A characterization of Lipschitz normally embedded surface singularities - Archive ouverte HAL Access content directly
Journal Articles Journal of the London Mathematical Society Year : 2019

A characterization of Lipschitz normally embedded surface singularities

Walter D Neumann
  • Function : Author
Anne Pichon
  • Function : Author
  • PersonId : 964949

Abstract

Any germ of a complex analytic space is equipped with two natural metrics: the outer metric induced by the hermitian metric of the ambient space and the inner metric, which is the associated riemannian metric on the germ. These two metrics are in general nonequivalent up to bilipschitz homeomorphism. We give a necessary and sufficient condition for a normal surface singularity to be Lipschitz normally embedded (LNE), i.e., to have bilipschitz equivalent outer and inner metrics. In a partner paper [17] we apply it to prove that rational surface singularities are LNE if and only if they are minimal.
Fichier principal
Vignette du fichier
LMS-Paper1-CharacterizationLNE.pdf (498.52 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02543385 , version 1 (15-04-2020)

Identifiers

Cite

Walter D Neumann, Helge Møller Pedersen, Anne Pichon. A characterization of Lipschitz normally embedded surface singularities. Journal of the London Mathematical Society, 2019, ⟨10.1112/jlms.12279⟩. ⟨hal-02543385⟩
74 View
33 Download

Altmetric

Share

Gmail Facebook X LinkedIn More