂F

∂Z∗
(Z) = 0 (2.2)

hold on Ω. If these identities are satisfied, then

F ′(Z) =
∂F

∂Z
(Z).

Writing F = F1 + jF2 the identities (2.2) imply that F1 and F2 are C–valued holomorphic functions
of two complex variables in the classical sense; what is more, they are not independent but they are
tied by the Cauchy–Riemann type conditions

∂F1

∂z1
=
∂F2

∂z2
;

∂F1

∂z2
= −∂F2

∂z1
.

How do these formulas look if one uses the idempotent representation of bicomplex numbers?
First of all, we write in the idempotent form the bicomplex numbers involved:

Z = β1e+ β2e
†;

F (Z) = G1(Z)e +G2(Z)e†,
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for suitable complex valued functions G1 and G2. Introduce also the sets Ω1 := {β1 | β1e+β2e
† ∈ Ω},

Ω2 := {β2 | β1e + β2e
† ∈ Ω}.

In general, the two functions G1 and G2 depend on both complex variables β1 and β2, namely
G1(Z) = G1(β1e + β2e

†), G2(Z) = G2(β1e + β2e
†). But the situation is radically different for

BC–holomorphic functions. A bicomplex function F is BC–holomorphic if and only if the following
conditions hold:

(I) G1 is a holomorphic function of the variables β1, β2 that does not depend on β2; thus G1 is a
holomorphic function of β1 ∈ Ω1.

(II) G2 is a holomorphic function of the variables β1, β2 that does not depend on β1; thus G2 is a
holomorphic function of β2 ∈ Ω2.

This implies that
F (Z) = G1(β1)e +G2(β2)e†

for Z ∈ Ω. But the right–hand side is well–defined on Ω̃ = Ω1e+ Ω2e
†, hence F extends to all of Ω̃.

Consider now the situation of functions of a hyperbolic variable. Set z = x + ky, f(z) = u(z) +
kv(z) = u(x, y) + kv(x, y). The limit

f ′(z0) := lim
SD 63h→0

f(z0 + h)− f(z0)

h

is called “derivative of f at z0”.
The hyperbolic Cauchy–Riemann conditions here are:

∂u

∂x
=
∂v

∂y
;

∂u

∂y
=
∂v

∂x
.

The Cauchy–Riemann operators are:

∂

∂z
:=

1

2

(
∂

∂x
+ k

∂

∂y

)
,

∂

∂z†
:=

1

2

(
∂

∂x
− k ∂

∂y

)
and they factorize, up to a constant coefficient, the one–dimensional wave operator on the class
C2(Ω) with Ω a domain in D.

Using the idempotent representation one gets, with some abuse of notation:

f(z) = f1(z)e + f2(z)e† = f1(x, y)e + f2(x, y)e†.

If we now write z = ν1e + ν2e
†, with ν1, ν2 ∈ R, we have a characterization of D–holomorphicity

as follows: a C1–function of a hyperbolic variable z is D–holomorphic if and only if the following
conditions hold:

I) f1 is of class C1(Ω,R) and it does not depend on ν2; thus f1 is in C1(Ω1,R).

II) f2 is of class C1(Ω,R) and it does not depend on ν1; thus f2 is in C1(Ω2,R).

Hence
f(z) = f1(ν1)e + f2(ν2)e† (2.3)

for z ∈ Ω. But the right–hand side of (2.3) is well defined on Ω̃ = Ω1e + Ω2e
†, hence f extends to

all of Ω̃. It is important to notice that f1 and f2 are here only required to be of class C1, and no
analyticity is expected.
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3 An identity theorem and some geometrical considerations

It is well known that holomorphic functions of a complex variable enjoy what is known as the identity
theorem. In other words, if f : Ω ⊂ C → C is holomorphic (i.e., it admits complex derivative, or,
equivalently, its components satisfy the Cauchy-Riemann system), Ω is an open and connected set
of the complex plane, and f vanishes on a subset of Ω that has an accumulation point in Ω, then it
vanishes everywhere in Ω. There are many ways to see, or at least to intuit, why it should be so.
To begin with, if a holomorphic function vanishes on a subset of Ω having an accumulation point
z0, then (by continuity) it will vanish at z0. Since f is holomorphic it is represented (locally) by its
Taylor series and from this it forthwith follows that all its derivatives are zero at z0, implying the
identical vanishing of the function on a disk B(z0, r) ⊂ Ω. Using the fact that Ω is connected, this
vanishing extends onto the whole Ω. A different way to look at this is by noticing that if u and v are,
respectively, the real and imaginary parts of f , i.e., f(x+ iy) = u(x, y) + iv(x, y), then the Cauchy-
Riemann conditions imply that u and v are both harmonic. This makes the Cauchy-Riemann system
elliptic, and the identity theorem follows.

One may therefore reasonably ask whether a similar identity theorem holds for BC–holomorphic
functions of a bicomplex variable and for D–holomorphic functions of a hyperbolic variable.

We can right away dispose of the bicomplex case by using an argument that essentially replicates
the one we have sketched for the complex case, but we prefer to provide our theorem with a proof
which is based on the intrinsic properties of bicomplex holomorphic functins.

Theorem 3.1. BC–holomorphic functions of a bicomplex variable satisfy the identity theorem.
Namely, if a function f : Ω ⊂ BC → BC is BC–holomorphic on a domain Ω in BC, and if f
vanishes identically on a subset Ω∗ of Ω with an accumulation point Z0 = β1e + β2e

† such that
β1e and β2e

† are accumulation points of the projections eΩ∗ and e†Ω∗ respectively, then f vanishes
identically on Ω.

Proof. It follows from Section 2 that we can assume that Ω is a product type domain Ω = Ω1e+Ω2e
†.

Moreover, a bicomplex holomorphic function F can be written as F (Z) = G1(β1)e +G2(β2)e†, with
G1 and G2 holomorphic functions of the complex variables β1 and β2. Since the identity theorem
holds for holomorphic functions on domains in the complex plane, the result follows immediately.

The situation, however, is quite different in the hyperbolic case, since the proof we just gave
breaks down because, as we have seen in Section 2, the functions that appear in (2.3) are not
necessarily analytic. Again, there are several reasons why one might think that, but maybe the
most cogent and straightforward is the fact that if the real and hyperbolic components u, v of a
holomorphic function of a hyperbolic variable are of class C2 then they are both solutions of the
wave equation. The equation being hyperbolic it is clear that no general identity theorem can hold for
its solutions. We will see, however, that the very special nature of the real algebra of D–holomorphic
functions allows at least a limited version of the identity theorem and one, in particular, that ensures
the uniqueness of the extension of any continuously differentiable function on R to all of D, including
of course the exponential function.

We have in fact the following theorem:

Theorem 3.2. Let f : D → D be a D–holomorphic function of a hyperbolic variable x + ky. If f
vanishes identically on the real axis y = 0, then f vanishes identically on all of D.
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Proof. We recall that if f is a D–holomorphic function on D, then we can rewrite it as

f(x+ ky) = f(ν1e + ν2e
†) = f1(ν1)e + f2(ν2)e†

where f1 and f2 are certain C1 functions of the variables ν1 and ν2 which means that for any x and
y in R there holds:

f(x+ ky) = f1(x+ y)e + f2(x− y)e†.

If we now assume that f vanishes identically when y = 0, we obtain

0 = f(x) = f1(x)e + f2(x)e†.

This immediately entails that f1(x) = f2(x) = 0 for all values of x, which entails, in turn, that

f(x+ ky) = f1(x+ y)e + f2(x− y)e† = 0,

since both f1 and f2 are identically zero as functions of a single variable. This proves the theorem.

A straightforward consequence of this result is the following:

Corollary 3.3. Let f and g be two functions from D to D that are hyperbolic entire, i.e., they are
D–holomorphic in the whole D. If they coincide on the real axis, they will coincide everywhere in D.

The proof of Theorem 3.2 openly suggests, however, that the real axis is not the only line for
which an identity theorem holds. In fact, the same exact proof shows that if a D–holomorphic
function f of a hyperbolic variable vanishes identically on a line y = mx+ b (m 6= ±1) or on a line
x = c, then it vanishes identically on all of D. More generally one has the following result, whose
proof is immediate consequence of the proof of Theorem 3.2.

Theorem 3.4. Let f : D → D be a D–holomorphic function of a hyperbolic variable x + ky. If f
vanishes identically on a curve y = g(x) such that x+g(x) and x−g(x) assume all real values except,
possibly, a discrete set of them, or on a curve x = g(y) such that y + g(y) and g(y)− y assume all
real values, then f vanishes identically on D.

One may wonder whether it is possible to extend this result to functions that vanish on a half-
line, for example, of positive real numbers, or what happens more generally when the function f
vanishes on a portion of a curve, or even on some generic subset of D. To answer this question
we offer a different proof of Theorem 3.2, through an interesting geometric argument that offers a
different way to look into the question, and admits an easy generalization.

Theorem 3.5. Let f : D → D be a D–holomorphic function of a hyperbolic variable x + ky. Let
f1 and f2 be the functions of the variables ν1 = x + y and ν2 = x − y such that f(x + ky) =
f1(ν1)e + f2(ν2)e† = f1(x + y)e + f2(x − y)e†. If f vanishes at a point x0 + ky0, then f1 vanishes
identically on the line y − y0 = −(x − x0) and f2 vanishes identically on the line y − y0 = x − x0.
See Figure 1.

Proof. It is easy to see that if f(x0 + ky0) = 0 then f1(x0 + y0) = f2(x0− y0) = 0. But then if (x, y)
is on the line y− y0 = −(x−x0) it is clear that x+ y = x0 + y0 and therefore f1 vanishes identically
on that line. Similarly for f2.
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xO

y

x0 + ky0

y − y0 = −x+ x0

y − y0 = x− x0

1

Figure 1: The lines y − y0 = −x+ x0 and y − y0 = x− x0.

As a consequence of this theorem, if f satisfies the hypothesis of Theorem 3.2, then f(x) = 0 for
all x ∈ R. Take x0 ∈ R arbitrary, then f1(x + y) = 0 for all (x, y) on the line y = −(x − x0) and
f2(x− y) = 0 for all (x, y) on the line y = x− x0. Having moved now x0 along the whole R one has
that R2 ∼=R D is covered with the straight lines y = −x + x0 and y = x − x0, hence f vanishes on
the whole D.

Clearly, Theorems 3.2 and 3.4 are immediate consequences of Theorem 3.5 , since the totality of
points in which two lines y− y0 = x0− x and y− y0 = x− x0, intersect, where x0, y0 vary on all the
(real) coordinates of the points belonging to a curve as those mentioned in this last theorem, coincide
with the whole D. What is more relevant, however, is that both this theorem and its proof merely
concern, essentially, a single point of R2, and the latter reduces, in fact, to nothing but a simple
argument pertaining to analytic geometry on R2. A straightforward consequence of it, following from
an obvious argument in real two-dimensional geometry, is, then, that if a D–holomorphic function
f(x+ ky) vanishes in two whatsoever distinct points x0 + ky0 and x1 + ky1, it also vanishes on both
the intersection point of the lines y − y0 = x0 − x and y − y1 = x− x1 and the intersection point of
the lines y− y1 = x1−x and y− y0 = x−x0. More in general, from this theorem it follows that, if a
D–holomorphic function f(x+ky) vanishes on any subset {x+ ky}(x,y)∈Ω of D, where Ω is whatever

subset of R2, then it also vanishes on the subset {x+ ky}(x,y)∈Ω∗ of D, where Ω∗ is the subset of R2

depending on Ω, which we can call “hyperbolic holomorphicity hull of Ω”, defined as follows:

Definition 3.6. Let Ω be a subset of the plane. For each point P = (x, y) in Ω, consider the two
lines αP+ and αP− passing through that point and having slopes 1 and −1. We define the hyperbolic
holomorphicity hull Ω∗ of Ω to be the set of points {αP+ ∩ αQ−}P,Q∈Ω.

Figures 2 and 3 are illustrations of this Definition.

We got, then, the following corollary, which constitutes a lemma for a quite general identity
theorem for D–holomorphic functions:
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xO

y

A

u

P

Q

αP,−

αQ,+

E

B

a

b

c

1

Figure 2: The set Ω∗ = {u : u ∈ abBc} is the hyperbolic holomorphicity hull of the arc of curve Ω = AEB.

For any point u in Ω∗, there are two points P,Q on Ω such that the lines αP,− and αQ,+ intersect in u.

Corollary 3.7. If a D–holomorphic function f vanishes on a set Ω in the plane, it then vanishes
identically on the hyperbolic holomorphicity hull of Ω.

We therefore obtain, immediately, the following general result:

Corollary 3.8. Let f and g be two D–holomorphic functions from D to D. If they coincide on a
subset {x+ ky}(x,y)∈Ω of D, where Ω is a subset of R2, they will also coincide on {x+ ky}(x,y)∈Ω∗,
where Ω∗ is the hyperbolic holomorphicity hull of Ω.

We conclude this section with a remark that is prompted by these apparently simple results.
At first sight, when studying D–holomorphic functions of a hyperbolic variable, one is led to an
oversimplification when it appears that any such function f is indeed nothing but a pair of real
valued functions f1 and f2, with no apparent links between them (a similar remark can and has
been made for holomorphic functions in the bicomplex setting). Thus it appears that such functions
cannot have any special properties, since the functions f1 and f2 do not have any particular property.
However, since the two functions f1 and f2 are defined on two variables connected to each other, D–
holomorphicity acts as a separation of variables process. In other words a function is D–holomorphic
if and only if it can undergo a separation of variables process that allows it to be written as a pair
of one variable functions f1 and f2. This process is performed via the change of cartesian basis
to the idempotent basis, and is strongly related to the hyperbolic numbers structure in the usual
Euclidean real space R2. This is, indeed, the key property of solutions of the wave equation, which
is the differential equation that gives special meaning to the study of D–holomorphic functions.
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Figure 3: The set Ω∗ = {u : u ∈ abcd} is the hyperbolic holomorphicity hull of the connected set Ω. For any

point u in Ω∗, there are two points P,Q in Ω such that the lines αP,+ and αQ,− intersect in u.

4 Some variants of the Identity Theorem in BC

Although by Theorem 3.1 we know that the Identity Theorem holds for bicomplex holomorphic
functions, the proof of Theorem 3.5 offers an inspiration for a different proof of the Identity Theorem
for BC–holomorphic functions, based on some simple geometric facts. For this reason we start this
section recalling the notion of complex straight lines in BC, [9].

4.1 Complex straight lines in BC

Recall first that any bicomplex number Z = z1+jz2 can be identified with a pair of complex numbers
(z1, z2). This means that, whenever necessary, BC can be seen as C(i)2.

By definition, a complex straight line (or simply a complex line) is the set of solutions of the
equation

a1z1 + a2z2 = b, (4.1)

where a1, a2, b ∈ C(i) are complex coefficients. Since this equation is equivalent to a system of two
real linear equations with four real variables, if the rank of the system is 2, the equation defines a
2–dimensional plane in R4.

Some examples of complex lines are the following.
Taking in (4.1) a1 = 0, a2 = 1 and b = 0, we get the equation

z2 = 0,

and the respective complex line is the set of complex numbers C(i) ⊂ BC.
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Taking now a1 = 0, a2 = 0, b = 0, then (4.1) becomes

z1 = 0

and the complex line in this case is the set jC(i) ⊂ BC.
The complex line that passes through a given bicomplex number Z0 = z0

1 + jz0
2 and through the

origin is the set
LZ0 =

{
λZ0 | λ ∈ C(i)

}
.

Let us represent this complex line as the set of solutions of (4.1). Take z1 + jz2 ∈ LZ0 , then there
exists λ ∈ C(i) such that z1 + jz2 = λZ0 = λz0

1 + jλz0
2 which leads to the system

z1 = λz0
1 ,

z2 = λz0
2 .

If z0
2 = 0, it is clear that LZ0 = C(i), thus, assuming that z0

2 6= 0 one has that λ =
z2

z0
2

and hence

z1 =
z2

z0
2

z0
1 , or, equivalently:

z0
2z1 − z0

1z2 = 0.

Reciprocally, given a homogeneous equation a1z1 + a2z2 = 0 with a1 6= 0, the set of its solutions is
LZ0 with Z0 = −a2 + ja1.

Using this notation it is clear that the (real) 2–dimensional planes BCe and BCe† are in fact
complex lines: BCe = Le and BCe† = Le† . Their equations are, respectively:

z1 + iz2 = 0, (4.2)

z1 − iz2 = 0. (4.3)

Note that the coefficients that appear in equation (4.2) corresponds to the zero-divisor −2ie, but
it is clear that Le = L−2ie. Similarly (4.3) corresponds to the zero-divisor 2ie† and one has that
Le = L−2ie.

A complex line that does not pass through the origin can be written as LZ0 +W 0. This means
that this line passes through W 0 and it is parallel to LZ0 . Writing Z0 = z0

1 +jz0
2 and W 0 = w0

1 +jw0
2,

it is straightforward to prove that Z = z1 + jz2 belongs to the complex line LZ0 +W 0 if and only if
the pair (z1, z2) is a solution of the equation

z0
2z1 − z0

1z2 = z0
2w

0
1 − z0

1w
0
2. (4.4)

The C(j) complex lines can be defined in a similar way.
The reader may note that not any (real) two–dimensional plane in R4 is a C(i) or a C(j) complex

line. It is in fact immediate to prove that a (real) two–dimensional plane P in R4 that passes through
the origin is a C(i) complex line if and only if it is closed under the multiplication by i.

12



4.2 Identity Theorem for BC–holomorphic functions

We are now ready to provide an alternative proof of a special case of the identity theorem for
BC–holomorphic functions.

Theorem 4.1. If F is an entire BC–holomorphic function such that F (z) = 0 for all z ∈ C(i), then
F (Z) = 0 for all Z ∈ BC.

Proof. Given Z ∈ BC, write Z = z1 + jz2 and F = G1e + G2e
†. Since F is BC–holomorphic it

satisfies
F (Z) = G1(z1 − iz2)e +G2(z1 + iz2)e†.

Take z0 ∈ C(i) arbitrary. Since F (z0) = 0 then G1(z0) = 0 and G2(z0) = 0. Consider the complex
line L = Le + z0 parallel to BCe passing through z0. From (4.4) we know that its equation is
z1 + iz2 = z0. Thus, to every Z = z1 + jz2 that belongs to L one has

G2(z1 + iz2) = G2(z0) = 0,

i.e., G2 vanishes in the whole complex line L. Similarly, consider the complex line Le† + z0 given by
z1 − iz2 = z0. Since G1(z0) = 0, then G1 vanishes on the whole complex line Le† + z0. We conclude
that the function F vanishes on the union of the lines

(Le + z0)
⋃

(Le† + z0) .

It is clear that the whole BC can be filled with the collection of complex lines:

{Le + z | z ∈ C(i)} and {Le† + z | z ∈ C(i)} ,

hence, moving z0 along the whole C(i) we conclude that F vanishes in the whole BC.

A generalization of the above theorem is

Theorem 4.2. If F is a bicomplex entire function that vanishes on a complex line LZ0 +W 0, with
Z0 not a zero-divisor, then it vanishes identically on all BC.

The request on Z0 to be not a zero-divisor finds its analogue in the hyperbolic case when it was
required that the slope m of the line y = mx+ b satisfies m 6= ±1.
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