Detecting anomalous crop development with multispectral and SAR time series using unsupervised outlier detection at the parcel-level: application to wheat and rapeseed crops - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Detecting anomalous crop development with multispectral and SAR time series using unsupervised outlier detection at the parcel-level: application to wheat and rapeseed crops

Mohanad Albughdadi
Sylvie Duthoit
  • Fonction : Auteur
Denis Kouamé
Guillaume Rieu
  • Fonction : Auteur
Jean-Yves Tourneret

Résumé

This paper proposes a generic approach for detecting anomalous crop development at the parcel-level based on unsupervised outlier detection techniques. This approach consists of four sequential steps: preprocessing of synthetic aperture radar (SAR) and multispectral images acquired using Sentinel-1 and Sentinel-2 satellites, extraction of SAR and multispectral indicators, computation of zonal statistics at the parcel-level and outlier detection. This paper analyzes different factors that can affect the relevance of the outlier detection results for crop monitoring, such as the considered features and the outlier detection algorithm used. The proposed method is validated on rapeseed and wheat crops located in Beauce (France).
Fichier principal
Vignette du fichier
Mouret_et_al_HAL.pdf (2.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02546260 , version 1 (17-04-2020)
hal-02546260 , version 2 (14-09-2020)
hal-02546260 , version 3 (05-03-2021)

Identifiants

  • HAL Id : hal-02546260 , version 2

Citer

Florian Mouret, Mohanad Albughdadi, Sylvie Duthoit, Denis Kouamé, Guillaume Rieu, et al.. Detecting anomalous crop development with multispectral and SAR time series using unsupervised outlier detection at the parcel-level: application to wheat and rapeseed crops. 2020. ⟨hal-02546260v2⟩
495 Consultations
771 Téléchargements

Partager

More