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Abstract 

This work is devoted to the modeling of two phase flows arising in typical electrolysis devices. A 

numerical mixture model is used in order to resolve the two dimensional bubble plumes evolving along 

the electrodes. Plumes thickness sensitivity is studied for various parameters, such as bubble diameter, 

electrolyte viscosity, electrochemical cell geometry and current density. Using thermal buoyancy driven 

flow analogy, a dimensionless Rayleigh-like number 𝑹𝜶𝒇,𝒆 is defined to predict the behavior of the wall-

bounded gas convection between two vertical facing electrodes. Different bubbles dispersion mechanisms 

are observed depending on two-phase flow dynamics and physical properties of the mixture. The effect of 

forced convection in the channel is also investigated. A scaling law for plume thickness evolution for a large 

range of Prandtl-equivalent number values is proposed. These results show that the bubble plume can be 

efficiently controlled by an imposed electrolyte velocity.    

1 – Introduction 

The efficiency of industrial electrochemical processes strongly depends on mass transfer. For 

example, electrochemical reactions can be enhanced by pumped electrolyte flow, which increases mass 

transfer at the electrode surface. Alternatively, a flow can be induced by the electrochemical bubble 

production. Therefore, the cell efficiency of many electrochemical industrial processes is affected by 

bubble existence, such as chlorate process, where hydrogen bubbles are produced at the cathode  [1]. In 

Hall-Héroult process for the production of aluminum [2], carbon monoxide and carbon dioxide are 

produced at the bottom of the anode. Hence, bath/metal interface is affected by gas bubbles. Concerning 

zinc-air fuel cells, the performance is determined by active surface area, of which morphological 

modifications during charge and discharge are impacted by convection, among other mechanisms [3]. 

Furthermore in the energy field, Zeng and Zhang [4] showed that the additional resistance arising from 

partial coverage of the electrodes by the bubbles was critical in alkaline water electrolysis efficiency. A 

better understanding of bubble behavior would provide a scientific guidance to minimize this resistance 

and contribute to the development of hydrogen production. Generally, at gas-evolving electrodes, the 

actual distribution of current density differs from its nominal value. According to Vogt [5], empirical 
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descriptions may be used in order to describe the gas evolving electrodes but are restricted to some bubble 

coverage ranges and particular operating points. 

Nagai et al. [6] have shown that the decrease of electrolysis efficiency occurs by the increase of 

void fraction between electrodes. Due to the coupling between the electrochemistry and the two-phase 

flow, process performances are dependent on numerous experimental parameters such as electrode and 

reactor geometries, current density, electrochemical kinetics and electrolyte concentration. Even though 

the combined influence of all these factors might be complex to predict, the fact remains that optimum 

operating conditions can be found from experimental results together with a physical model of void 

fraction evolution. Furthermore, extrapolating results from laboratory to pilot and industrial scale requires 

careful consideration. Dimensionless parameters and correlations can be used to design and characterize 

industrial electrochemical cell, as for example, in the case of filter-press reactors [7].  

However, in many industrial electrochemical applications (e.g. chlorate process, waste treatment, 

redox flow battery and electrolysis) there is a lack of practical tools to characterize, optimize and scale-up 

reactors. 

The purpose of this paper is to describe how the mechanisms of bubble dispersion affect the global 

flow by means of a mixture (also called drift-flux) model. While an Eulerian-Eulerian two-fluid model (2FM) 

[8] or an Eulerian-Lagrangian liquid-bubble representation [9] would presumably be both more rigorous in 

the description of the dispersed phase, they would induce higher numerical costs. The mixture model – 

simpler in its formulation and resolution – is well suited for the present study due to its good efficiency in 

the case of unidirectional flows and small bubbles [10]. A new boundary layer model is derived from this 

mixture formulation and with it, a Rayleigh-like and a Prandtl-like dimensionless numbers to characterize 

bubble-driven convection and plume behavior. It is worth mentioning that the analogy between two-phase 

flows and heat transfer can be found in the literature by using for instance the Rayleigh-Benard instability 

analogy [11–13] or nucleate boiling heat transfer properties for describing mass transfer at the electrodes 

[14].  
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2– Model description 

2.1– General description 

 

Fig. 1 : Schematic representation of the electrochemically generated bubbly flow. 

Fig. 1 shows an illustration of a standard electrolysis set-up and represents the configuration of 

the model. The facing electrodes are vertical plates with infinite depth (2D approximation). 𝒙 and 𝒚 stand 

respectively for the horizontal and vertical directions. The cathode is located at 𝒙 = 𝟎, the anode at 𝒙 =

𝟐𝒆 and 𝒚 = 𝟎 is set at the entrance of the channel. The electroactive length is noted 𝑳 and the inter-plate 

gap is then 𝟐𝒆. Generated bubbles evolve in plumes along the walls. The electrolyte flow can either be 

forced into the channel or be induced by buoyancy forces arising from the bubbles creation. 

2.2– Mixture model 

 In the present study, the two-phase flow dynamics is modeled by the mixture formulation as 

expressed by Ishii [15]. The quantities 𝒗𝑫⃗⃗⃗⃗  ⃗ and 𝒗𝒄⃗⃗⃗⃗   are respectively the dispersed and the continuous phase 

velocities. �⃗⃗�  and �⃗⃗�  are respectively the mass- and volume-averaged (also called superficial) velocity fields 

of the mixture and 𝝆 = (𝟏 − 𝜶)𝝆𝑪 +  𝜶𝝆𝑫, its density. Then, the following set of relations is obtained: 

 𝑼𝑫
⃗⃗⃗⃗  ⃗ =  𝜶𝒗𝑫⃗⃗⃗⃗  ⃗,  

  𝑼𝑪
⃗⃗⃗⃗  ⃗ = (𝟏 − 𝜶)𝒗𝑪⃗⃗⃗⃗  ,    

�⃗⃗� =  𝑼𝑫
⃗⃗⃗⃗  ⃗ + 𝑼𝑪

⃗⃗⃗⃗  ⃗,  

  𝝆�⃗⃗� = 𝝆𝑪𝑼𝑪
⃗⃗⃗⃗  ⃗+ 𝝆𝑫𝑼𝑫

⃗⃗⃗⃗  ⃗ 

(2.1) (a-d)  

The subscripts C and D stand respectively for the continuous and dispersed phase. Let 𝑼𝒓
⃗⃗⃗⃗  ⃗, the relative 

volume flux of the dispersed phase,  be related to �⃗⃗�  and �⃗⃗�  by the following equations: 
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 𝑼𝒓
⃗⃗⃗⃗  ⃗ =  𝑼𝑫

⃗⃗⃗⃗  ⃗ − 𝜶 �⃗⃗�  (2.2)   

Due to the incompressibility condition both density of the continuous and dispersed phase are 

assumed to be constant. In addition,  𝜌𝐷 ≪  𝜌𝑐  and no phase change is considered in this work. 

Two-phase flow is governed by the following set of equations: 

 �⃗⃗� ∙ (�⃗⃗� ) = �⃗⃗� ∙ (𝑼𝑫
⃗⃗⃗⃗  ⃗)+  �⃗⃗� ∙ (𝑼𝑪

⃗⃗⃗⃗  ⃗)= 𝟎 (2.3)   

 �⃗⃗� ∙ (𝑼𝑫
⃗⃗⃗⃗  ⃗) = �⃗⃗� ∙ (𝑼𝒓

⃗⃗⃗⃗  ⃗)+  �⃗⃗� ∙ (𝜶�⃗⃗� ) = 𝟎 (2.4)   

 
𝝆�⃗⃗� ∙ 𝛁�⃗⃗� = −�⃗⃗� 𝑷+ �⃗⃗� ∙ [ 𝝁(𝛁�⃗⃗� + 𝛁�⃗⃗� 𝑻)−

𝟐

𝟑
𝝁(�⃗⃗� ∙ �⃗⃗� )𝑰]− 𝝆𝒄𝜶�⃗⃗�  (2.5)   

Equations (2.3), (2.4) and (2.5) stand respectively for the mixture volume conservation, dispersed-phase 

volume conservation and mixture momentum conservation, where 𝑷 = 𝒑+ 𝝆𝑪𝒈𝒚  is the reduced 

pressure and 𝝁 = 
𝝁𝑪

(𝟏−𝜶)
 is an empirical expression of mixture dynamic viscosity, given by Ishii and Zuber 

[16]. The last term in equation (2.5) stands for the buoyancy forces. The thermal-driven buoyancy due to 

heat generation/absorption during the electrochemical process is negligible compared to the bubble-

driven buoyancy. To illustrate this, a void fraction of 1% gives rise to the same buoyancy forces as an 

increase of 50 °C in water. Furthermore, because of the strong mixing induced by the two-phase flow near 

the electrode surfaces, there is no significant ion concentration gradient. 

 The description of bubbles relative motion is adapted from an empirical model of sedimenting 

spherical rigid particles in laminar flow over an inclined surface, thus neglecting the phenomena of bubble 

deformation, internal circulation, adherence on the walls and bubble coalescence and break -off. These 

assumptions are not unreasonable as it is commonly admitted that hydrogen bubbles in alkaline 

electrolyte are sufficiently small to remain spherical and do not coalesce easily  [17]. Although oxygen 

bubbles are significantly bigger than hydrogen ones, this remains a good approximation to represent the 

main behaviors of bubble plumes. This simplification was first formulated in the work of Dahlkild [18] for 

the boundary layer model of an isolated gas-evolving electrode, and then the formulation of the relative 

velocity was completed by Wedin and Dahlkild [19] for the mixture model. The terms of this formulation 

were adapted from various studies [20–23]. It is written as coupled interactions: 

 𝑼𝒓
⃗⃗⃗⃗  ⃗ = 𝑼𝑺𝒕𝒐𝒌𝒆𝒔

⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ + 𝑼𝑺𝒂𝒇𝒇
⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ + 𝑼𝑯𝒅𝒊𝒇𝒇

⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑼𝑺𝒅𝒊𝒇𝒇
⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ + 𝑼𝒎𝒊𝒈

⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗   (2.6)   

 𝑼𝑺𝒕𝒐𝒌𝒆𝒔
⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ = 𝜶𝒇(𝜶)𝒗𝑺𝒕𝒐𝒌𝒆𝒔𝒆𝒚⃗⃗⃗⃗  (2.7)   

 

𝑼𝑺𝒂𝒇𝒇
⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ = −𝜶𝒇(𝜶)𝒗𝑺𝒕𝒐𝒌𝒆𝒔𝒔𝒈𝒏(�̇�)

𝟔.𝟒𝟔

𝟔𝝅
√

𝒓𝒃
𝟐|�̇�|

𝝂𝑪
𝒆𝒙⃗⃗⃗⃗  (2.8)   

 𝑼𝑯𝒅𝒊𝒇𝒇
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −𝒓𝒃𝒗𝑺𝒕𝒐𝒌𝒆𝒔𝒇(𝜶)𝑫�⃗⃗� 𝜶 (2.9)   

 𝑼𝑺𝒅𝒊𝒇𝒇
⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ = −𝒓𝒃

𝟐|�̇�|𝜷(𝜶)�⃗⃗� 𝜶 (2.10)   
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𝑼𝑺𝒎𝒊𝒈
⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗  = −𝒓𝒃

𝟐|�̇�|
𝜿(𝜶)

𝝉
�⃗⃗� 𝝉 (2.11)   

 The first term 𝑼𝑺𝒕𝒐𝒌𝒆𝒔
⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ is the Stokes’ flux which results from a balance between buoyancy and drag 

forces. 𝒗𝑺𝒕𝒐𝒌𝒆𝒔 =
𝟐𝒈𝒓𝒃

𝟐

𝟗𝝂𝑪
, the Stokes velocity, is the terminal rising velocity of a particle of radius 𝒓𝒃 in a 

liquid of cinematic viscosity 𝝂𝑪 and 𝒇(𝜶) = (𝟏 − 𝜶)𝟓 is the hindering function, formulated by Nicolai et 

al. [20], that stands for the modification of viscosity and density inside the plume. 

 The second term 𝑼𝑺𝒂𝒇𝒇
⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗ is a lift flux caused by rotation of particles in a sheared flow, and is derived 

from Saffman’s lift velocity [21]. �̇� =
𝝏𝒒𝒚

𝝏𝒙
 is the main shear rate term for a flow between vertical pates. Lift 

forces tend to push rising bubbles towards the lowest velocities. 

 The third term 𝑼𝑯𝒅𝒊𝒇𝒇
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the hydrodynamic self-diffusion, which describes the irregular path of 

bubbles in a plume, resulting in a general diffusive behavior. 𝑫 = (
𝑫⊥ 𝟎
𝟎 𝑫∥

) is a non-isotropic 

dimensionless dispersion  coefficient, measured by Nicolai et al. [20], which values 𝑫⊥  ~ 𝟏 and 𝑫∥ ~ 𝟖 are 

approximately constant and independent of 𝜶. 

 Finally, the last terms are due to an increase of collision frequency in a sheared flow, proportional 

to 𝜶|�̇�|, as reported in the literature  [22,23].  𝑼𝑺𝒅𝒊𝒇𝒇
⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ is the shear-induced diffusion, generated by bubble 

concentration gradient in a constant shear and 𝑼𝑺𝒎𝒊𝒈
⃗⃗⃗⃗ ⃗⃗⃗⃗ ⃗⃗⃗⃗   is the shear-induced migration for non-uniform 

shear stresses. 𝝉 = 𝝁
𝝏𝒒𝒚

𝝏𝒙
 is the preponderant term of shear stress tensor, and 𝜷(𝜶) = 

𝟏

𝟑
𝜶𝟐(𝟏+

𝟎.𝟓𝒆𝟖.𝟖𝜶) and 𝜿(𝜶) = 𝟎. 𝟔𝜶𝟐 are non-dimensional coefficients. 

2.3 – Electrochemical reactions 

For the standard case of alkaline water electrolysis, the following half-reactions take place 

respectively at the anode and at the cathode: 

 𝟐𝑶𝑯− →
𝟏

𝟐
𝑶𝟐 + 𝑯𝟐𝑶+ 𝟐𝒆− (2.12)   

 𝟐𝑯𝟐𝑶+ 𝟐𝒆− → 𝑯𝟐 + 𝟐𝑶𝑯− (2.13)   

Gas fluxes leaving the electrodes surface are linked to the electrical current density by means of 

Faraday’s law, written in (2.14). The main considerations are that hydrogen and oxygen are ideal gases, 

the Faradaic yield is total and the products are generated in gaseous state. 

 𝑼𝑯𝟐 =
𝟏

𝟐

𝑹𝑻𝒊𝒂𝒗

𝒑𝑭
,     𝑼𝑶𝟐 =

𝟏

𝟒

𝑹𝑻𝒊𝒂𝒗

𝒑𝑭
 (2.14)  (a,b) 

where 𝑹 is the universal gas constant, 𝑻 the operating temperature, 𝒑 the operating pressure, 𝑭 is the 

Faraday constant and 𝒊𝒂𝒗 is the average current density.  
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Fig. 2 : Void fraction (left) and velocity (right) evolution in the direction perpendicular to cathode surface, calculated at the 
outlet of the cathode for a non-uniform (full line) and an averaged uniform (dashed line) current distribution. 

Fig. 2 exhibits the simulated results for a vertical cathode of height 𝑳 exposed to semi-infinite 

electrolyte. A first case of simulations are performed with electrical current distribution described using a 

modified Tafel’s law [18]: 

 
𝒊 = 𝒊𝟎(𝟏− 𝜶)𝒆

(−
𝑭

𝟐𝑹𝑻
𝜼)

 (2.15)   

where 𝜼 is the overpotential set to be equal to the opposite of the electrolyte potential (𝝓) at the interface 

with the electrode surface. Due to the large distance assumptions (one electrode surrounded by semi-

infinite electrolyte) and infinite dilut ed species consideration, the charge balance (electronic and ionic) 

can be simplified as follow:  

𝛁. 𝒊𝒙 = 𝟎 and 𝒊𝒙 =  𝝈𝛁𝝓⃗⃗⃗⃗⃗⃗ . 

The second case considers an equivalent but spatially averaged (i.e. uniform) current evolution 

along the electrodes. Fig. 2 (left) displays void fraction evolution perpendicular to cathode surface, at 𝒚 =

𝑳 and Fig. 2 (right) shows the dimensionless axial velocity. It can be clearly observed that the two-phase 

flow behavior is not significantly affected by a non-uniform current distribution along the electrodes. The 

plumes thickness at the outlet – which is the principal result when one aims to avoid mixing of facing 

bubble plumes – is almost similar in both cases (averaged and non-uniform current  

density). This is an important fact since it simplifies drastically the numerical resolution by avoiding any 

iterative procedure dedicated to the electrokinetics coupling. The simulation time of an isolated electrode 

could, for example, be divided by a factor up to 8 in some cases, and the gain might be higher for two 

electrodes undergoing different electrochemical kinetics. Since process performances (cell tension, ohmic 

losses) are not of prime importance, the uniform current approximation will be used in the rest of the 

study.  

The 2D finite elements resolution with Comsol Multiphysics was validated by direct comparison with 

the numerical results of Dahlkild [18] for an isolated electrode. In order to validate two-electrode cases, 

the results of simulations were compared to the experimental results of Boissonneau and Byrne  [1], as 

presented in the following section. 



- 7 - 

2.4 - Model validation with a free bubble-induced convection case 

Simulations results are compared to the experimental data of Boissonneau and Byrne [1]. In their 

work, a water electrolysis was studied inside a vertical channel of dimensions 𝟑𝑳 = 𝟏𝟐𝟎𝒎𝒎, 𝟐𝒆 = 𝟑𝒎𝒎 

and 𝑾 = 𝟑𝟎𝒎𝒎 (depth). In their experimental apparatus, the initial length of the channel was 

electrochemically inactive in order to develop the flow without any perturbation from the dispersed phase. 

Setting the entrance of the channel at 𝒚 = 𝟎, the channel walls were free of bubble generation along 𝒚 ∈

[𝟎,𝑳]. The lateral channel walls were electroactive for 𝒚 ∈ [𝑳,𝟐𝑳] and once again inactive for 𝒚 ∈ [𝟐𝑳,𝟑𝑳] 

to avoid any effect of the outlet on the inner profiles. The channel was immersed into a bath which could 

be considered as infinite and quiescent. The electrolyte was an aqueous solution of Na2SO4 concentrated 

at 50 g/L. The electrolyzer was operated at room temperature, atmospheric pressure and under different 

current density values (500, 1000 and 2000 A/m²). They measured bubbles diameters at the bottom and 

top of their channel for each current density and found values between 30 and 80 µm, which is small 

enough to consider them as rigid spheres. The corresponding properties used in the simulations are listed 

in Table 1 below: 

Table 1 : Physical properties corresponding to the operating conditions in the work of Boissonneau and Byrne [1]. 

𝑻(°𝑪) 25 

𝑷(𝒂𝒕𝒎) 1 

𝝆𝑪(𝒌𝒈∙ 𝒎−𝟑) [24] 1040 

𝝂𝑪(𝒎𝟐 ∙ 𝒔−𝟏) [24] 0.997 

𝒓𝒃(𝝁𝒎) at 500 A/m² 𝒚 ∈ [𝑳,𝟐𝑳] 𝒚 ∈ [𝟐𝑳,𝟑𝑳] 

15 + 15
𝑦− 𝐿

𝐿
 

30 
 

𝒓𝒃(𝝁𝒎) at 1000 A/m² 𝒚 ∈ [𝑳,𝟐𝑳] 𝒚 ∈ [𝟐𝑳,𝟑𝑳] 

22 + 10
𝑦− 𝐿

𝐿
 

32 
 

𝒓𝒃(𝝁𝒎) at 2000 A/m² 𝒚 ∈ [𝑳,𝟐𝑳] 𝒚 ∈ [𝟐𝑳,𝟑𝑳] 

30 + 10
𝑦− 𝐿

𝐿
 

40 
 

 

In every cases, the resulting liquid flow was established before entering the electrodes, according 

to the laminar entrance length 𝑳𝒊𝒏 = 𝟎. 𝟎𝟒𝑹𝒆𝑫𝑯
𝒆 [25], where 𝑹𝒆𝑫𝑯

=
𝒗𝒎𝒆𝒂𝒏𝑫𝑯 

𝝂𝑪
, 𝒗𝒎𝒆𝒂𝒏 is the measured 

mean velocity at the inlet of the channel, 𝒆 is the semi-inter-electrode gap and 𝑫𝑯 = 𝟒𝒆 is the hydraulic 

diameter in a reasonable 2D approximation of the channel (infinite depth). The channel Reynolds number 

𝑹𝒆𝑫𝑯
 remained under 600, suggesting that the flow stays laminar in each experiment, which is confirmed 

by the Poiseuille flow profile observed at the bottom of the electrodes as shown on Fig. 3.  

According to the experiments, simulations were run with the following boundary conditions: 

𝒚 = 𝟎  {𝑷𝒊𝒏 = −
𝟏

𝟐
𝝆𝑪𝒒𝒚,𝒎𝒆𝒂𝒏

𝟐

𝜶 = 𝟎
 (2.16) (a,b)  
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𝒚 = 𝟑𝑳 𝑷𝒐𝒖𝒕 = 𝟎 (2.17) (a,b) 

𝒙 = 𝟎 {

𝒒𝒙 = 𝟎
𝒒𝒚 = 𝟎

𝑼𝒓𝒙 =
𝑼𝑯𝟐

𝟏 − 𝜶
,𝑓𝑜𝑟 𝑦 ∈ [𝐿;2𝐿]𝑎𝑛𝑑 𝑼𝒓𝒙 = 𝟎 𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒

 (2.18) (a-c) 

𝒙 = 𝑯 {

𝒒𝒙 = 𝟎
𝒒𝒚 = 𝟎

𝑼𝒓𝒙 = −
𝑼𝑶𝟐

𝟏 − 𝜶
, 𝑓𝑜𝑟 𝑦 ∈ [𝐿; 2𝐿]𝑎𝑛𝑑 𝑼𝒓𝒙 = 𝟎 𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒

 (2.19) (a-c) 

 

The channel is immersed in an infinite quiescent liquid; this can be modeled by pressure conditions 

at both the inlet and the outlet. The reduced pressure at the outlet is set to 0, while the inlet value is 

smaller due to the depression caused by the acceleration of the liquid. By means of an iterative procedure, 

the inlet pressure is thus adjusted to −
𝟏

𝟐
𝝆𝑪𝒒𝒚,𝒎𝒆𝒂𝒏

𝟐, where 𝒒𝒚,𝒎𝒆𝒂𝒏 is the averaged inlet velocity. This 

type of approximation is also used in thermal natural convection simulations (see Dalbert et al. [26]). Eqs 

(2.18)(a-c) and (2.19)(a-c) represent a wall condition for the condensed phase and inward uniform fluxes 

normal to the electrodes for the dispersed phase. 

  Numerical results exhibited in Fig. 3 are consistent with the velocity measurements of Boissonneau 

& Byrne [1] taken at different heights, although the total experimental flow rate (including wall gas 

injection) is not conserved through the channel. Simulation results show clearly that the mixture is 

accelerated near the walls due to buoyancy forces, dragging the liquid from the center to the wall. Since 

the volume production of hydrogen (at x = 0mm) is twice that of the oxygen (x = 3mm), the velocity is 

significantly higher at the cathode (i.e the left electrode). This difference is somehow less remarkable on 

the experimental results but is still noticeable. 
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Fig. 3 : Experimentally measured velocity profiles [1] versus simulation results. 

3– Plume behavior 

3.1 – Thermal analogy 

In the case of vertical gas evolving electrodes, analogy with natural convection between vertical 

heated plates is almost straightforward. A bubble plume started at the surface of an electrode can be 

described as a boundary layer of size 𝜹𝜶 in a similar way of its thermal 𝜹𝑻 counterpart. Thorough 

descriptions of thermal boundary layers can be found in the work of Bejan  [25]. The aim is to roughly 

segregate the inner “near wall” region (i.e. < 𝜹𝜶) where buoyancy forces balance the brake effect of 

viscous forces at the wall and the outer region (i.e. > 𝜹𝜶) where inertia prevails on buoyancy forces. 

Buoyancy forces drive the vertical flow in the channel and the scalar 𝜶 follows a diffusion-convection law 

similar to, but somehow more complex than, the conservation of energy for temperature. Combining (2.3) 

and (2.4): 

 
𝑼𝒙

𝝏𝜶

𝝏𝒙
+ 𝑼𝒚

𝝏𝜶

𝝏𝒚
=

𝝏𝑼𝒓𝒙

𝝏𝒙
+

𝝏𝑼𝒓𝒚

𝝏𝒚
 (3.1)   

We consider a simple 2D geometry constituted of two vertical electrodes of height 𝑳 separated by 

a distance 𝟐𝒆. Each electrode generates a mean gas flux 𝑼𝒈 uniformly distributed on its surface.  A scale 

analysis allows defining the typical values of the problem. Let the following orders of magnitude in the 

inner region of the boundary layer be chosen as: 𝜶 ~ 𝜜, 𝒒𝒚 ~ 𝑼𝒚 ~ 𝑽, 𝒒𝒙 ~ 𝑼𝒙 ~ 𝑾, 𝒚 ~ 𝑳 and 𝒙 ~ 𝜹𝜶. 

Volume conservation in (2.3) leads to 
𝑽

𝑳
 ~ 

𝑾

𝜹𝜶
, so that the scale for the two convective terms on the left-

hand side of Eq. (3.1) is 
𝑽𝑨

𝑳
. The boundary layer model also implies that 

𝝏

𝝏𝒙
~

𝟏

𝜹𝜶
≫

𝟏

𝑳
~

𝝏

𝝏𝒚
 meaning that the 



- 10 - 

vertical components of dispersive terms (2.9), (2.10) and (2.11) are negligible, and that 
𝝏𝑼𝑺𝒂𝒇𝒇

𝝏𝒙
≫

𝝏𝑼𝑺𝒕𝒐𝒌𝒆𝒔

𝝏𝒚
. 

The horizontal components of (2.10) and (2.11) both scale with 
𝒓𝒃

𝟐|�̇�|

𝜹𝜶
. Therefore, the balance between 

convection and dispersion as described in (3.1) can be simplified to (3.2): 

 𝑽𝑨

𝑳
~

𝑼𝑺𝒂𝒇𝒇

𝜹𝜶
,
𝑼𝑯𝒅𝒊𝒇𝒇

𝜹𝜶
,
𝑼𝑺𝒅𝒊𝒇𝒇

𝜹𝜶
 (3.2)   

 Hence, (3.2) can be written in the form of (3.3): 

 𝑽𝑨

𝑳
~𝑲𝜶

𝑨

𝜹𝜶
𝟐 (3.3)   

where 𝑲𝜶 is an equivalent dispersion coefficient analogous to thermal diffusion coefficient. The Saffman’s 

lift, hydrodynamic self-diffusion and shear-induced diffusion terms contribute to 𝑲𝜶. Their respective 

magnitudes depend on flow conditions as shown in subsections 3.2 and 3.3.  

Inside the channel, the balance between viscous and buoyancy forces can be expressed as: 

 
𝝂𝑪

𝑽

𝒆𝟐 ~𝒈(𝑨
𝜹𝜶

𝒆
) (3.4)   

where 𝑨
𝜹𝜶

𝒆
 is the void fraction averaged over the whole fluid domain. 

 The mean gas flux injection can be approximated by: 

 
𝑼𝒈~𝑲𝜶

𝑨

𝜹𝜶
 (3.5)   

A Prandtl-like number can be defined as: 

 𝑷𝒓𝜶 =
𝝂𝑪

𝑲𝜶
 (3.6)   

 𝑷𝒓𝜶 compares the momentum diffusion to the void fraction dispersion. For higher values of 𝑷𝒓𝜶, 

slenderer bubble plumes are observed.  

Fig. 4 shows a scheme of velocity and void fraction profiles for 𝑷𝒓𝜶 ≫ 𝟏 and 𝑷𝒓𝜶 ≪ 𝟏. Both cases 

will be described separately in the following sections. Notice that for sake of clarity, the oute r boundary 

velocity was set to zero on Fig. 4. This is not true in the real case for which the core ( i.e. pure liquid) region 

velocity should evolve along the electrode height.  
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Fig. 4 : Typical velocity (full line) and void fraction (dotted line) distributions in the vicinity of electrodes, for high (left) a nd low 
(right) Prα values [25]. 

3.2 – 𝑷𝒓𝜶 ≫ 𝟏  

In this case, as depicted on the left side of Fig. 4, the plume thickness is very small compared to the 

hydrodynamic boundary layer thickness. The mixture is accelerated in the presence of bubbles and then 

the velocity decreases until reaching the distance 𝜹𝑯. These kinds of plume are highly concentrated in 

bubbles and undergo a strong positive shear. The three terms influent in bubble relative motion are the 

hydrodynamic self-diffusion, the shear-induced diffusion and Saffman’s lift force. Two asymptotical cases 

exist. For current densities sufficiently low to ensure that 𝜷(𝜶), and thus 𝑼𝑺𝒅𝒊𝒇𝒇, are negligible, lift forces 

and hydrodynamic diffusion prevail so that 𝑲𝜶 ~ 𝒗𝑺𝒕𝒐𝒌𝒆𝒔𝒓𝒃 (𝟏 − √
|�̇�|

𝝂𝑪
𝜹𝜶 )~ 𝒗𝑺𝒕𝒐𝒌𝒆𝒔𝒓𝒃 (𝟏 − √

𝑽𝒎𝒂𝒙𝜹𝜶

𝝂𝑪
 ). 

Where 𝑽𝒎𝒂𝒙 is the maximum velocity, reached at 𝒙 ≈  𝜹𝜶. Thus, it is seen that the equivalent diffusivity 

depends on a velocity and a boundary layer thickness. In order to define a practical equivalent Prandtl 

number, we choose to set 𝑲𝜶 ~ 𝒗𝑺𝒕𝒐𝒌𝒆𝒔𝒓𝒃. This choice is confirmed by numerical evaluation of both 

diffusive terms in our simulations showing that lift and hydrodynamic diffusion are equivalent in 

magnitude. It is then important to keep in mind that 𝑷𝒓𝜶 can be used to define scaling laws and perform 

sensitivity analysis. However for the set-up of complete correlations, exhaustive studies are necessary. By 

combining (3.3), (3.4) and (3.5) both 𝑨 and 𝑽 can be eliminated and one obtains the relation  

 
𝜹𝜶

𝟒

𝒆𝟒
~

𝑲𝜶
𝟐𝑳𝝂𝒄

𝒈𝑼𝒈𝒆𝟓. Hence, the Rayleigh-like number can be defined as 𝑹𝜶𝒇,𝒆 =
𝝂𝒄𝑼𝒈𝒆𝟓

𝒓𝒃
𝟔𝑳𝒈

, leading to the scaling 

law relation:  

 
 
𝜹𝜶

𝒆
~(𝑹𝜶𝒇,𝒆)

−𝟏/𝟒
 (3.7)   

 f and e subscript signal that the dimensionless number 𝑹𝜶𝒇,𝒆 is expressed for a uniform flux condition and 

a characteristic length 𝒆. The relative plume thickness 
𝜹𝜶

𝒆
 is a key parameter for useful applications of 

electrolysis. It measures the distance between the two facing void fraction boundary layer and then allows 

to evaluate the potential merging (with chemical recombination) of the plumes. 
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Fig. 5 : Relative plume thickness for a wide range of Rα f,e. Sensitivity to current density was recorded at e = 3mm (squares) and 
6mm (diamonds). Sensitivity to r and νC (circles) and to L (triangles) are also displayed L. In every cases, Prα > 80. 

For sufficiently high current densities, shear rate and void fraction values at the electrode surface 

become extremely high. Thus, shear-induced diffusion prevails and 𝑲𝜶 ~ 𝒓𝒃
𝟐 𝑽

𝜹𝜶
. With this formulation, 

(3.3) becomes (3.8) and the relation for plume thickness shows only a dependency on geometrical 

parameters: 

 
 
𝜹𝜶

𝒆
~

(𝒓𝒃
𝟐𝑳)

𝟏/𝟑

𝒆
 (3.8)   

Fig. 5 reports results of simulations obtained for various values of 𝑹𝜶𝒇,𝒆 along with sensitivity 

analysis of principal parameters such as 𝒆, 𝑳, 𝒊𝒂𝒗, 𝝂𝒄 and 𝒓𝒃. It displays 
𝜹𝜶

𝒆
 versus 𝑹𝜶𝒇,𝒆 plotted in log-scale 

at 𝑷𝒓𝜶  > 𝟖𝟎. The thickness of the void fraction boundary layer (𝜹𝜶) is measured at the top of the 

electrodes and is defined as the distance from the wall where void fractions is superior to 1% of its 

maximum value (located at the electrode surface in our configuration).  In terms of power law, simulation 

results fit well with the evolution predicted by scale analysis. In a general manner, the value of  𝒍𝒐𝒈(
𝜹𝜶

𝒆
) 

decreases almost linearly with 𝒍𝒐𝒈(𝑹𝜶𝒇,𝒆) and, thus, shows that the –¼ logarithmic slope value of the 

Rayleigh equivalent number is quite representative on a large part of the tested range.  However, the 

linearity is not perfect and, to the authors opinion, it could be explained by the flow-dependent nature of 

the dispersion coefficient 𝑲𝜶. For high current densities (i.e. encircled squares and diamonds), the flow 

dynamic is mainly governed by shear-induced diffusion which overwhelms other diffusive effects. In this 

case, the ratio 
𝜹𝜶

𝒆
 is no more affected by 𝑹𝜶𝒇,𝒆 as shown by previous analysis (eq. (3.8)) 

 The results show that it is possible to predict (and control) the plume thickness variation by acting 

on different parameters, such as electrolyte viscosity or current density. This is also the first step of 

correlations build-up process depending on 𝑹𝜶𝒇,𝒆, 𝑷𝒓𝜶 and geometrical configurations. Moreover, the 
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gap 𝒆 is of prime importance for the two-phase flow evolution along the electrodes because it is closely 

related to the pumping mechanism of the electrolyte arising from flow conservation. It is also important 

to notice that the most influent parameter is identified as the bubble size. Although it is generally not a 

tunable parameter in experiments, it has been shown [17,27] that bubbles diameter can be controlled by 

the current density, salt concentration or pressure, or by adding surfactants in the solution. 

3.3 – 𝑷𝒓𝜶 ≪ 𝟏  

For low 𝑷𝒓𝜶 values, bubble plumes are typically less concentrated and thicker. Hence, shear-

induced diffusion can be neglected. Fig. 4 shows, on the right-hand side, that void fraction dispersion can 

be governed either by a positive shear rate near the electrode, either by a negative one farther into the 

core of the flow where the velocity tends to decrease. Thus, the dispersion experiences a change in the 

resulting lift forces sign which makes difficult a consistent scale identification for 𝑲𝜶. 

Simulations results show a similar sensitivity to parameters such as 𝒆, 𝑳, 𝝂𝒄 and 𝒓𝒃 but with 

different magnitude than previously observed for high 𝑷𝒓𝜶. However, increasing the mean current value 

at the electrodes (𝒊𝒂𝒗) leads to a more complex behavior. Fig. 6 displays the dimensionless void fraction 

boundary layer thickness 
𝜹𝜶

𝒆
 versus 𝒊𝒂𝒗 at 𝑷𝒓𝜶 = 𝟎.𝟎𝟕. In the first place, due to strong convection effect, 

increasing the current density tends to reduce 𝜹𝜶. A further increase of current density leads to a higher 

maximum velocity and higher negative shear rates. Thus, the effective coefficient 𝑲𝜶 increases due to the 

rising lift forces toward the center of the channel, counteracting the initial decrease of the void fraction 

boundary layer.  

 

Fig. 6 : Relative plume thickness evolution, at low Prα, function of the mean current density. 

3.4 – Effect of forced convection 

Fig. 7 shows numerical results with several Poiseuille flow rates at the inlet of the channel, for 

various geometrical configurations and 𝑷𝒓𝜶 values. To highlight the effects of forced convection on bubble 

plume thickness, all the plotted results were obtained for an inlet velocity 10 times superior to the bubble-
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induced flow rate recorded with the same geometry, current density and 𝑷𝒓𝜶 value. Therefore, the 

buoyancy forces can be neglected. Fig. 7 exhibits 
𝜹𝜶

𝒆
 versus 𝑷𝒓𝜶𝑹𝒆𝑫𝑯

 in log-scale. The dark circles and 

triangles were obtained respectively for 𝑷𝒓𝜶 = 𝟎. 𝟏 and 𝑷𝒓𝜶 = 𝟏, with geometrical aspect 
𝑳

𝒆
= 𝟕. For the 

same ratio, light circles and triangles represent respectively cases 𝑷𝒓𝜶 = 𝟏𝟎 and 𝑷𝒓𝜶 = 𝟖𝟎.  

 

Fig. 7 : Effect of convection on plume thickness. For 10 < Prα < 1000 (light marks) the slopes of linear regressions are -0.35. For 

Prα = 1 (dark triangles) the slope is -0.4 and for Prα = 0.1 (dark circles), the slope is -0.6. 

Finally, light squares, diamonds and crosses result from simulations at 
𝑳

𝒆
= 𝟏𝟑, with  following  

Prandtl-analogous numbers: 𝟖𝟎, 𝟑𝟓𝟎 and 𝟏𝟎𝟎𝟎. The non-dimensional ratio 
𝜹𝜶

𝒆
 at high 𝑷𝒓𝜶 seems to be 

function of (𝑷𝒓𝜶𝑹𝒆𝑫𝑯
)
−𝟏/𝟑

, while for 𝑷𝒓𝜶 = 𝟏  and 𝑷𝒓𝜶 = 𝟎.𝟏, the logarithmic-slopes are respectively 

−𝟎.𝟒 and −𝟎.𝟔. 

 A scale analysis was achieved to clarify these relationships. Under the forced convection 

conditions, in the convection-dispersion balance (3.3), the velocity scale in the inner region of the 

boundary layer can be simply expressed by: 𝑽 ~ 𝒗𝒎𝒆𝒂𝒏
𝜹𝜶

𝒆
. Therefore, (3.3) becomes: 

 𝜹𝜶

𝒆
 ~(

𝑳

𝒆
)
𝟏/𝟑

 (𝑷𝒓𝜶𝑹𝒆𝑫𝑯
)
−𝟏/𝟑

 (3.9)  

As noticed previously, relation (3.9) agrees with the computed results at high Prandtl values, 

assuming hydrodynamic self-diffusion control and the constant estimation of 𝑷𝒓𝜶 value. For lower Prandtl 

values, however, the competition of Saffman lift forces steered toward the wall explain the gradual 

decrease of slopes. 

Standard alkaline water electrolysis operates typically at 𝑷𝒓𝜶 > 𝟏, as in the experimental works  

of Boissonneau and Byrne (𝟖 < 𝑷𝒓𝜶 < 𝟔𝟎). The present model can predict reliably bubbles plume 
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thickness evolution. However, a generic quantitative correlation cannot be defined because both the flow 

rate and the geometry impact the real Prandtl value, as emphasized in $3.2. 

 These results demonstrate that an additional forced flow significantly reduces the bubble plume 

thickness. Indeed, when the natural flow rate is not sufficient to efficiently convey the bubbles out of the 

channel, forced flow can avoid mixing of the electrochemically generated gaseous species. In addition, an 

increasing laminar flow rate at the bottom of electrodes has several advantages. It decreases departing 

bubbles radius, thus reducing the dispersion. It lowers the resistivity of the mixture due to a lower 

averaged void fraction, higher electrode active surfaces and more uniform current density distributions. 

And it leads to a continuous reduction of void fraction boundary layer thickness, regardless to the 

prevailing dispersion mechanism (in opposition to the results obtained at high current density in bubble-

driven convection). 

4– Conclusion 

A two-phase mixture model is used in this work to simulate the bubbly flow resulting from typical 

water electrolysis process. Various resolutions, using Comsol Multiphysics software, are performed under 

uniform electrical current density, in two dimensional laminar flow regimes between vertical electrodes. 

Comparisons with experimental results show the good applicability of the model for alkaline water 

electrolysis (small bubble diameter). By means of thermal analogy, two dimensionless numbers (𝑹𝜶𝒇,𝒆 =

𝝂𝒄𝑼𝒈𝒆𝟓

𝒓𝟔𝑳𝒈
 and 𝑷𝒓𝜶 =

𝝂𝑪

𝑲𝜶
) are defined in order to characterize natural bubble-driven convection. For 𝑷𝒓𝜶 ≥

𝟏, a scale analysis is performed to predict the evolution of the bubble plumes along the electrodes. It is 

observed that the most influent parameter is the bubble diameter, which depends on various parameters 

(e.g. electrolyte viscosity, pressure, current density…). Results also show that bubble dispersion 

mechanism depends strongly on flow conditions, imposed current density and physical parameters. This  

explains why further studies should be considered in order to define specific correlations for practical 

cases. A scale analysis is also performed in forced convection configuration and a scaling law for predicting 

the thickness gas thickness layer is proposed for 𝑷𝒓𝜶 ≥ 𝟏. The forced inlet velocity enhances the process 

performance in many aspects, mostly by reducing the bubbles plume thickness and avoiding the 

recombination of the electrochemically generated gaseous species.  
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Nomenclature 

 

𝛢 void fraction scale 

𝐷 non-dimensional hydrodynamic 

diffusion coefficient 

𝐷𝐻 hydraulic diameter (m) 

𝑒 half inter-electrode gap (m) 

𝑒𝑥⃗⃗⃗⃗ , 𝑒𝑦⃗⃗⃗⃗  horizontal and vertical unity vectors 

𝑓 hindering function 

𝐹 Faraday constant (C.mol-1) 

𝑔 gravitational constant (m.s-2) 

𝐻 inter-electrode gap (m) 

𝑖 current density (A.m-2) 

𝑖0 exchanged current density (A.m-2) 

𝑖𝑎𝑣 average current density (A.m-2) 

𝐼 identity matrix 

𝐾𝛼 void fraction dispersion coefficient 

(m2.s-1) 

𝐿 electrode length (m) 

𝐿𝑖𝑛 laminar entrance length  (m) 

𝑝 absolute pressure (Pa) 

𝑃 reduced pressure (Pa) 

𝑃𝑟𝛼 Prandtl-equivalent number 

𝑞 mass-averaged velocity (m.s-1) 

𝑟𝑏  bubble radius (m) 

𝑅 universal gas constant (J. mol-1. K-1) 

𝑅𝑒𝐷𝐻
 channel Reynolds number 

𝑅𝛼𝑓,𝑒 Rayleigh-equivalent number 

𝑇 operating temperature (K) 

𝑈 superficial velocity (m.s-1) 

𝑈𝐻𝑑𝑖𝑓𝑓 hydrodynamic self-diffusion (m.s-1) 

𝑈𝐻2 hydrogen flux generation (m.s-1) 

𝑈𝑔 gas flux generation (m.s-1) 

𝑈𝑚𝑖𝑔 shear-induced migration (m.s-1) 

𝑈𝑂2 oxygen flux generation (m.s-1) 

𝑈𝑆𝑎𝑓𝑓 Saffman lift (m.s-1) 

𝑈𝑆𝑑𝑖𝑓𝑓 shear-induced diffusion (m.s-1) 

𝑈𝑆𝑡𝑜𝑘𝑒𝑠 Stokes flux (m.s-1) 

𝑈𝑟   void fraction relative flux (m.s-1) 

𝑣 phase velocity (m.s-1) 

𝑣𝑆𝑡𝑜𝑘𝑒𝑠 Stokes velocity (m.s-1) 

𝑉 vertical velocity scale (m.s-1) 

𝑊 horizontal velocity scale (m.s-1) 

𝑥 horizontal position (m) 

𝑦 vertical position (m) 

 

Greek symbols 

𝛼 void fraction 

𝛽 non-dimensional shear-induced 

diffusion coefficient 

�̇� shear rate (s-1) 

𝛿𝛼 void fraction boundary layer thickness 

(m) 

𝛿𝐻 hydrodynamic boundary layer thickness 

(m) 

𝛿𝑇 thermal boundary layer thickness (m) 

𝜂 overpotential (V) 

𝜅 non-dimensional shear-induced

 migration coefficient 

𝜇 dynamic viscosity (Pa.s) 

𝜈 kinematic viscosity (m.s-2) 

𝜌 density (kg.m-3) 

𝜎 electrolyte conductivity (S.m-1) 

𝜏 shear stress (Pa) 

𝜙 electrolyte potential (V)                    

 

Subscripts 

 𝐶 continuous phase 

𝐷 dispersed phase 

𝑥 horizontal component 

𝑦 vertical component 

 

  



- 17 - 

References 
 
[1]  P. Boissonneau, P. Byrne, An experimental investigation of bubble-induced free convection in a small 

electrochemical cell, J. Appl. Electrochem. 30 (2000) 767–775. doi:10.1023/A:1004034807331. 
[2]  Q. Wang, B. Li, Z. He, N. Feng, Simulation of Magnetohydrodynamic Multiphase Flow Phenomena 

and Interface Fluctuation in Aluminum Electrolytic Cell with Innovative Cathode, Metall. Mater. 
Trans. B. 45 (2014) 272–294. doi:10.1007/s11663-013-0001-z. 

[3]  K. Wang, P. Pei, Z. Ma, H. Xu, P. Li, X. Wang, Morphology control of zinc regeneration for zinc–air 
fuel cell and battery, J. Power Sources. 271 (2014) 65–75. doi:10.1016/j.jpowsour.2014.07.182. 

[4]  K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and 
applications, Prog. Energy Combust. Sci. 36 (2010) 307–326. doi:10.1016/j.pecs.2009.11.002. 

[5]  H. Vogt, The actual current density of gas-evolving electrodes—Notes on the bubble coverage, 
Electrochimica Acta. 78 (2012) 183–187. doi:10.1016/j.electacta.2012.05.124. 

[6]  N. Nagai, M. Takeuchi, T. Kimura, T. Oka, Existence of optimum space between electrodes on 
hydrogen production by water electrolysis, Int. J. Hydrog. Energy. 28 (2003) 35–41. 
doi:10.1016/S0360-3199(02)00027-7. 

[7]  Á. Frías-Ferrer, J. González-García, V. Sáez, C.P. de León, F.C. Walsh, The effects of manifold flow on 
mass transport in electrochemical filter-press reactors, AIChE J. 54 (2008) 811–823. 
doi:10.1002/aic.11426. 

[8]  K. Aldas, N. Pehlivanoglu, M. Mat, Numerical and experimental investigation of two-phase flow in 
an electrochemical cell, Int. J. Hydrog. Energy. 33 (2008) 3668–3675. 
doi:10.1016/j.ijhydene.2008.04.047. 

[9]  P. Mandin, A.A. Aissa, H. Roustan, J. Hamburger, G. Picard, Two-phase electrolysis process: From the 
bubble to the electrochemical cell properties, Chem. Eng. Process. Process Intensif. 47 (2008) 1926–
1932. doi:10.1016/j.cep.2007.10.018. 

[10]  S.M. Ghiaasiaan, Two-phase flow, boiling and condensation in conventional and miniature systems, 
Cambridge University Press, New York, 2008 

[11]  E. Climent, J. Magnaudet, Large-Scale Simulations of Bubble-Induced Convection in a Liquid Layer, 
Phys. Rev. Lett. 82 (1999) 4827–4830. doi:10.1103/PhysRevLett.82.4827. 

[12]  M.C. Ruzicka, N.H. Thomas, Buoyancy-driven instability of bubbly layers: analogy with thermal 
convection, Int. J. Multiph. Flow. 29 (2003) 249–270. doi:10.1016/S0301-9322(02)00150-7. 

[13]  K. Iga, R. Kimura, Convection driven by collective buoyancy of microbubbles, Fluid Dyn. Res. 39 
(2007) 68–97. doi:10.1016/j.fluiddyn.2006.08.003. 

[14]  H. Vogt, Heat transfer in boiling and mass transfer in gas evolution at electrodes – The analogy and 
its limits, Int. J. Heat Mass Transf. 59 (2013) 191–197. doi:10.1016/j.ijheatmasstransfer.2012.12.018. 

[15]  M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer New York, New York, NY, 
2011. 

[16]  M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE 
J. 25 (1979) 843–855. doi:10.1002/aic.690250513. 

[17]  L.J.J. Janssen, C.W.M.P. Sillen, E. Barendrecht, S.J.D. van Stralen, Bubble behaviour during oxygen 
and hydrogen evolution at transparent electrodes in KOH solution, Electrochimica Acta. 29 (1984) 
633–642. doi:10.1016/0013-4686(84)87122-4. 

[18]  A.A. Dahlkild, Modelling the two-phase flow and current distribution along a vertical gas-evolving 
electrode, J. Fluid Mech. 428 (2001) 249–272. doi:10.1017/S0022112000002639. 

[19]  R. Wedin, A.A. Dahlkild, On the Transport of Small Bubbles under Developing Channel Flow in a 
Buoyant Gas-Evolving Electrochemical Cell, Ind. Eng. Chem. Res. 40 (2001) 5228–5233. 
doi:10.1021/ie001073u. 



- 18 - 

[20]  H. Nicolai, B. Herzhaft, E.J. Hinch, L. Oger, E. Guazzelli, Particle velocity fluctuations and 
hydrodynamic self‐diffusion of  sedimenting non‐Brownian spheres, Phys. Fluids 1994-Present. 7 
(1995) 12–23. doi:10.1063/1.868733. 

[21]  P.G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22 (1965) 385–400. 
doi:10.1017/S0022112065000824. 

[22]  D. Leighton, A. Acrivos, Measurement of shear-induced self-diffusion in concentrated suspensions 
of spheres, J. Fluid Mech. 177 (1987) 109–131. doi:10.1017/S0022112087000880. 

[23]  U. Schaflinger, Centrifugal separation of a mixture, Fluid Dyn. Res. 6 (1990) 213–249. 
doi:10.1016/0169-5983(90)90014-P. 

[24]  T. Isono, Density, Viscosity, and Electrolytic Conductivity of Concentrated Aqueous Electrolyte 
Solutions at Several Temperatures. Alkaline-Earth Chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, 
KBr, and Cd(NO3)2, (1984). 

[25]  A. Bejan, CONVECTION HEAT TRANSFER, 3RD ED, Wiley India Pvt. Limited, 2006. 
[26]  A.-M. Dalbert, F. Penot, J.-L. Peube, Convection naturelle laminaire dans un canal vertical chauffe a 

flux constant, Int. J. Heat Mass Transf. 24 (1981) 1463–1473. doi:10.1016/0017-9310(81)90214-3. 
[27]  Z.D. Wei, M.B. Ji, S.G. Chen, Y. Liu, C.X. Sun, G.Z. Yin, et al., Water electrolysis on carbon electrodes 

enhanced by surfactant, Electrochimica Acta. 52 (2007) 3323–3329. 
doi:10.1016/j.electacta.2006.10.011. 

 


	Abstract
	1  – Introduction
	2 – Model description
	2.1 – General description
	2.2 – Mixture model
	2.3  – Electrochemical reactions
	2.4  - Model validation with a free bubble-induced convection case

	3 – Plume behavior
	3.1  – Thermal analogy
	3.2  – ,𝑷𝒓-𝜶.≫𝟏
	3.3  – ,𝑷𝒓-𝜶.≪𝟏
	3.4  – Effect of forced convection

	4 – Conclusion

