PAH occurrence in chalk river systems from the Jura region (France). Pertinence of suspended particulate matter and sediment as matrices for river quality monitoring
Résumé
This study investigates the variations of polycyclic aromatic hydrocarbon (PAH) levels in surface water, suspended particulate matter (SPM) and sediment upstream and downstream of the discharges of two wastewater treatment plant (WWTP) effluents. Relationships between the levels of PAHs in these different matrices were also investigated. The sum of 16 US EPA PAHs ranged from 73.5 to 728.0 ng L-1 in surface water and from 85.4 to 313.1 ng L-1 in effluent. In SPM and sediment, Sigma(16)PAHs ranged from 749.6 to 2,463 mu g kg(-1) and from 690.7 mu g kg(-1) to 3,625.6 mu g kg(-1), respectively. Investigations performed upstream and downstream of both studied WWTPs showed that WWTP discharges may contribute to the overall PAH contaminations in the Loue and the Doubs rivers. Comparison between gammarid populations upstream and downstream of WWTP discharge showed that biota was impacted by the WWTP effluents. When based only on surface water samples, the assessment of freshwater quality did not provide evidence for a marked PAH contamination in either of the rivers studied. However, using SPM and sediment samples, we found PAH contents exceeding sediment quality guidelines. We conclude that sediment and SPM are relevant matrices to assess overall PAH contamination in aquatic ecosystems. Furthermore, we found a positive linear correlation between PAH contents of SPM and sediment, showing that SPM represents an integrating matrix which is able to provide meaningful data about the overall contamination over a given time span.