Spatial asymptotics of mild solutions to the time-dependent Oseen system - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2022

Spatial asymptotics of mild solutions to the time-dependent Oseen system

Abstract

We consider mild solutions to the 3D time-dependent Oseen system with homogeneous Dirichlet boundary conditions, under weak assumptions on the data. Such solutions are defined via the semigroup generated by the Oseen operator in L^q. They turn out to be also L^q-weak solutions to the Oseen system. On the basis of known results about spatial asymptotics of the latter type of solutions, we then derive point-wise estimates of the spatial decay of mild solutions. The rate of decay depends in particular on L^p-integrability in time of the external force.
Fichier principal
Vignette du fichier
deuring-oseen-decay-3-2020-v4.pdf (391.53 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02546017 , version 1 (17-04-2020)
hal-02546017 , version 2 (08-07-2022)

Identifiers

  • HAL Id : hal-02546017 , version 2

Cite

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. 2022. ⟨hal-02546017v2⟩
44 View
42 Download

Share

Gmail Facebook X LinkedIn More