Modeling of electrochemically generated bubbly flow under buoyancy-driven and forced convection - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Heat and Mass Transfer Année : 2015

Modeling of electrochemically generated bubbly flow under buoyancy-driven and forced convection

Résumé

This work is devoted to the modeling of two phase flows arising in typical electrolysis devices. A numerical mixture model is used in order to resolve the two dimensional bubble plumes evolving along the electrodes. Plumes thickness sensitivity is studied for various parameters, such as bubble diameter, elec-trolyte viscosity, electrochemical cell geometry and current density. Using thermal buoyancy driven flow analogy, a dimensionless Rayleigh-like number Ra f ;e is defined to predict the behavior of the wall-bounded gas convection between two vertical facing electrodes. Different bubbles dispersion mechanisms are observed depending on two-phase flow dynamics and physical properties of the mixture. The effect of forced convection in the channel is also investigated. A scaling law for plume thickness evolution for a large range of Prandtl-equivalent number values is proposed. These results show that the bubble plume can be efficiently controlled by an imposed electrolyte velocity.
Fichier principal
Vignette du fichier
Bubbly_flow_buoyancy_driven_boundary_layer_2015.pdf (672.75 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02545876 , version 1 (28-04-2020)

Identifiants

Citer

Jonathan Schillings, Olivier Léon Doche, Jonathan Deseure. Modeling of electrochemically generated bubbly flow under buoyancy-driven and forced convection. International Journal of Heat and Mass Transfer, 2015, 85, pp.292-299. ⟨10.1016/j.ijheatmasstransfer.2015.01.121⟩. ⟨hal-02545876⟩
76 Consultations
404 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More