A characterization of Lipschitz normally embedded surface singularities - Archive ouverte HAL
Article Dans Une Revue Journal of the London Mathematical Society Année : 2019

A characterization of Lipschitz normally embedded surface singularities

Walter D Neumann
  • Fonction : Auteur
Anne Pichon
  • Fonction : Auteur
  • PersonId : 964949

Résumé

Any germ of a complex analytic space is equipped with two natural metrics: the outer metric induced by the hermitian metric of the ambient space and the inner metric, which is the associated riemannian metric on the germ. These two metrics are in general nonequivalent up to bilipschitz homeomorphism. We give a necessary and sufficient condition for a normal surface singularity to be Lipschitz normally embedded (LNE), i.e., to have bilipschitz equivalent outer and inner metrics. In a partner paper [17] we apply it to prove that rational surface singularities are LNE if and only if they are minimal.
Fichier principal
Vignette du fichier
LMS-Paper1-CharacterizationLNE.pdf (498.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02543385 , version 1 (15-04-2020)

Identifiants

Citer

Walter D Neumann, Helge Møller Pedersen, Anne Pichon. A characterization of Lipschitz normally embedded surface singularities. Journal of the London Mathematical Society, 2019, ⟨10.1112/jlms.12279⟩. ⟨hal-02543385⟩
102 Consultations
48 Téléchargements

Altmetric

Partager

More