Tail Risk Inference via Expectiles in Heavy-Tailed Time Series - Archive ouverte HAL
Article Dans Une Revue Journal of Business and Economic Statistics Année : 2023

Tail Risk Inference via Expectiles in Heavy-Tailed Time Series

Résumé

Expectiles define the only law-invariant, coherent and elicitable risk measure apart from the expectation. The popularity of expectile-based risk measures is steadily growing and their properties have been studied for independent data, but further results are needed to establish that extreme expectiles can be applied with the kind of dependent time series models relevant to finance. In this article we provide a basis for inference on extreme expectiles and expectile-based marginal expected shortfall in a general β-mixing context that encompasses ARMA and GARCH models with heavy-tailed innovations. Our methods allow the estimation of marginal (pertaining to the stationary distribution) and dynamic (conditional on the past) extreme expectile-based risk measures. Simulations and applications to financial returns show that the new estimators and confidence intervals greatly improve on existing ones when the data are dependent.
Fichier principal
Vignette du fichier
Davison_Padoan_Stupfler_expectileTS_final_AD.pdf (1.2 Mo) Télécharger le fichier
Davison_Padoan_Stupfler_expectileTS_Supp_revised_final.pdf (701.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02541663 , version 1 (14-04-2020)
hal-02541663 , version 2 (28-04-2020)
hal-02541663 , version 3 (01-08-2021)
hal-02541663 , version 4 (06-04-2023)

Identifiants

  • HAL Id : hal-02541663 , version 4

Citer

Anthony Davison, Simone A. Padoan, Gilles Stupfler. Tail Risk Inference via Expectiles in Heavy-Tailed Time Series. Journal of Business and Economic Statistics, 2023, 41 (3), pp.876-889. ⟨hal-02541663v4⟩
226 Consultations
244 Téléchargements

Partager

More