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Abstract

This document of supplementary material contains a detailed discussion of the technical condi-
tions, further numerical details and results, and all proofs. References below of the form (·∗) refer
to an element (condition, theorem, equation, etc.) in the main paper.
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A Discussion of technical conditions

On Condition B∗ Condition B(ii)∗ provides a way to quantify the extremal dependence between the

observations at different time points, through the so-called tail copula function (Schmidt & Stadtmüller

2006). Condition B(iii)∗ is a slightly more precise version of condition (C3) in Drees (2003), who used the

latter to obtain bounds on cluster sizes of exceedances. In particular it holds if the ρ-mixing coefficients

of (Yt) (in the sense of Bradley 2005) are summable, and then the coefficients ρ(t) can indeed be taken

as the ρ-mixing coefficients of the time series (Yt), because

P(A ∩B) ≤ corr(1{A},1{B})
√

P(A)P(B) + P(A)P(B)

for any pair of events (A,B). Although at first sight this assumption seems to restrict our β-mixing setup,

Drees (2003) shows that it holds in general ARMA, ARCH and GARCH models that are of interest in

financial applications.

On the assumptions of Theorem 3.1∗. The condition
∑

l≥1[β(l)]
δ/(2+δ) <∞ implies, and can be

replaced by,
∑

l≥1[α(l)]
δ/(2+δ) <∞, where the α-mixing coefficients of the sequence (Yt) are defined by

∀ l ≥ 1, α(l) := sup
m≥1

sup
A∈F1,m

sup
B∈Fm+l,∞

|P(A ∩ B)− P(A)P(B)|.

The time series (Yt) is said to be α-mixing (or strongly mixing) if α(l) → 0 as l → ∞. As Section 1.1

in Doukhan (1994) points out, α-mixing is weaker than β-mixing because α(l) ≤ β(l) for any l. In fact,

the condition
∑

l≥1[α(l)]
δ/(2+δ) <∞ is a standard assumption for central limit theorems in strong mixing

frameworks; see Ibragimov (1962) and Rio (2017). It is also the right framework for the general theory

of tail array sums provided by Rootzén et al. (1998), which is key to our analysis of the LAWS estimator

in Theorem 3.1∗. [For clarity, throughout the paper we adopted a formulation in terms of β-mixing

coefficients for consistency with our β-mixing framework.]

The condition rn(1− τn) → 0 as n→ ∞ plays a key role in the calculation of the asymptotic variance

of the estimator ξ̃τn , and also appears in Drees (2002, 2003), Rootzén (2009) and Drees & Rootzén

(2010). Finally, condition rn(rn/
√
n(1− τn))

δ → 0 as n→ ∞ is used to check the Lindeberg condition of

Theorem 4.1 in Rootzén et al. (1998), which is a central limit theorem tailored to our expectile estimation

problem under the strong mixing setting. This last assumption on rn could seem strong, due to its impact

on the assumed mixing rate via condition nβ(ln)/rn → 0 as n → ∞ in Condition B(i)∗. For δ small

it is indeed stronger than analogous conditions used in extreme quantile estimation: in that context,
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Rootzén (2009) uses the assumption rn/[n(1−τn)]1/2−δ → 0, while Drees (2003) assumes the even weaker

condition rn log
2(n(1 − τn))/

√
n(1− τn) → 0 as n → ∞. As we point out in the main article, the

assumption rn(rn/
√
n(1− τn))

δ → 0 as n → ∞ and all the other assumptions of Theorem 3.1∗ are very

mild when β(l) converges to 0 geometrically fast as l → ∞. In that case, our conditions are satisfied

with, for instance, ln = bC log nc, rn = blog2(n)c and τn = 1 − n−τ , for any τ ∈ (0, 1) and sufficiently

large C.

B Additional finite-sample results

B.1 Confidence interval for intermediate expectiles

Here we use the asymptotic distribution of the direct LAWS estimator given in Theorem 3.1∗ to derive

a two-sided confidence interval for the expectile at the intermediate level, with (1 − α)100% nominal

coverage probability. We first propose an estimator for the asymptotic variance

V (γ,R) =
2γ3

1− 2γ
(1 + σ2(γ,R)) (B.1)

of Theorem 3.1∗, where the expression of σ2(γ,R) is given in Theorem 3.1∗ and R = (Rt, t = 1, 2, . . .).

Lemma C.2 implies that

lim
n→∞

Var

(
ξ−1
τn√

rn(1− τn)

rn∑
t=1

[(Yt − ξτn)1{Yt > ξτn} − E((Y1 − ξτn)1{Y1 > ξτn})]

)
=
V (γ,R)

γ2
. (B.2)

We then estimate the limiting quantity in (B.2) by computing the empirical counterpart of the left-hand

side in (B.2). Specifically, we split the data into big blocks of size rn, separated by small blocks of size

ln, leading us to define the random variables

Ŝj =
ξ̃−1
τn√

rn(1− τn)

rn+jℓn∑
t=1+jℓn

(
(Yt − ξ̃τn)1{Yt > ξ̃τn} −

1

n

n∑
i=1

[(Yi − ξ̃τn)1{Yi > ξ̃τn}]

)

for j = 0, 1, . . . ,mn−1, where mn = bn/ℓnc and ℓn = rn+ ln. We then approximate the variance in (B.2)

by computing the sample variance Ωn of (Ŝ0, . . . , Ŝmn−1). Then an estimator of the asymptotic variance

V (γ,R) is given by γ̂2n Ωn, where γ̂n is an estimator of the tail index γ.

Numerical experiments suggest that the normal distribution in Theorem 3.1∗ may not be a very good

approximation to the sample distribution of the rescaled expectile estimator, especially when the marginal

distribution tail is quite heavy and there is strong serial dependence, so we consider two improvements.
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First, to compensate for the poor precision offered by the Gaussian approximation in Theorem 3.1∗, the

estimator of the asymptotic variance is inflated according to the serial dependence and the heaviness

of the marginal distribution tail. We then propose an alternative, possibly inflated, estimator of the

asymptotic variance,

V̂n(γ,R) = γ̂ µ
n Ωn, 1/2 ≤ µ ≤ 2. (B.3)

When µ = 2 the original estimator γ̂2n Ωn is recovered. This should be the natural option when the serial

dependence is weak/moderate and the marginal distribution tail is not too heavy. Otherwise, with strong

serial dependence and a heavier marginal distribution tail, a value µ < 2 can be selected and an amplified

estimate of the asymptotic variance obtained. Choosing µ is delicate: in Section B.2 below we discuss a

sensible criterion for selecting µ. Secondly, we note that the asymptotic result in Theorem 3.1∗ can be

equivalently rephrased as

√
n(1− τn) log

ξ̃τn
ξτn

d−→ N (0, V (γ,R)) , n→ ∞.

We construct our confidence intervals based on this result, as simulation results suggest that the Gaussian

approximation is more accurate on the log scale. We therefore propose the confidence intervalξ̃τn exp
zα/2

√
V̂n(γ,R)

n(1− τn)

 , ξ̃τn exp

z1−α/2

√
V̂n(γ,R)

n(1− τn)

 , (B.4)

where ξ̃τn is the direct LAWS estimator, V̂n(γ,R) is the sample estimator in (B.3) and zα/2 and z1−α/2

are the (α/2) and (1 − α/2) standard normal quantiles, with α ∈ (0, 1). We call the estimator in (B.4)

the LAWS-D-H estimator, where D stands for dependent, when γ̂n = γ̂Hn , and the LAWS-D-E estimator

when γ̂n = γ̂En in Equation (B.3).

Finally, we recall that for i.i.d. data (Daouia et al. 2018) the asymptotic variance of the direct LAWS

estimator is V (γ,R) = 2γ3/(1− 2γ). In this case, an asymptotic (1− α)−confidence interval is[
ξ̃τn exp

(
zα/2

√
2γ̂3n/(1− 2γ̂n)

n(1− τn)

)
, ξ̃τn exp

(
z1−α/2

√
2γ̂3n/(1− 2γ̂n)

n(1− τn)

)]
.

We call this the LAWS-IID-H(E) confidence interval, depending on whether γ̂Hn or γ̂En is used.
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B.2 Finite-sample performance of point and interval expectile estimation

at intermediate levels

Here we analyse the finite-sample performance of the direct LAWS estimator proposed in Section 3.1∗ and

the confidence interval discussed in Section B.1 by considering a selection of models that include those

of Section 7.1∗. We consider AR, ARMA, ARCH and GARCH models. Specifically, we first consider the

AR(1) family Yt+1 = ϕYt+ εt+1, where the innovations εt are i.i.d. and have a Student-t distribution with

ν > 0 degrees of freedom. We choose

(i ) ϕ = 0.8, ν = 3;

(ii ) ϕ = 0.8, ν = 4.

These models exhibit fairly strong linear dependence. We then consider the ARMA(1,1) family Yt+1 =

ϕYt + εt+1 + θεt, where the innovations εt are i.i.d. and have a symmetric Pareto distribution with shape

parameter ζ > 0. We consider

(iii ) ϕ = 0.95, θ = 0.9, ζ = 3;

(iv ) ϕ = 0.95, θ = −0.6, ζ = 3;

(v ) ϕ = 0.95, θ = −0.9, ζ = 3;

(vi ) ϕ = 0.3, θ = 0.9, ζ = 3.

Strong linear dependence is present in the first two models and weaker linear dependence appears in the

second two models. We recall that for standard linear time series with a heavy-tailed innovation satisfying

the so-called tail balance condition, which is the case for models (i )-(vi ), the tail index of the time series

is equal to the tail index of its innovations. Thus the tail index in models (i )-(vi ) is always 1/3 except

in model (ii ), where it is 1/4. Finally, we consider the nonlinear GARCH(1,1) family Yt+1 = σt+1εt+1,

where σ2
t+1 = α0 + α1 Y

2
t + β σ2

t , and (εt) is a sequence of i.i.d. Gaussian innovations. We work on two

ARCH models and two proper GARCH models:

(vii ) α0 = 0.0001, α1 = 0.9, β = 0;

(viii ) α0 = 0.4, α1 = 0.6, β = 0;

(ix ) α0 = 0.0001, α1 = 0.4, β = 0.5;
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(x ) α0 = 0.1, α1 = 0.4, β = 0.4.

The marginal distribution FY is heavy-tailed in such ARCH/GARCH models, under suitable conditions,

see e.g., Chapter 8 of Embrechts et al. (1997). The actual value of the tail index, however, can only

be calculated numerically, for instance using Theorem 2.1 in Mikosch & Stărică (2000). The tail index

in models (vii )-(x ) is respectively approximately 0.434, 0.262, 0.302 and 0.239. In addition, these four

models feature quadratic serial dependence. The time series models (iii )-(vii ) and (ix ) have also been

investigated by Drees (2003).

Our goal is to investigate the behaviour of our estimators with respect to changes in the sample size n

and the intermediate level τn. Specifically, for each of the models (i )-(x ) we simulate 104 samples of size

n = 250×m, where 250 represents the number of trading days in a financial year, and m is the number of

years. To obtain realistic sample sizes, we take m = 10, 20, 30, 40. Then, we consider the intermediate

levels τn = 1− 1/
√
n ≈ 0.980, 0.986, 0.988, 0.990. For each simulated sample we compute an estimate of

ξτn and a confidence interval for it using the direct LAWS estimator ξ̃τn and direct LAWS-D-E confidence

interval in (B.4). Then, we compute a Monte Carlo approximation of the (actual) coverage probability

and of the bias and relative variance of ξ̃τn/ξτn − 1. The true value of ξτn is not explicit, but can be

estimated to a high degree of accuracy by direct Monte-Carlo averaging, via the use of Equation (1∗),

using 1000 samples of size 5× 107 from each time series model.

Details of the construction of our confidence intervals are as follows. The asymptotic variance V (γ,R)

in (B.1) is estimated with the estimator V̂n(γ,R) in (B.3) obtained using big and small blocks of sizes

rn = blog2(n)c and ln = bC log nc, respectively, for suitable values of the constant C > 0 (these are

inspired by the conditions of Theorem 3.1∗). The constant C is chosen such that ln is greater than or

equal to a lag after which the value of the sample autocorrelation is small, e.g., smaller than 0.1. To select

µ, we recall that from simulations it appears that with small and moderate sample sizes the tail index

can be severely underestimated when the data show strong serial dependence. We therefore compute the

sample autocorrelation, and if it is smaller than 0.1 before the 25th lag we decide that the data show

mild or weak serial dependence and set µ = 2 if γ̂n ≤ 1/5 (light heavy tail), µ = 1 if 1/5 < γ̂n ≤ 1/3

(moderate heavy tail) and finally µ = 1/2 if γ̂n > 1/3 (very heavy tail). Otherwise, if the lag 25 sample

autocorrelation exceeds 0.1 we decide that the data show strong serial dependence and set µ = 2 if

γ̂n ≤ 1/8, µ = 1 if 1/8 < γ̂n ≤ 1/5 and µ = 1/2 if γ̂n > 1/5. This may yield an inconsistent estimator of

the asymptotic variance, but for our sample sizes this procedure seems to work reasonably well.

Tables B.2 (for γ̂n = γ̂En ) and B.3 (for γ̂n = γ̂Hn ) present the simulation results. According to
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Model τn = 0.980 τn = 0.986 τn = 0.988 τn = 0.990

(i ) 2.666 [2.661, 2.671] 2.974 [2.968, 2.980] 3.165 [3.157, 3.172] 3.305 [3.297, 3.312]

(ii ) 2.160 [2.158, 2.163] 2.373 [2.370, 2.376] 2.500 [2.497, 2.503] 2.591 [2.588, 2.594]

(iii ) 4.821 [4.811, 4.832] 5.247 [5.235, 5.259] 5.496 [5.483, 5.509] 5.675 [5.660, 5.688]

(iv ) 1.190 [1.187, 1.192] 1.297 [1.294, 1.299] 1.360 [1.358, 1.363] 1.406 [1.403, 1.409]

(v ) 0.726 [0.725, 0.727] 0.816 [0.815, 0.817] 0.873 [0.872, 0.874] 0.916 [0.914, 0.917]

(vi ) 3.737 [3.734, 3.741] 4.108 [4.103, 4.112] 4.342 [4.336, 4.347] 4.516 [4.510, 4.523]

(vii ) 0.043 [0.043, 0.044] 0.051 [0.050, 0.051] 0.056 [0.055, 0.056] 0.060 [0.059, 0.060]

(viii ) 1.566 [1.565, 1.568] 1.752 [1.750, 1.754] 1.867 [1.864, 1.869] 1.951 [1.949, 1.954]

(ix ) 0.050 [0.050, 0.050] 0.057 [0.057, 0.057] 0.061 [0.061, 0.061] 0.064 [0.064, 0.064]

(x ) 1.103 [1.102, 1.105] 1.227 [1.226, 1.229] 1.303 [1.301, 1.305] 1.359 [1.357, 1.361]

Table B.1: Approximate values for the expectile ξτn obtained with the models (i )-(x ), with 95% confidence

intervals in brackets.

the asymptotic theory of Theorem 3.1∗, the variance and bias terms globally decrease as the sample

size increases, with variations due to the dependence structure and the heavy-tail framework. When

estimating γ using γ̂n = γ̂En , the coverage probabilities of our confidence intervals are satisfactory, with

coverage around 85% in the worst case. The LAWS-D-E confidence interval also tends to perform better

than its LAWS-D-H counterpart, as a comparison of Tables B.2 and B.3 shows. However, the results

obtained with the AR(1) and ARMA(1,1) models (i )-(iv ) indicate that the confidence intervals have a

coverage probability that is too low in the presence of strong linear dependence. Similarly, the results

for the ARCH(1) model (vii ) and GARCH(1,1) model (ix ) suggest that the intervals can also have a

low coverage probability when the tail of the marginal distribution is quite heavy; recall that γ ≈ 0.432

and 0.302 with these models. Although not perfect, our intervals take into account the serial dependence

in the data and improve considerably on those rooted in i.i.d. theory, whose coverage probabilities are

reported between brackets in Tables B.2 and B.3.

Finally, we repeated the first simulation experiment of this section but kept the sample size fixed in

order to verify the robustness of our inferential procedure with respect to the violation of the condition

n(1 − τn) → ∞. For each of the time series models (i )-(x ) we simulated 104 samples of size n = 2500

and considered the intermediate levels τ = 0.980, 0.986, 0.988, 0.990. The rest of the simulation settings
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m Model Bias Std dev Cov prob Model Bias Std dev Cov prob

10 (i ) 0.986 1.487 86.7 (64.1) (vi ) 1.282 0.810 95.8 (77.5)

20 1.966 1.322 90.1 (62.7) 0.384 0.653 96.6 (78.3)

30 0.393 1.157 91.0 (63.8) 1.373 0.652 96.5 (77.6)

40 4.172 1.556 92.4 (63.0) 0.569 0.576 97.5 (78.3)

10 (ii ) 0.237 0.844 88.8 (66.4) (vii ) 61.458 56.798 87.6 (65.9)

20 0.180 0.629 92.7 (67.2) 18.135 2.911 89.9 (68.0)

30 0.041 0.539 93.6 (67.4) 9.866 2.399 91.3 (69.0)

40 0.001 0.454 94.9 (66.6) 16.809 3.234 91.5 (69.7)

10 (iii ) 9.235 1.766 86.2 (33.6) (viii ) 0.611 0.974 95.0 (87.3)

20 1.611 1.553 87.2 (35.2) 0.110 0.640 95.3 (87.1)

30 0.003 1.229 88.8 (34.5) 0.120 0.603 95.9 (86.6)

40 0.178 1.176 88.4 (35.6) 0.021 0.502 96.4 (85.7)

10 (iv ) 2.172 1.440 87.2 (43.7) (ix ) 4.932 2.243 84.9 (70.0)

20 0.111 1.395 90.5 (44.2) 1.314 1.334 87.0 (69.9)

30 0.441 0.930 90.6 (44.7) 0.841 1.309 88.7 (68.7)

40 0.113 0.845 91.2 (45.2) 1.372 1.374 89.6 (68.0)

10 (v ) 0.633 0.878 95.0 (88.5) (x ) 0.494 1.074 92.6 (81.1)

20 0.106 0.624 95.4 (91.4) 0.086 0.683 93.8 (79.2)

30 0.016 0.590 96.9 (92.7) 0.001 0.576 94.9 (77.8)

40 0.076 0.546 97.0 (91.8) 0.046 0.514 95.4 (78.2)

Table B.2: Monte-Carlo simulations: bias ×105 and standard deviation ×10 of the relative estimator

(ξ̃τn/ξτn −1) and coverage probability (in %) for the estimator in (B.4), with 95% nominal level, obtained

with sample size n = 250×m, and estimating the tail index with γ̂En . The brackets contain the empirical

coverage of the corresponding LAWS-IID-E interval.

remained unchanged.

Table B.4 collects the results, which remain satisfactory overall, leading to conclusions similar to those

of the first experiment: the results deteriorate when the tail of the marginal distribution is heavier or
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m Model Coverage Model Coverage

10 (i ) 83.0 (58.9) (vi ) 91.9 (79.5)

20 87.3 (61.2) 95.1 (80.8)

30 89.9 (61.6) 96.1 (80.3)

40 90.9 (61.9) 96.9 (80.6)

10 (ii ) 75.2 (52.9) (vii ) 86.4 (57.7)

20 77.0 (55.0) 89.4 (61.8)

30 78.7 (56.7) 90.4 (63.8)

40 79.3 (57.8) 91.9 (65.4)

10 (iii ) 62.7 (20.9) (viii ) 93.8 (82.8)

20 69.6 (22.4) 94.6 (82.8)

30 73.3 (24.5) 95.8 (83.1)

40 75.4 (25.3) 95.7 (82.4)

10 (iv ) 74.5 (32.0) (ix ) 83.6 (65.6)

20 81.0 (36.6) 86.7 (66.9)

30 85.0 (39.7) 87.7 (67.7)

40 86.6 (40.7) 88.6 (67.2)

10 (v ) 94.7 (88.9) (x ) 89.7 (73.6)

20 96.4 (90.7) 91.9 (73.6)

30 97.1 (91.9) 92.8 (73.6)

40 97.4 (92.5) 94.2 (72.6)

Table B.3: Empirical coverages (%) of the interval (B.4) with α = 0.05 when n = 250 ×m and the tail

index is estimated by γ̂Hn . The brackets contain the empirical coverages of the corresponding LAWS-IID-

H interval.

the serial dependence is stronger. In contrast to the previous simulation results, here they also slightly

deteriorate with increasing intermediate levels because expectile estimation is increasingly challenging as

the intermediate level grows. Similar conclusions hold for the coverage probabilities.
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τ Model Bias Std dev Cov Prob Model Bias Std dev Cov Prob

0.980 (i ) 2.992 1.965 87.1 (64.0) (vi ) 0.886 0.759 95.4 (77.5)

0.986 2.296 1.933 85.6 (65.3) 3.580 1.067 93.4 (78.3)

0.988 4.017 1.927 83.6 (65.6) 4.465 1.145 92.3 (78.5)

0.990 11.161 2.623 82.3 (64.9) 3.568 1.214 90.5 (78.8)

0.980 (ii ) 0.753 0.840 89.1 (66.1) (vii ) 0.036 3.483 87.9 (65.9)

0.986 0.304 0.973 88.9 (67.4) 0.091 4.247 84.0 (64.4)

0.988 0.007 0.998 88.1 (67.4) 0.013 4.871 82.1 (63.8)

0.990 0.007 1.008 84.2 (67.5) 0.146 7.865 79.4 (62.0)

0.980 (iii ) 6.096 1.908 85.3 (34.4) (viii ) 0.221 0.838 94.5 (87.6)

0.986 3.230 2.073 80.4 (35.3) 0.222 1.143 93.8 (86.7)

0.988 3.786 2.107 77.4 (36.1) 0.137 1.000 93.6 (86.6)

0.990 13.853 1.978 74.5 (35.2) 0.259 1.148 92.7 (85.7)

0.980 (iv ) 1.942 1.448 86.5 (42.9) (ix ) 0.010 1.694 84.6 (69.5)

0.986 1.353 1.728 83.3 (44.2) 0.010 2.075 82.2 (69.0)

0.988 2.166 1.597 81.6 (46.5) 0.010 2.933 80.4 (67.8)

0.990 0.727 1.685 79.9 (49.4) 0.020 2.362 79.7 (67.8)

0.980 (v ) 0.071 0.768 94.7 (88.9) (x ) 0.002 0.852 92.8 (80.3)

0.986 0.338 0.931 94.8 (89.7) 0.726 1.035 91.0 (79.8)

0.988 0.299 0.967 94.7 (90.1) 2.351 1.051 90.6 (79.9)

0.990 2.672 1.188 94.3 (89.6) 1.044 1.103 90.4 (80.0)

Table B.4: Monte-Carlo simulations: bias ×105 and standard deviation ×10 of the relative estimator

(ξ̃τn/ξτn −1) and coverage probability (in %) for the estimator in (B.4), with 95% nominal level, obtained

with sample size n = 2500, and estimating the tail index with γ̂En . Next to the coverage probability, we

report (between brackets) the coverage probability obtained using the LAWS-IID-E interval.
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B.3 Further results

We provide approximate values of the true expectiles at level τ ′n and QMESX,αn
(the latter used in

Section 7.2∗) in Table B.5 and graphs of non-coverage probabilities of our confidence intervals in models

(i )-(x ) at the extreme levels 0.9995 and 0.9999 in Figures B.1, B.2 and B.3. The models (a), (b), (c)

and (d) considered in the main paper respectively correspond to models (i ), (iii ), (viii ) and (x ) of this

document. We also report graphs of tail index estimates for our real data illustrations in Figures B.4

and B.5.
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Model τ ′n = 0.9995 τ ′n = 0.9999

(i ) 8.120 [ 8.032, 8.219] 13.612 [13.253, 14.017]

(ii ) 5.002 [ 4.978, 5.027] 7.152 [ 7.068, 7.238]

(iii ) 10.290 [10.130, 10.461] 15.836 [15.140, 16.778]

(iv ) 2.882 [ 2.845, 2.927] 4.722 [ 4.588, 4.911]

(v ) 2.482 [ 2.468, 2.496] 4.240 [ 4.186, 4.303]

(vi ) 10.955 [10.866, 11.044] 18.388 [18.057, 18.767]

(vii ) 0.222 [ 0.217, 0.229] 0.447 [ 0.428, 0.473]

(viii ) 4.546 [ 4.521, 4.571] 6.984 [ 6.903, 7.064]

(ix ) 0.164 [ 0.163, 0.166] 0.269 [ 0.262, 0.276]

(x ) 2.978 [ 2.963, 2.994] 4.419 [ 4.372, 4.469]

Model τ ′n(αn) = 0.9995 τ ′n(αn) = 0.9999

(e) 9.674 [ 9.553, 9.823] 16.479 [15.988, 17.078]

(f) 13.137 [12.967, 13.346] 21.188 [20.262, 22.418]

(g) 6.101 [ 5.991, 6.226] 8.543 [ 8.166, 8.925]

(h) 6.887 [ 6.772, 7.022] 10.628 [10.217, 11.153]

Table B.5: Top: Approximate values for the expectile ξτ ′n obtained with the time series models (i )-(x ),

with 95% confidence intervals between brackets. Results obtained from Equation (1∗) by Monte-Carlo

averaging, using 1000 samples of size 5× 107 from each model. Models (a), (b), (c) and (d) considered in

Section 7.1∗ of the main paper respectively correspond to models (i ), (iii ), (viii ) and (x ) here. Bottom:

Approximate values for the marginal expected shortfall QMESX,αn
for the models (e), (f), (g) and (h)

considered in Section 7.2∗. Results obtained from Equation (4∗) by Monte–Carlo averaging, using 1000

samples of size 5× 107 from each model.
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Figure B.4: Tail index estimation for the financial data in Section 8.1∗ and the two banks in Section 8.2∗,

showing point estimates of γ obtained with the Hill (blue dashed line), ML (green dotted line) and

MB (black solid line) estimators. Top row: S&P 500 and Dow Jones Industrial Average, bottom row:

Goldman Sachs and Morgan Stanley.
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Figure B.5: Complement to the financial data analysis in Section 8.2∗. Left panel: Daily log-returns of

the aggregated market index. Right panel: Point estimates of the tail index γY of these daily log-returns

obtained with the Hill (blue dashed line), ML (green dotted line) and MB (black solid line) estimators.
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C Proofs

We first state a couple of facts that will be used multiple times in our proofs. If Z, a random variable

having survival function F and tail quantile function U , is heavy-tailed with tail index γ, and if τn ↑ 1

and zn → ∞ as n→ ∞, then the convergences

F (zn)

1− τn
→ z ∈ (0,∞) and zn

U((1− τn)−1)
→ z−γ, as n→ ∞,

are equivalent. This local inversion property is a consequence of Definition B.1.8 and Proposition B.1.9.10

(pp. 366–367) in de Haan & Ferreira (2006). In particular, if E|Z−| <∞ and γ < 1, then high expectiles

ξτn of Z are well-defined and satisfy

F (ξτn)

1− τn
→ γ−1 − 1 and ξτn

U((1− τn)−1)
→ (γ−1 − 1)−γ as n→ ∞.

See for instance Proposition 1 in Daouia et al. (2019) in the case p = 2 (with the notation therein). In

what follows, this will be referred to as the asymptotic proportionality of expectiles and quantiles.

Lemma C.1 establishes the convergence of a rescaled multivariate exceedance probability (above high

thresholds) to the tail copula. It is a stronger version of Lemma 5 in Stupfler (2019).

Lemma C.1. Assume that X1, . . . , Xd are heavy-tailed random variables with continuous distribution

functions F1, . . . , Fd, tail quantile functions U1, . . . , Ud and tail indices γ1, . . . , γd. Suppose that there is a

function R on [0,∞]d \ {(∞, . . . ,∞)} such that

∀(x1, . . . , xd) ∈ [0,∞]d \ {(∞, . . . ,∞)}, lim
s→∞

sP
(
F j(Xj) ≤

xj
s
, 1 ≤ j ≤ d

)
= R(x1, . . . , xd).

Let τn ↑ 1 and aj,n, 1 ≤ j ≤ d be sequences such that aj,n/Uj((1− τn)
−1) → aj ∈ (0,∞) as n→ ∞. Then

for any x1, . . . , xd > 0,

1

1− τn
P (Xj > aj,nxj, 1 ≤ j ≤ d) → R

(
a
−1/γ1
1 x

−1/γ1
1 , . . . , a

−1/γd
d x

−1/γd
d

)
as n→ ∞.

Proof of Lemma C.1. Pick x1, . . . , xd > 0. By continuity of the Fj,

lim
s→∞

sP (Xj > Uj(s/xj), 1 ≤ j ≤ d) = R(x1, . . . , xd).

Now pick an arbitrary ε ∈ (0, 1). The regular variation of Uj yields

aj,nxj
Uj((1− ε)(ajxj)1/γj(1− τn)−1)

→ (1− ε)−γj > 1.
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We therefore find, for n large enough, that

P (Xj > aj,nxj, 1 ≤ j ≤ d) ≤ P
(
Xj > Uj((1− ε)(ajxj)

1/γj(1− τn)
−1), 1 ≤ j ≤ d

)
.

By 1-homogeneity of R (a direct consequence of its definition), this yields

lim sup
n→∞

1

1− τn
P (Xj > aj,nxj, 1 ≤ j ≤ d) ≤ (1− ε)−1R

(
a
−1/γ1
1 x

−1/γ1
1 , . . . , a

−1/γd
d x

−1/γd
d

)
with an analogous lower bound for the limit inferior with ε replaced by −ε. Letting ε ↓ 0 completes the

proof.

Lemma C.2 is important for the calculation of the asymptotic variance in Theorem 3.1∗.

Lemma C.2. Assume that Conditions A∗, B(ii)∗ and B(iii)∗ are satisfied. Let rn → ∞ and τn ↑ 1 be

such that rn(1− τn) → 0 and n(1− τn) → ∞ as n→ ∞. Then, if sn → ∞ is a sequence of integers such

that sn = O(rn), we have, as n→ ∞,

Var

(
1√

sn(1− τn)

sn∑
t=1

[1{Yt > ξτn} − P(Y1 > ξτn)]

)
→ (γ−1 − 1)

(
1 + 2

∞∑
t=1

Rt(1, 1)

)
<∞.

If moreover 0 < γ < 1/2, then we also have, as n→ ∞,

Var

(
1√

sn(1− τn)

sn∑
t=1

1

ξτn
[(Yt − ξτn)1{Yt > ξτn} − E((Y1 − ξτn)1{Y1 > ξτn})]

)

→ 2γ

1− 2γ
+ 2(γ−1 − 1)

∫∫
[1,∞)2

∞∑
t=1

Rt(x
−1/γ , y−1/γ) dx dy <∞.

Proof of Lemma C.2. We only prove the second convergence result; the proof of the first uses the same

ideas but is much simpler. By stationarity of (Yt),

Var

(
1√

sn(1− τn)

sn∑
t=1

1

ξτn
[(Yt − ξτn)1{Yt > ξτn} − E((Y1 − ξτn)1{Y1 > ξτn})]

)
=

1

(1− τn)ξ2τn
Var((Y1 − ξτn)1{Y1 > ξτn})−

sn − 1

(1− τn)ξ2τn
[E((Y1 − ξτn)1{Y1 > ξτn})]

2

+
2

sn(1− τn)ξ2τn

sn−1∑
t=1

(sn − t)E((Y1 − ξτn)(Yt+1 − ξτn)1{Y1 > ξτn , Yt+1 > ξτn}). (C.5)

Equation (B.11) in the proof of Lemma 4 in Daouia et al. (2018), applied for both a = 1 and 2, yields

1

(1− τn)ξ2τn
Var((Y1 − ξτn)1{Y1 > ξτn})−

sn − 1

(1− τn)ξ2τn
[E((Y1 − ξτn)1{Y1 > ξτn})]

2

=
2γ

1− 2γ
+ o(1). (C.6)
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We now concentrate on the sum in (C.5). An integration by parts and a change of variables provide

2

sn(1− τn)ξ2τn

sn−1∑
t=1

(sn − t)E((Y1 − ξτn)(Yt+1 − ξτn)1{Y1 > ξτn , Yt+1 > ξτn})

= 2
∞∑
t=1

sn − t

sn

∫∫
[1,∞)2

1

1− τn
P (Y1 > ξτnx, Yt+1 > ξτny) dx dy 1{t < sn}. (C.7)

From the asymptotic proportionality of expectiles and quantiles, Condition B(ii)∗ and Lemma C.1,

sn − t

sn

1

1− τn
P (Y1 > ξτnx, Yt+1 > ξτny)1{t < sn} → (γ−1 − 1)Rt

(
x−1/γ , y−1/γ

)
(C.8)

as n → ∞, pointwise in x, y ≥ 1 for any positive integer t. We then swap limit and sum of integrals

in (C.7), noting that, by continuity of F , Potter bounds (see Proposition B.1.9.5 in de Haan & Ferreira

2006), Condition B(iii)∗ and the asymptotic proportionality of expectiles and quantiles, we have, for any

ε > 0,

sn − t

sn

1

1− τn
P (Y1 > ξτnx, Yt+1 > ξτny)1{t < sn}

≤ 1

1− τn
P
(
F (Y1) ≤ Cx−1/γ+2εF (ξτn), F (Yt+1) ≤ Cy−1/γ+2εF (ξτn)

)
1{t < sn}

≤ C
F (ξτn)

1− τn

(
ρ(t)x−1/2γ+εy−1/2γ+ε + F (ξτn)x

−1/γ+2εy−1/γ+2ε
)
1{t < sn}

≤ C
(
ρ(t)x−1/2γ+εy−1/2γ+ε + (1− τn)x

−1/γ+2εy−1/γ+2ε
)
1{t < sn} (C.9)

for n large enough, irrespective of the values of the positive integer t and x, y ≥ 1; here C is an unimportant

positive constant whose value may change from one line to the next. Now choose ε such that (1+ε)2γ < 1

(which is possible since γ < 1/2). The upper bound satisfies

(
ρ(t)x−1/2γ+εy−1/2γ+ε + (1− τn)x

−1/γ+2εy−1/γ+2ε
)
1{t < sn} → ρ(t)x−1/2γ+εy−1/2γ+ε, (C.10)

as n → ∞, pointwise in t, x, y. The functions u 7→ u−1/2γ+ε and u 7→ u−1/γ+2ε are both integrable on

[1,∞)2, so
∞∑
t=1

∫∫
[1,∞)2

(
ρ(t)x−1/2γ+εy−1/2γ+ε + (1− τn)x

−1/γ+2εy−1/γ+2ε
)
dx dy1{t < sn}

→
∞∑
t=1

∫∫
[1,∞)2

ρ(t)x−1/2γ+εy−1/2γ+ε dx dy <∞, (C.11)
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as n→ ∞, by splitting the sum and using the convergence sn(1− τn) → 0. A combination of Theorem 1

in Pratt (1960) with (C.7), (C.8), (C.9), (C.10), (C.11) and the Tonelli theorem yields, as n→ ∞,

2

sn(1− τn)ξ2τn

sn−1∑
t=1

(sn − t)E((Y1 − ξτn)(Yt+1 − ξτn)1{Y1 > ξτn , Yt+1 > ξτn})

→ 2(γ−1 − 1)
∞∑
t=1

∫∫
[1,∞)2

Rt

(
x−1/γ , y−1/γ

)
dx dy. (C.12)

Combining (C.5), (C.6) and (C.12) completes the proof.

Proof of Theorem 3.1∗. Define a convex function ψn by

ψn(u) :=
1

2ξ2τn

n∑
t=1

[
ητn

(
Yt − ξτn − u ξτn√

n(1− τn)

)
− ητn(Yt − ξτn)

]

and define φτ (y) = |τ − 1{y ≤ 0}| y. Use (B.12) in the proof of Theorem 2 in Daouia et al. (2018) (a

purely analytical step that is not impacted by the time series context) to find

√
n(1− τn)

(
ξ̃τn
ξτn

− 1

)
= argmin

u∈R
ψn(u) = argmin

u∈R
{−uT1,n + T2,n(u)} (C.13)

with T1,n :=
1√

n(1− τn)

n∑
t=1

1

ξτn
φτn(Yt − ξτn)

and T2,n(u) := − 1

ξ2τn

n∑
t=1

∫ uξτn/
√

n(1−τn)

0

(φτn(Yt − ξτn − z)− φτn(Yt − ξτn)) dz.

We concentrate on T1,n first. Use the identities E(φτn(Y1 − ξτn)) = 0 and φτn(x) = (1 − τn)x + (2τn −

1)x1{x > 0} to write

T1,n =
1√

n(1− τn)

n∑
t=1

1− τn
ξτn

[Yt − E(Y1)]

+
2τn − 1√
n(1− τn)

n∑
t=1

1

ξτn
[(Yt − ξτn)1{Yt > ξτn} − E((Y1 − ξτn)1{Y1 > ξτn})]

=: T
(1)
1,n + (2τn − 1)T

(2)
1,n . (C.14)

We analyse the convergences of T (1)
1,n and T

(2)
1,n separately. Note that T (1)

1,n is centred and satisfies, by

stationarity of (Yt),

Var(T
(1)
1,n) =

(1− τn)

ξ2τn

(
Var(Y1) + 2

∞∑
l=1

n− l

n
Cov(Y1, Yl+1)1{l < n}

)
.
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Our assumptions ensure that E|Y1|2+δ < ∞. Using Lemma 1.3 in Ibragimov (1962), we can find a finite

constant C such that |Cov(Y1, Yl+1)| ≤ C[α(l)]δ/(2+δ). Therefore, by the dominated convergence theorem,

one obtains, as n→ ∞,
∞∑
l=1

n− l

n
Cov(Y1, Yl+1)1{l < n} →

∞∑
l=1

Cov(Y1, Yl+1) <∞

and in particular Var(T
(1)
1,n) = O((1− τn)/ξ

2
τn) → 0 as n→ ∞. From this we conclude that

T
(1)
1,n

P−→ 0. (C.15)

We now focus on the term T
(2)
1,n . To analyse its convergence, we use Theorem 4.1 in Rootzén et al. (1998),

which is a central limit theorem for tail array sums. We first check the assumptions of this theorem.

Recall, for i < j, the notation Fi,j = σ(Yi, Yi+1, . . . , Yj) and note that for any n ≥ 2 and l < n,

αn(l) := sup{|P(A ∩ B)− P(A)P(B)|, A ∈ F1,k, B ∈ Fk+l,n, 1 ≤ k ≤ n− l} ≤ α(l).

Consequently, in the terminology of Rootzén et al. (1998), the time series (Yt, t ≥ 1) is strongly mixing

(αn(l), ln). Let further, for any positive sequence of integers (sn) converging to infinity and such that

sn ≤ rn,

σ2
sn := Var

(
1√

n(1− τn)

sn∑
t=1

1

ξτn
[(Yt − ξτn)1{Yt > ξτn} − E((Y1 − ξτn)1{Y1 > ξτn})]

)
and set

Ψn(x) :=

√
rn
nσ2

rn

1√
n(1− τn)

1

ξτn
[x1{x > 0} − E((Y1 − ξτn)1{Y1 > ξτn})].

With this notation,

T
(2)
1,n =

√
nσ2

rn

rn

n∑
t=1

Ψn(Yt − ξτn) =:

√
nσ2

rn

rn
T

(3)
1,n ,

where T (3)
1,n is, in the terminology of Rootzén et al. (1998), a tail array sum satisfying the so-called basic

assumptions of Section 2 therein. Furthermore

E(Ψn(Y1 − ξτn)) = 0 and Var

(
rn∑
t=1

Ψn(Yt − ξτn)

)
=
rn
n

by definition of Ψn and σ2
rn . Besides, by Lemma C.2 and for any sequence (sn) converging to infinity

such that sn ≤ rn,

nσ2
sn

sn
→ 2γ

1− 2γ
+ 2(γ−1 − 1)

∫∫
[1,∞)2

∞∑
t=1

Rt

(
x−1/γ , y−1/γ

)
dx dy <∞ as n→ ∞. (C.16)
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Consequently, as n→ ∞,

n

rn
Var

(
sn∑
t=1

Ψn(Yt − ξτn)

)
=
sn
rn

×
nσ2

sn/sn

nσ2
rn/rn

= O

(
sn
rn

)
.

Recalling that ln/rn → 0 and rn/n→ 0 as n→ ∞, we find that assumption (2.3) of Rootzén et al. (1998)

is satisfied. Note finally that, letting Zn,1 :=
∑rn

t=1 Ψn(Yt − ξτn), we have, for any ε > 0,

n

rn
E(Z2

n,11{|Zn,1| > ε}) ≤ ε−δ × n

rn
E|Zn,1|2+δ = O

(
n r1+δ

n E|Ψn(Y1 − ξτn)|2+δ
)

by Hölder’s inequality. Combining Equation (B.11) in the proof of Lemma 4 in Daouia et al. (2018) with

our Equation (C.16) and Hölder’s inequality again, we find

n

rn
E(Z2

n,11{|Zn,1| > ε}) = O

rn [ rn√
n(1− τn)

]δ→ 0 as n→ ∞.

Theorem 4.1 in Rootzén et al. (1998) then entails T (3)
1,n

d−→ N(0, 1), or equivalently, by (C.16) and

Slutsky’s lemma,

(2τn − 1)T
(2)
1,n

d−→

√√√√ 2γ

1− 2γ
+ 2(γ−1 − 1)

∫∫
[1,∞)2

∞∑
t=1

Rt (x−1/γ , y−1/γ) dx dy × Z, (C.17)

where Z has a standard Gaussian distribution. We now turn to the control of T2,n(u), which we rewrite

as

T2,n(u) = T3,n(u)−
n

ξ2τn

∫ uξτn/
√

n(1−τn)

0

[E(φτn(Y1 − ξτn − z))− E(φτn(Y1 − ξτn))] dz.

The second term on the right-hand side is purely deterministic, so it can be controlled just as in the

i.i.d. case. By Equation (B.19) in the proof of Theorem 2 in Daouia et al. (2018),

T2,n(u) =
u2

2γ
(1 + o(1)) + T3,n(u), (C.18)

with T3,n(u) := − 1

ξ2τn

n∑
t=1

∫ uξτn/
√

n(1−τn)

0

[Sn,t(ξτn + z)− Sn,t(ξτn)] dz,

where Sn,t(v) := φτn(Yt − v)− E(φτn(Y1 − v)). We finally control T3,n(u). By Lemma 3 in Daouia et al.

(2018), one has

− [Sn,t(ξτn + z)− Sn,t(ξτn)] = [|τn − 1{Yt ≤ ξτn}| − E|τn − 1{Yt ≤ ξτn}|] z

+ (2τn − 1)(Yt − ξτn − z)(1{Yt ≤ ξτn + z} − 1{Yt ≤ ξτn})

− (2τn − 1)E[(Yt − ξτn − z)(1{Yt ≤ ξτn + z} − 1{Yt ≤ ξτn})].
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Noting that 1{Yt ≤ ξτn + z}−1{Yt ≤ ξτn} = 1{z ≥ Yt− ξτn , Yt > ξτn} if z > 0 and −1{z < Yt− ξτn , Yt ≤

ξτn} otherwise, straightforward calculations entail

T3,n(u) = (2τn − 1)
u2

2
× 1

n(1− τn)

n∑
t=1

[1{Yt > ξτn} − P(Y1 > ξτn)]

− 2τn − 1

2ξ2τn


n∑

t=1

(
Yt − ξτn − uξτn√

n(1− τn)

)2

[1{Yt ≤ ξτn + u ξτn/
√
n(1− τn)} − 1{Yt ≤ ξτn}]

− nE

(Y1 − ξτn − u ξτn√
n(1− τn)

)2

[1{Y1 ≤ ξτn + u ξτn/
√
n(1− τn)} − 1{Y1 ≤ ξτn}]

. (C.19)

The sum
1

n(1− τn)

n∑
t=1

[1{Yt > ξτn} − P(Y1 > ξτn)]

is again a centred tail array sum in the terminology of Rootzén et al. (1998) and satisfies the basic

assumptions of Section 2 therein. Lemma C.2 entails that, for any sequence (sn) of integers tending to

infinity with sn = O(rn), we have

n

sn
Var

(
1

n(1− τn)

sn∑
t=1

[1{Yt > ξτn} − P(Y1 > ξτn)]

)
= O

(
1

n(1− τn)

)
→ 0

as n → ∞. This tail array sum thus satisfies the assumptions of Corollary 2.2 of Rootzén et al. (1998),

and by choosing sn = rn we find that this result implies

1

n(1− τn)

n∑
t=1

[1{Yt > ξτn} − P(Y1 > ξτn)]
P−→ 0. (C.20)

Finally

n

ξ2τn
E

∣∣∣∣∣∣
(
Y1 − ξτn − u ξτn√

n(1− τn)

)2

[1{Y1 ≤ ξτn + u ξτn/
√
n(1− τn)} − 1{Y1 ≤ ξτn}]

∣∣∣∣∣∣
≤ u2

1− τn

[
P(Y1 > ξτn − |u|ξτn/

√
n(1− τn))− P(Y1 > ξτn + |u|ξτn/

√
n(1− τn))

]
= O

(
P(Y1 > ξτn [1− |u|/

√
n(1− τn)])

P(Y1 > ξτn)
−

P(Y1 > ξτn [1 + |u|/
√
n(1− τn)])

P(Y1 > ξτn)

)
by asymptotic proportionality of expectiles and quantiles. Proposition B.1.10 in de Haan & Ferreira

(2006) implies that for all un → ∞ and εn → 0, P(Y1 > un[1 + εn])/P(Y1 > un) → 1 as n→ ∞, giving

n

ξ2τn
E

∣∣∣∣∣∣
(
Y1 − ξτn − u ξτn√

n(1− τn)

)2

[1{Y1 ≤ ξτn + u ξτn/
√
n(1− τn)} − 1{Y1 ≤ ξτn}]

∣∣∣∣∣∣ = o(1). (C.21)
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Consequently

1

ξ2τn
E

∣∣∣∣∣∣
n∑

t=1

(
Yt − ξτn − u ξτn√

n(1− τn)

)2

[1{Yt ≤ ξτn + u ξτn/
√
n(1− τn)} − 1{Yt ≤ ξτn}]

∣∣∣∣∣∣ = o(1). (C.22)

Combining (C.19), (C.20), (C.21) and (C.22) entails

T3,n(u)
P−→ 0. (C.23)

We finally combine (C.13), (C.14), (C.15), (C.17), (C.18) and (C.23) with Theorem 5 in Knight (1999)

to get

√
n(1− τn)

(
ξ̃τn
ξτn

− 1

)

d−→ argmin
u∈R

−u

√√√√ 2γ

1− 2γ
+ 2(γ−1 − 1)

∫∫
[1,∞)2

∞∑
t=1

Rt (x−1/γ , y−1/γ) dx dy × Z +
u2

2γ


=

√√√√ 2γ3

1− 2γ
+ 2γ(1− γ)

∫∫
[1,∞)2

∞∑
t=1

Rt (x−1/γ , y−1/γ) dx dy × Z.

The proof is complete.

Under Condition C∗ we now provide a high-level result that makes it possible to quantify the bias incurred

by using convergence (2∗). This and Theorem 3.3∗, are the key ingredients in the proof of Corollary 3.4∗.

Proposition C.3. Assume that E|Y−| < ∞ and Condition C∗ holds with 0 < γ < 1. Assume further

that τn ↑ 1 and n(1 − τn) → ∞ as n → ∞. Suppose also that there is a nondegenerate limiting random

pair (Γ,Θ) such that √
n(1− τn)

(
γ̂n − γ,

q̂τn
qτn

− 1

)
d−→ (Γ,Θ). (C.24)

If
√
n(1− τn)A((1− τn)

−1) → λ1 ∈ R and
√
n(1− τn)q

−1
τn → λ2 ∈ R as n→ ∞, then

√
n(1− τn)

(
ξ̂τn
ξτn

− 1

)
d−→ m(γ)Γ + Θ− λ

with m(γ) := (1− γ)−1 − log(γ−1 − 1) and

λ :=

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

)
λ1 + γ(γ−1 − 1)γE(Y )λ2.

This proposition makes no assumptions about the dependence within the time series (Yt) and, unlike the

related Theorem 1 in Daouia et al. (2018), does not require the distribution function F to be increasing.
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Proof of Proposition C.3. An inspection of the proof of Theorem 1 in Daouia et al. (2018) reveals

that (C.24) ensures the desired convergence (in particular, the independence assumption is unnecessary).

To see why the assumption that F be increasing can be dropped, apply Proposition 1(i) in Daouia et al.

(2020) rather than Corollary 1 in Daouia et al. (2018) to control the asymptotic bias of the estimator.

Proof of Theorem 3.3∗. We prove this result in two steps: we first consider the case s0 = 1 and we then

show the result for an arbitrary s0 > 0.

Step 1: the case s0 = 1. For any t ≥ 1, let Zt = 1/F (Yt). Since F is continuous, (Zt) is clearly a strictly

stationary time series whose marginal distribution is standard Pareto, i.e. with distribution function

G : z 7→ 1− z−1 on [1,∞). One readily checks that (Yt)
d
= (U(Zt)). Besides, (F (Yt)) = (1/Zt) = (G(Zt)),

and in particular the sequence (Zt) satisfies Conditions A∗ and B∗.

Define k = kn = n(1 − τn) and apply Theorem 2.1 of Drees (2003) to the sequence (Zt): there are

versions of the process (Zn−⌊ks⌋,n)s∈(0,1] such that

k

n
Zn−⌊ks⌋,n = s−1

(
1 +

1√
k
s−1W (s) + oP

(
s−1/2−ε

√
k

))
(C.25)

uniformly in s ∈ (0, 1], with W a centred Gaussian process having covariance function r as in the

statement of Theorem 3.3∗, and an arbitrarily small ε > 0. In particular, the increments W (t) −W (s)

are Gaussian centred with variance E[(W (t) −W (s))2] = r(t, t) − 2r(s, t) + r(s, s). Therefore, for any

integer p ≥ 2, there is a constant Cp > 0 with

∀s, t ∈ [0, 1], E[(W (t)−W (s))2p] = Cp(r(t, t)− 2r(s, t) + r(s, s))p.

It is then a straightforward consequence of Condition B(ii)∗ and B(iii)∗ that there is another constant

C ′
p > 0 such that

∀s, t ∈ [0, 1], E[(W (t)−W (s))2p] ≤ C ′
p|t− s|p.

Deduce from the Kolmogorov continuity criterion (see e.g. Theorem 2.1 p.26 of Revuz & Yor 2005) that W

has a (Hölder) continuous modification W̃ that satisfies, for any ε > 0, s−1/2+εW̃ (s) → 0 with probability

1 as s → 0. This modification W̃ is indistinguishable from W , in the sense of Definition 1.7 of Revuz &

Yor (2005, p.19), because W is necessarily left-continuous as a uniform limit of left-continuous processes

from (C.25), and so with probability 1 we can write W = W̃ . We do so in the sequel without further

mention. We remark also that (C.25) entails, uniformly in s ∈ [1/(2k), 1], ksZn−⌊ks⌋,n/n = OP(k
ε), and

especially Zn,n/n = OP(k
ε), for any arbitrarily small ε > 0.
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For a small fixed δ ∈ (0, 1/4), let sn(δ) = k−1+2δ. Then sn(δ) → 0 and [sn(δ)]
−1/2−δ/

√
k = k−2δ2 → 0

as n → ∞, which allows the use of Taylor expansions combined with (C.25) for ε = δ to get, uniformly

in s ∈ [sn(δ), 1], (
k

n
Zn−⌊ks⌋,n

)b

= s−b

(
1 +

b√
k
s−1W (s) + oP

(
s−1/2−δ

√
k

))
for any b 6= 0 (C.26)

and log

(
k

n
Zn−⌊ks⌋,n

)
= − log s+

1√
k
s−1W (s) + oP

(
s−1/2−δ

√
k

)
. (C.27)

Recall now that (Yn−⌊ks⌋,n)s∈(0,1] = (U(Zn−⌊ks⌋,n))s∈(0,1] and q1−k/n = U(n/k). Combining (C.26), the

uniform inequality on U stated in Theorem 2.3.9 of de Haan & Ferreira (2006, p.48) with (using the

notation therein) t = n/k and x = kZn−⌊ks⌋,n/n (so that tx = Zn−⌊ks⌋,n ≥ Zn−k,n → ∞ in probability,

by (C.25)), and the convergence s−1/2+δW (s) → 0 as s→ 0, we find, after straightforward calculations,

Yn−⌊ks⌋,n

q1−k/n

= s−γ

(
1 +

1√
k
γs−1W (s) +

s−ρ − 1

ρ
A(n/k) + oP

(
s−1/2−δ

√
k

))
uniformly in s ∈ [sn(δ), 1]. (C.28)

After that, note that Condition C∗ yields

∀x > 0, lim
s→∞

log((sx)−γU(sx))− log(s−γU(s))

A(s)
=
xρ − 1

ρ
. (C.29)

Combining (C.27), the uniform inequality on s 7→ log(s−γU(s)) resulting from Theorem B.2.18 in de Haan

& Ferreira (2006, p.383) with (using the notation therein) t = n/k and x = kZn−⌊ks⌋,n/n and carrying

out the same kind of calculations, we get

log
Yn−⌊ks⌋,n

q1−k/n

= −γ log s+ 1√
k
γs−1W (s) +

s−ρ − 1

ρ
A(n/k) + oP

(
s−1/2−δ

√
k

)
uniformly in s ∈ [sn(δ), 1]. (C.30)

To deal with the case s ∈ (0, sn(δ)), use the triangle inequality together with the convergence s−1/2+2δW (s) →

0 as s→ 0 and the assumption
√
kA(n/k) = O(1) to write

sup
0<s<sn(δ)

sγ+1/2+2δ

∣∣∣∣√k [Yn−⌊ks⌋,n

q1−k/n

− s−γ

]
− γs−γ−1W (s)− s−γ s

−ρ − 1

ρ

√
kA(n/k)

∣∣∣∣
≤

√
k [sn(δ)]

1/2+2δ

(
1 + sup

0<s<sn(δ)

sγ
Yn−⌊ks⌋,n

q1−k/n

)
+ oP(1). (C.31)
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Write then

sup
0<s<sn(δ)

sγ
Yn−⌊ks⌋,n

q1−k/n

d
= sup

0<s<sn(δ)

sγ
U(Zn−⌊ks⌋,n)

U(n/k)

= OP

(
sup

0<s<sn(δ)

(
ks

n
Zn−⌊ks⌋,n

)γ

max

[(
k

n
Zn−⌊ks⌋,n

)δ′

,

(
k

n
Zn−⌊ks⌋,n

)−δ′
])

by Potter bounds on the regularly varying function U (see e.g. Proposition B.1.9.5 in de Haan & Ferreira

2006), for an arbitrarily small δ′ > 0. Now

sup
0<s<sn(δ)

max

[(
k

n
Zn−⌊ks⌋,n

)δ′

,

(
k

n
Zn−⌊ks⌋,n

)−δ′
]
≤
(
k

n
Zn,n

)δ′

+

(
k

n
Zn−k,n

)−δ′

= OP(k
2δ′)

and

sup
0<s<sn(δ)

(
ks

n
Zn−⌊ks⌋,n

)γ

≤
(
Zn,n

n

)γ

+ sup
1/k≤s≤1

(
ks

n
Zn−⌊ks⌋,n

)γ

= OP(k
δ′).

Thus

sup
0<s<sn(δ)

sγ
Yn−⌊ks⌋,n

q1−k/n

= OP

(
k3δ

′
)

for an arbitrarily small δ′ > 0. Since
√
k [sn(δ)]

1/2+2δ = k−δ(1−4δ) → 0, choosing δ′ = δ(1− 4δ)/4 > 0 and

using (C.31) yields

sup
0<s<sn(δ)

sγ+1/2+2δ

∣∣∣∣√k [Yn−⌊ks⌋,n

q1−k/n

− s−γ

]
− γs−γ−1W (s)− s−γ s

−ρ − 1

ρ

√
kA(n/k)

∣∣∣∣ = oP(1). (C.32)

Combining (C.28) and (C.32) results in

Yn−⌊ks⌋,n

q1−k/n

= s−γ

(
1 +

1√
k
γs−1W (s) +

s−ρ − 1

ρ
A(n/k) + oP

(
s−1/2−2δ

√
k

))
uniformly in s ∈ (0, 1]. (C.33)

A similar argument based on a Potter bound for the (slowly varying) logarithm function gives

sup
0<s<sn(δ)

s1/2+2δ

∣∣∣∣√k [log Yn−⌊ks⌋,n

q1−k/n

+ γ log s

]
− γs−1W (s)− s−ρ − 1

ρ

√
kA(n/k)

∣∣∣∣ = oP(1). (C.34)

Combining (C.30) and (C.34) results in

log
Yn−⌊ks⌋,n

q1−k/n

= −γ log s+ 1√
k
γs−1W (s) +

s−ρ − 1

ρ
A(n/k) + oP

(
s−1/2−2δ

√
k

)
uniformly in s ∈ (0, 1]. (C.35)
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Equations (C.33) and (C.35) constitute the desired result since δ > 0 is arbitrarily small.

Step 2: the case of an arbitrary s0. We need only deal with the case when s0 ≥ 2 is a positive

integer. Let k0 = s0k and apply the result obtained in Step 1 for k = k0 to get, uniformly in s ∈ [0, 1],
q̂1−k0s/n

q1−k0/n

= s−γ

(
1 +

1√
k0
γs−1W (s) +

s−ρ − 1

ρ
A(n/k0) + oP

(
s−1/2−ε

√
k0

))
and log

q̂1−k0s/n

q1−k0/n

= −γ log s+ 1√
k0
γs−1W (s) +

s−ρ − 1

ρ
A(n/k0) + oP

(
s−1/2−ε

√
k0

)
.

Besides, as Gaussian random processes, W (s)
d≡ W0(s) :=

√
s0W (s/s0), because the covariance structure

of W is 1-homogeneous (since all the Rt are 1-homogeneous functions). Since A(n/k0)/A(n/k) → s−ρ
0 as

n→ ∞ by regular variation of |A|, we obtain
q̂1−k0s/n

q1−k0/n

= s−γ

(
1 +

1√
k
γ(s0s)

−1W0(s0s) +
(s0s)

−ρ − s−ρ
0

ρ
A(n/k) + oP

(
(s0s)

−1/2−ε

√
k

))
and

log
q̂1−k0s/n

q1−k0/n

= −γ log s+ 1√
k
γ(s0s)

−1W0(s0s) +
(s0s)

−ρ − s−ρ
0

ρ
A(n/k) + oP

(
(s0s)

−1/2−ε

√
k

)
.

Now, by Condition C∗ and its version (C.29) on logU ,
q1−k0/n

q1−k/n

= s−γ
0

(
1 +

s−ρ
0 − 1

ρ
A(n/k) + oP

(
1√
k

))
and log

q1−k0/n

q1−k/n

= −γ log s0 +
s−ρ
0 − 1

ρ
A(n/k) + oP

(
1√
k

)
.

Conclude that
q̂1−k0s/n

q1−k/n

= (s0s)
−γ

(
1 +

1√
k
γ(s0s)

−1W0(s0s) +
(s0s)

−ρ − 1

ρ
A(n/k) + oP

(
(s0s)

−1/2−ε

√
k

))
and

log
q̂1−k0s/n

q1−k/n

= −γ log(s0s) +
1√
k
γ(s0s)

−1W0(s0s) +
(s0s)

−ρ − 1

ρ
A(n/k) + oP

(
(s0s)

−1/2−ε

√
k

)
.

The proof is then completed by noting that q̂1−k0s/n = q̂1−ks′/n with s′ = s0s ∈ [0, s0], and all the identities

above, written in terms of s′, are uniform in s′ ∈ [0, s0].

Proof of Corollary 3.4∗. Remark first that

γ̂Hn =

∫ 1

0

log

(
q̂1−⌊n(1−τn)⌋s/n

q1−⌊n(1−τn)⌋/n

)
ds− log

(
q̂1−⌊n(1−τn)⌋/n

q1−⌊n(1−τn)⌋/n

)

and q̂τn
qτn

=
q̂1−⌊n(1−τn)⌋/n

q1−⌊n(1−τn)⌋/n
×
q1−⌊n(1−τn)⌋/n

qτn
=
q̂1−⌊n(1−τn)⌋/n

q1−⌊n(1−τn)⌋/n

(
1 + o

(
1√

n(1− τn)

))
.
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The latter holds by local uniformity of Condition C∗ and the regular variation property of |A|, see

Theorem 2.3.9 in de Haan & Ferreira (2006). It is thus enough to tackle the case when n(1 − τn) is

a sequence of integers. In this case, one has, from Theorem 3.3∗ and for appropriate versions of the

processes involved,

√
n(1− τn)(γ̂

H
n − γ) =

∫ 1

0

log

(
q̂1−(1−τn)s

qτn

)
ds− log

(
q̂τn
qτn

)
= γ

∫ 1

0

[s−1W (s)−W (1)] ds+
λ1

1− ρ
+ oP(1)

and
√
n(1− τn)

(
q̂τn
qτn

− 1

)
= γW (1) + oP(1)

where W is a centred Gaussian process having covariance function r(x, y) = min(x, y) +
∑∞

t=1Rt(x, y) +

Rt(y, x). It follows immediately that the pair

√
n(1− τn)

(
γ̂Hn − γ,

q̂τn
qτn

− 1

)
is asymptotically Gaussian, with expectation (λ1/(1− ρ), 0)⊤ and covariance matrix

γ2


∫∫

[0,1]2

[
r(s, t)

st
− r(s, 1)

s
− r(1, t)

t
+ r(1, 1)

]
ds dt

∫ 1

0

[
r(s, 1)

s
− r(1, 1)

]
ds∫ 1

0

[
r(s, 1)

s
− r(1, 1)

]
ds r(1, 1)

 .

Use the definition of the covariance function r and the identity∫∫
[0,1]2

[
r(s, t)

st
− r(s, 1)

s
− r(1, t)

t

]
ds dt = 0

valid because of the 1-homogeneity of each Rt (see the final stages of the proof of Theorem 4 in Stupfler

2019) to get the announced covariance matrix. The convergence of ξ̂τn is then a direct consequence of

Proposition C.3.

The following lemma gives a joint convergence result on the intermediate empirical (LAWS) expectile

and its intermediate empirical quantile counterpart, in our time series framework. It is the key ingredient

in the proof of Theorem C.5. To state this result, recall the notation F̂ n(u) = n−1
∑n

t=1 1{Yt > u} for

the empirical survival function of the observations.

Lemma C.4. Assume that Conditions A∗, B∗ and C∗ are satisfied, and that there is δ > 0 such that

E|Y−|2+δ < ∞, 0 < γ < 1/(2 + δ) and
∑

l≥1[β(l)]
δ/(2+δ) < ∞. Let τn ↑ 1 be such that n(1 − τn) → ∞,
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rn(1−τn) → 0, rn(rn/
√
n(1− τn))

δ → 0, rn log2(n(1−τn))/
√
n(1− τn) → 0,

√
n(1− τn)A((1−τn)−1) →

λ1 ∈ R and
√
n(1− τn)q

−1
τn → λ2 ∈ R as n→ ∞. Then

√
n(1− τn)

(
q̂τn
qτn

− 1,
ξ̃τn
ξτn

− 1,
F̂ n(ξ̃τn)

1− τn
− (γ−1 − 1)

)
d−→ (Θ,Φ,Ξ).

Here (Θ,Φ,Ξ) is a trivariate Gaussian random vector defined as

Θ = γW (1), Φ = γ2(γ−1 − 1)γ
∫ γ−1−1

0

s−γ−1W (s) ds

and Ξ = W (γ−1 − 1)− γ(γ−1 − 1)γ+1

∫ γ−1−1

0

s−γ−1W (s) ds− λ1
(γ−1 − 1)1−ρ

γ(1− γ − ρ)
− λ2(γ

−1 − 1)γ+1E(Y )

where W is a centred Gaussian process with covariance function r(x, y) = min(x, y) +
∑∞

t=1Rt(x, y) +

Rt(y, x).

Proof of Lemma C.4. Assume to start with that k = n(1− τn) is a sequence of integers. The estimating

equation for an expectile, obtained by differentiating the right-hand side of (1∗) and setting it to 0, can

also be written for its sample version: this results in

ξ1−k/n − E(Y ) =
n

k

(
1− 2k

n

)
E((Y − ξ1−k/n)1{Y > ξ1−k/n}) (C.36)

and ξ̃1−k/n − Y n =
n

k

(
1− 2k

n

)
× 1

n

n∑
t=1

(Yt − ξ̃1−k/n)1{Yt > ξ̃1−k/n}. (C.37)

[Here Y n = n−1
∑n

i=1 Yi denotes the sample mean.] We now notice that

E((Y − ξ1−k/n)1{Y > ξ1−k/n}) =
∫ ∞

ξ1−k/n

F (u) du

and 1

n

n∑
t=1

(Yt − ξ̃1−k/n)1{Yt > ξ̃1−k/n} =

∫ 1

1−F̂n(ξ̃1−k/n)

q̂w dw − ξ̃1−k/nF̂ n(ξ̃1−k/n).

Subtracting (C.36) from (C.37) and dividing through by ξ1−k/n then produces(
ξ̃1−k/n

ξ1−k/n

− 1

)
− Y n − E(Y )

ξ1−k/n

=
n

k

(
1− 2k

n

)
1

ξ1−k/n

(∫ 1

1−F̂n(ξ̃1−k/n)

q̂w dw − ξ̃1−k/nF̂ n(ξ̃1−k/n)−
∫ ∞

ξ1−k/n

F (u) du

)
. (C.38)

Our goal will be to control or evaluate each term in Equation (C.38) except the first. As Y has a

heavy-tailed distribution with tail index γ < 1,

1− 2k

n
= 1 + o

(
1

q1−k/n

)
= 1 + o

(
1√
k

)
. (C.39)
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Note also that, for any n ≥ 2,

nVar(Y n − E(Y )) = Var(Y ) + 2
n−1∑
j=1

n− j

n
E([Y1 − E(Y )][Yj+1 − E(Y )]).

By Theorem 0 in the Introduction of Bradley (1985) applied to the sequence (Yt − E(Y )), the sum∑
j≥1 |E([Y1−E(Y )][Yj+1−E(Y )])| converges. The dominated convergence theorem then entails nVar(Y n−

E(Y )) = O(1) and therefore, by the Chebyshev’s inequality,

Y n − E(Y )

ξ1−k/n

= OP

(
1√
n

)
= oP

(
1√
k

)
. (C.40)

A standard calculation based on Condition C∗ yields

1

ξ1−k/n

∫ ∞

ξ1−k/n

F (u) du = F (ξ1−k/n)

(
γ

1− γ
+ A

(
1

F (ξ1−k/n)

)
1 + o(1)

(1− γ)(1− γ − ρ)

)
;

see also (B.4) in the proof of Proposition 1 of Daouia et al. (2018). In fact, using this result together

with the regular variation property of |A|, one finds

n

k

1

ξ1−k/n

∫ ∞

ξ1−k/n

F (u) du = 1− λ2√
k
(γ−1 − 1)γE(Y ) + o

(
1√
k

)
. (C.41)

To control the other two terms appearing on the right-hand side of Equation (C.38), we first note that

for appropriate versions of the tail empirical quantile process s 7→ q̂1−ks/n, Theorem 3.3∗ entails that

√
k

(
q̂1−ks/n

q1−k/n

− s−γ

)
P−→ γs−γ−1W (s) + λ1s

−γ s
−ρ − 1

ρ
(C.42)

uniformly on any compact interval [s0, s1] ⊂ (0,∞), where W is a continuous, centred Gaussian process

W on [0, 1] having covariance function r(x, y) = min(x, y) +
∑∞

t=1{Rt(x, y) + Rt(y, x)}. By Vervaat’s

lemma (see e.g. Lemma A.0.2 on p.357 of de Haan & Ferreira 2006), we get

√
k
(n
k
F̂ n(xq1−k/n)− x−1/γ

)
P−→ W (x−1/γ) + λ1x

−1/γ x
ρ/γ − 1

γρ

uniformly on any compact interval [x0, x1] ⊂ (0,∞). Now, by Theorem 3.1∗ and convergence (2∗),

ξ̃1−k/n

q1−k/n

=
ξ̃1−k/n

ξ1−k/n

×
ξ1−k/n

q1−k/n

P−→ (γ−1 − 1)−γ.

Taking x = ξ̃1−k/n/q1−k/n in the above convergence then yields

√
k

n
k
F̂ n(ξ̃1−k/n)−

[
ξ̃1−k/n

q1−k/n

]−1/γ
 P−→ W (γ−1 − 1) + λ1(γ

−1 − 1)
(γ−1 − 1)−ρ − 1

γρ
. (C.43)
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In particular, by Theorem 3.1∗ and Proposition 1(i) in Daouia et al. (2020), we have the expansion

(n/k)× F̂ n(ξ̃1−k/n) = (γ−1 − 1) + OP(1/
√
k). By Theorem 3.1∗ again, this entails

ξ̃1−k/n

ξ1−k/n

× n

k
F̂ n(ξ̃1−k/n) = (γ−1 − 1) + (γ−1 − 1)

(
ξ̃1−k/n

ξ1−k/n

− 1

)

+
(n
k
F̂ n(ξ̃1−k/n)− (γ−1 − 1)

)
+ oP

(
1√
k

)
. (C.44)

Lastly, by a change of variables,

n

k

1

ξ1−k/n

∫ 1

1−F̂n(ξ̃1−k/n)

q̂w dw =
q1−k/n

ξ1−k/n

(∫ γ−1−1

0

q̂1−ks/n

q1−k/n

ds+

∫ (n/k)F̂n(ξ̃1−k/n)

γ−1−1

q̂1−ks/n

q1−k/n

ds

)
.

By Theorem 3.3∗, the expansion (n/k) × F̂ n(ξ̃1−k/n) = (γ−1 − 1) + OP(1/
√
k), a Taylor expansion and

the continuity of the process W ,∫ (n/k)F̂n(ξ̃1−k/n)

γ−1−1

q̂1−ks/n

q1−k/n

ds =

∫ (n/k)F̂n(ξ̃1−k/n)

γ−1−1

s−γ ds+ oP

(
1√
k

)
= (γ−1 − 1)−γ

(n
k
F̂ n(ξ̃1−k/n)− (γ−1 − 1)

)
+ oP

(
1√
k

)
.

By Theorem 3.3∗, moreover,∫ γ−1−1

0

q̂1−ks/n

q1−k/n

ds =
(γ−1 − 1)−γ

γ
+

γ√
k

∫ γ−1−1

0

s−γ−1W (s) ds

+
λ1√
k

(γ−1 − 1)−γ

ρ

(
(γ−1 − 1)1−ρ

1− γ − ρ
− 1

γ

)
+ oP

(
1√
k

)
.

Another use of Proposition 1(i) in Daouia et al. (2020) and straightforward calculations give

n

k

1

ξ1−k/n

∫ 1

1−F̂n(ξ̃1−k/n)

q̂w dw =
1

γ
+
γ(γ−1 − 1)γ√

k

∫ γ−1−1

0

s−γ−1W (s) ds

+
(n
k
F̂ n(ξ̃1−k/n)− (γ−1 − 1)

)
− λ2√

k
(γ−1 − 1)γE(Y )

+ oP

(
1√
k

)
. (C.45)

Combining (C.38), (C.39), (C.40), (C.41), (C.44) and (C.45) thus yields

√
k

(
ξ̃1−k/n

ξ1−k/n

− 1

)
= γ2(γ−1 − 1)γ

∫ γ−1−1

0

s−γ−1W (s) ds+ oP(1). (C.46)
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A combination of Equation (C.46) with Proposition 1(i) in Daouia et al. (2020) then gives

√
k

[ ξ̃1−k/n

q1−k/n

]−1/γ

− (γ−1 − 1)

 = −γ(γ−1 − 1)γ+1

∫ γ−1−1

0

s−γ−1W (s) ds

− λ1γ
−1(γ−1 − 1)

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

)
− λ2(γ

−1 − 1)γ+1E(Y ) + oP(1).

Reporting this identity in (C.43) gives

√
k
(n
k
F̂ n(ξ̃1−k/n)− (γ−1 − 1)

)
= W (γ−1 − 1)− γ(γ−1 − 1)γ+1

∫ γ−1−1

0

s−γ−1W (s) ds

− λ1
(γ−1 − 1)1−ρ

γ(1− γ − ρ)
− λ2(γ

−1 − 1)γ+1E(Y ) + oP(1). (C.47)

Combining Equations (C.46) and (C.47) with (C.42) for s = 1 completes the proof when k = n(1− τn) is

a sequence of integers. The general case follows because, by the monotonicity of quantiles and expectiles,

q̂1−k/n

q1−k/n

− 1 ≤
q̂1−⌊k⌋/n

q1−⌊k⌋/n

(
q1−⌊k⌋/n

q1−k/n

− 1

)
+
q̂1−⌊k⌋/n

q1−⌊k⌋/n
− 1,

ξ̃1−k/n

ξ1−k/n

− 1 ≤
ξ̃1−⌊k⌋/n

ξ1−⌊k⌋/n

(
ξ1−⌊k⌋/n

ξ1−k/n

− 1

)
+
ξ̃1−⌊k⌋/n

ξ1−⌊k⌋/n
− 1,

with similar lower bounds applying with the ceiling function in place of the floor function. Condition C∗

and Proposition 1(i) in Daouia et al. (2020) now yield

q1−⌊k⌋/n

q1−k/n

− 1 = o

(
1√
k

)
and

ξ1−⌊k⌋/n

ξ1−k/n

− 1 = o

(
1√
k

)
.

Retracing the steps of the proof when k = n(1 − τn) is a sequence of integers (in particular, applying

Theorem 3.3∗ with dke in place of k to obtain analogues of (C.42) and (C.43)) and using the continuity

of the process W , shows that the quantities

q̂1−⌊k⌋/n

q1−⌊k⌋/n
− 1 and

q̂1−⌈k⌉/n

q1−⌈k⌉/n
− 1

on the one hand, and
ξ̃1−⌊k⌋/n

ξ1−⌊k⌋/n
− 1 and

ξ̃1−⌈k⌉/n

ξ1−⌈k⌉/n
− 1

on the other hand, have the same limit in probability, and one can conclude the proof using the sandwich

lemma. We omit the details.

Our next main result derives the joint weak convergence of the estimator γ̂En with q̂τn .
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Theorem C.5. Assume that Conditions A∗, B∗ and C∗ are satisfied, and that there is δ > 0 such that

E|Y−|2+δ < ∞, 0 < γ < 1/(2 + δ) and
∑

l≥1[β(l)]
δ/(2+δ) < ∞. Let τn ↑ 1 be such that n(1 − τn) → ∞,

rn(1−τn) → 0, rn(rn/
√
n(1− τn))

δ → 0, rn log2(n(1−τn))/
√
n(1− τn) → 0,

√
n(1− τn)A((1−τn)−1) →

λ1 ∈ R and
√
n(1− τn)q

−1
τn → λ2 ∈ R as n→ ∞. Then

√
n(1− τn)

(
γ̂En − γ,

q̂τn
qτn

− 1

)
d−→ (Γ,Θ).

Here (Γ,Θ) is a bivariate Gaussian random vector defined as

Γ = γ3(γ−1 − 1)γ+1

∫ γ−1−1

0

s−γ−1W (s) ds− γ2W (γ−1 − 1) + λ1γ
(γ−1 − 1)1−ρ

1− γ − ρ
+ λ2γ

2(γ−1 − 1)γ+1E(Y )

and Θ = γW (1), where W is a centred Gaussian process with covariance function r(x, y) = min(x, y) +∑∞
t=1Rt(x, y) + Rt(y, x).

Following Proposition C.3, the asymptotic Gaussian distribution of the indirect QB estimator with γ̂n =

γ̂En can also be derived. The expression of the covariance structure of the limiting random pair in

Theorem C.5 is in general quite involved, however, so we do not pursue this here for the sake of simplicity.

Let us mention though that in the independent case, the Gaussian process W is just a standard Brownian

motion, and therefore the asymptotic variance of γ̂En can be exactly calculated as γ3(1 − γ)/(1 − 2γ).

As such, for γ < (3−
√
5)/2 ≈ 0.38, this estimator will tend to be less variable than the Hill estimator,

making it a valuable device in the construction of approximate confidence intervals.

Proof of Theorem C.5. Start by writing

γ̂En − γ = −γ

(
1 +

F̂ n(ξ̃τn)

1− τn

)−1(
F̂ n(ξ̃τn)

1− τn
− (γ−1 − 1)

)
.

It follows from Lemma C.4 that F̂ n(ξ̃τn)/(1− τn)
P−→ γ−1 − 1. Consequently

γ̂En − γ = −γ2
(
F̂ n(ξ̃τn)

1− τn
− (γ−1 − 1)

)
(1 + oP(1)).

The result is now a straightforward consequence of Lemma C.4.

Our next result gives high-level conditions for the convergence of ξ⋆τ ′n . It is the key to the proof of

Theorem 3.5∗.
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Proposition C.6. Assume that E|Y−| <∞ and Condition C∗ holds with 0 < γ < 1 and ρ < 0. Assume

further that τn, τ ′n ↑ 1 with n(1−τn) → ∞, n(1−τ ′n) → c ∈ [0,∞) and
√
n(1− τn)/ log[(1−τn)/(1−τ ′n)] →

∞ as n→ ∞. Suppose also that there are nondegenerate limiting random variables Γ,∆ such that√
n(1− τn)(γ̂n − γ)

d−→ Γ and
√
n(1− τn)

(
ξτn
ξτn

− 1

)
d−→ ∆.

If moreover
√
n(1− τn)A((1− τn)

−1) → λ1 ∈ R and
√
n(1− τn)q

−1
τn → λ2 ∈ R as n→ ∞, then√

n(1− τn)

log[(1− τn)/(1− τ ′n)]

(
ξ
⋆

τ ′n

ξτ ′n
− 1

)
d−→ Γ.

Proposition C.6 extends Theorem 3 in Daouia et al. (2018) by dropping the unnecessary assumption of

an increasing function F and by being stated outside the i.i.d. case.

Proof of Proposition C.6. The key step is to write

log

(
ξ
⋆

τ ′n

ξτ ′n

)
= (γ̂n − γ) log

(
1− τn
1− τ ′n

)
+ log

(
ξτn
ξτn

)
− log

([
1− τ ′n
1− τn

]γ ξτ ′n
ξτn

)
.

One may then follow the steps of the proof of Theorem 5 in Daouia et al. (2020) with the appropriate

straightforward changes, noting that the i.i.d. assumption is in fact never necessary.

Proof of Theorem 3.5∗. This is a direct corollary of Proposition C.6.

The following lemma, of independent interest, is the key to the proof of Theorem 4.1∗. It provides a

general result on the convergence of array sums in a strong mixing framework.

Lemma C.7. Let (Xn,i)1≤i≤n be a triangular, row-strictly stationary array of random variables. Let, for

1 ≤ i < j ≤ n, Fn,i,j = σ(Xn,i, Xn,i+1, . . . , Xn,j) and define a strong mixing coefficient of this array by

∀n ≥ 2, ∀l < n, αn(l) = sup{|P(A ∩B)− P(A)P(B)|, A ∈ Fn,1,k, B ∈ Fn,k+l,n, 1 ≤ k ≤ n− l}.

Suppose that there are sequences of integers (ln) and (rn) such that

ln → ∞, rn → ∞,
ln
rn

→ 0,
rn
n

→ 0 and nαn(ln)

rn
→ 0 as n→ ∞.

Define also

Sn =
n∑

i=1

Xn,i =

⌊n/rn⌋∑
j=1

Zn,j +R′
n, where Zn,j = Bn,j +Rn,j,

with Bn,j =

jrn−ln∑
i=(j−1)rn+1

Xn,i, Rn,j =

jrn∑
i=jrn−ln+1

Xn,i and R′
n =

n∑
i=rn⌊n/rn⌋+1

Xn,i.
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(i) Assume here that
∑⌊n/rn⌋

j=1 R∗
n,j

P−→ 0 and R′
n

P−→ 0, where the R∗
n,j are i.i.d. copies of Rn,1. Then Sn

has the same limiting behaviour in distribution (if any) as
∑⌊n/rn⌋

j=1 Z∗
n,j, where the Z∗

n,j are i.i.d. copies

of Zn,1.

(ii) If one has E(Xn,1) = 0 and

n

rn
Var(Rn,1) =

n

rn
Var

(
ln∑
i=1

Xn,i

)
→ 0, Var(R′

n) = Var

n−rn⌊n/rn⌋∑
i=1

Xn,i

→ 0,

n

rn
Var(Zn,1) =

n

rn
Var

(
rn∑
i=1

Xn,i

)
→ σ2 <∞ and ∀ε > 0,

n

rn
E(Z2

n,11{|Zn,1| > ε}) → 0,

then Sn
d−→ N (0, σ2) (this should be read Sn

P−→ 0 if σ2 = 0, in which case the final Lindeberg condition

above is unnecessary).

Proof of Lemma C.7. (i) By assumption on R′
n, we need only show that

∑⌊n/rn⌋
j=1 Zn,j and

∑⌊n/rn⌋
j=1 Z∗

n,j

have the same limiting behaviour in distribution. We then compare the Fourier transforms of
∑⌊n/rn⌋

j=1 Zn,j

and
∑⌊n/rn⌋

j=1 Z∗
n,j using the big-block/small-block structure of Zn,j = Bn,j+Rn,j and the mixing assumption

to show that the original Zn,j can be considered to be asymptotically independent. This argument and

the result of the lemma are inspired by the proof of Lemma 2.1 of Leadbetter & Rootzén (1993).

First introduce the alternative strong mixing coefficient defined for any n ≥ 2 and l < n by

an(l) = sup{|Cov(U, V )|, U is complex-valued and Fn,1,k-measurable,

V is complex-valued and Fn,k+l,n-measurable, |U |, |V | ≤ 1, for 1 ≤ k ≤ n− l}.

By Lemma 3 p.10 in Doukhan (1994) (see also Lemma 1.2 of Ibragimov 1962) there is a universal constant

C > 0 such that an(l) ≤ Cαn(l). Therefore, for any n, and using proof by induction,

∣∣E(U1U2 · · ·U⌊n/rn⌋)− E(U1)E(U2) · · ·E(U⌊n/rn⌋)
∣∣ ≤ (⌊ n

rn

⌋
− 1

)
an(ln) ≤ C

⌊
n

rn

⌋
αn(ln)

for all complex-valued random variables Uk such that |Uk| ≤ 1 and which are respectively Fn,ik,jk-

measurable, with i1 < j1 < i2 < j2 < · · · < i⌊n/rn⌋ < j⌊n/rn⌋ and ik − jk−1 > ln. Conclude, first,
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that for any t ∈ R,∣∣∣∣∣∣E
exp

it ⌊n/rn⌋∑
j=1

Rn,j

− E

exp

it ⌊n/rn⌋∑
j=1

R∗
n,j

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
exp

it ⌊n/rn⌋∑
j=1

Rn,j

−
⌊n/rn⌋∏
j=1

E(exp[itR∗
n,j])

∣∣∣∣∣∣ (by independence)

=

∣∣∣∣∣∣E
exp

it ⌊n/rn⌋∑
j=1

Rn,j

−
⌊n/rn⌋∏
j=1

E(exp[itRn,j])

∣∣∣∣∣∣ (by strict stationarity)

≤ C

⌊
n

rn

⌋
αn(ln) → 0

for n large enough, since each of theRn,j is Fn,jrn−ln+1,jrn-measurable and ln/rn → 0. Thus
∑⌊n/rn⌋

j=1 Rn,j
P−→

0. It follows, by uniform integrability of the (bounded) sequence exp(it
∑⌊n/rn⌋

j=1 Rn,j), that∣∣∣∣∣∣E
exp

it ⌊n/rn⌋∑
j=1

Zn,j

− E

exp

it ⌊n/rn⌋∑
j=1

Bn,j

∣∣∣∣∣∣ ≤ E

∣∣∣∣∣∣1− exp

it ⌊n/rn⌋∑
j=1

Rn,j

∣∣∣∣∣∣→ 0.

Thus
∑⌊n/rn⌋

j=1 Zn,j has the same asymptotic behaviour in distribution as
∑⌊n/rn⌋

j=1 Bn,j. Adapting the above

argument comparing the Fourier transforms of the Rn,j and R∗
n,j shows that∣∣∣∣∣∣E

exp

it ⌊n/rn⌋∑
j=1

Bn,j

− E

exp

it ⌊n/rn⌋∑
j=1

B∗
n,j

∣∣∣∣∣∣ ≤ C

⌊
n

rn

⌋
αn(ln) → 0,

where the B∗
n,j are i.i.d. copies of Bn,1, since each of the Bn,j is Fn,(j−1)rn+1,jrn−ln-measurable, and therefore∑⌊n/rn⌋

j=1 Zn,j has the same asymptotic behaviour in distribution as
∑⌊n/rn⌋

j=1 B∗
n,j. Let finally (X∗

n,i)1≤i≤n

be a triangular array such that the (X∗
n,i)(j−1)rn+1≤i≤jrn are independent copies of (Xn,1, . . . , Xn,rn), for

1 ≤ j ≤ bn/rnc. Then

⌊n/rn⌋∑
j=1

Z∗
n,j

d
=

⌊n/rn⌋∑
j=1

jrn∑
i=(j−1)rn+1

X∗
n,i,

⌊n/rn⌋∑
j=1

B∗
n,j

d
=

⌊n/rn⌋∑
j=1

jrn−ln∑
i=(j−1)rn+1

X∗
n,i,

and
⌊n/rn⌋∑
j=1

R∗
n,j

d
=

⌊n/rn⌋∑
j=1

jrn∑
i=jrn−ln+1

X∗
n,i.
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As a consequence,∣∣∣∣∣∣E
exp

it ⌊n/rn⌋∑
j=1

Z∗
n,j

− E

exp

it ⌊n/rn⌋∑
j=1

B∗
n,j

∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣1− exp

it ⌊n/rn⌋∑
j=1

jrn∑
k=jrn−ln+1

X∗
n,k

∣∣∣∣∣∣ = E

∣∣∣∣∣∣1− exp

it ⌊n/rn⌋∑
j=1

R∗
n,j

∣∣∣∣∣∣→ 0

by uniform integrability again. Conclude that
∑⌊n/rn⌋

j=1 Z∗
n,j has the same asymptotic behaviour in distri-

bution as
∑⌊n/rn⌋

j=1 B∗
n,j, and finally that

∑⌊n/rn⌋
j=1 Zn,j has the same asymptotic behaviour in distribution

as
∑⌊n/rn⌋

j=1 Z∗
n,j, as required.

(ii) This distributional convergence is obvious when σ2 = 0. When σ2 > 0, it is a simple corollary of (i)

and the standard Lindeberg central limit theorem for i.i.d. sequences (see e.g. Theorem 27.2 on p.359 of

Billingsley 1995).

The following lemma, a useful technical result on a marginal expected shortfall above a high level that

will be used several times in the proof of Theorem 4.1∗, generalises Proposition 2 in Daouia et al. (2018).

Lemma C.8. Assume that (X,Y ) is a random pair with heavy-tailed marginal distributions, having

respective tail indices γX , γY , continuous survival functions FX and F Y , and tail quantile functions UX

and UY . Suppose that there is a function R(X,Y ) on [0,∞]2 \ {(∞,∞)} such that

∀(x, y) ∈ [0,∞]2 \ {(∞,∞)}, lim
s→∞

sP
(
FX(X) ≤ x

s
, F Y (Y ) ≤ y

s

)
= R(X,Y )(x, y).

Let zn → ∞ as n→ ∞.

(i) Then, for any a < 1/γX ,

lim
n→∞

E(Xa
1{X > 0}|Y > zn)

[UX(1/F Y (zn))]a
=

∫ ∞

0

R(X,Y )(x
−1/aγX , 1) dx <∞.

(ii) Suppose moreover that X satisfies Condition C∗ with parameters (γX , ρX , AX), such that γX < 1 and

ρX < 0, and that there exist β > γX and κ < 0 such that

sup
x∈(0,∞)

∣∣∣∣∣sP(FX(X) ≤ x/s, F Y (Y ) ≤ y/s)−R(X,Y )(x, y)

min(xβ, 1)

∣∣∣∣∣ = O(sκ) as s→ ∞

uniformly in y belonging to any compact subset of (0,∞). Then, for any ε > 0,

E(X1{X > 0}|Y > zn)

UX(1/F Y (zn))
−
∫ ∞

0

R(X,Y )(x
−1/γX , 1) dx = O

(
|AX(1/F Y (zn))|γX/(1−ρX)−ε

)
+O

(
(F Y (zn))

−κ
)
.
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Proof of Lemma C.8. In this proof we make, without further reference, extensive use of the following

integration by parts calculation: for any a > 0 and any event B,

E(Xa
1{X > 0}1{B}) = E

(∫ ∞

0

1{u < Xa}1{X > 0} du1{B}
)

= E
(∫ ∞

0

1{X > u1/a}1{X > 0} du1{B}
)

=

∫ ∞

0

P({X > u1/a} ∩ {B}) du.

(i) By assumption and continuity of FX and F Y ,

∀(x, y) ∈ [0,∞]2 \ {(∞,∞)}, lim
s→∞

sP(X > UX(s/x), Y > UY (s/y)) = R(X,Y )(x, y).

Remark now that

P(Y > zn) = F Y (zn) = (F Y ◦ UY )(1/F Y (zn)) = P(Y > UY (1/F Y (zn))),

and use an integration by parts and the change of variables u = x[UX(1/F Y (zn))]
a to find

E(Xa
1{X > 0}|Y > zn)

[UX(1/F Y (zn))]a
=

∫ ∞

0

1

F Y (zn)
P(X > x1/a UX(1/F Y (zn)), Y > UY (1/F Y (zn))) dx. (C.48)

By Lemma C.1 then with 1− τn = F Y (zn),

∀x > 0,
1

F Y (zn)
P(X > x1/a UX(1/F Y (zn)), Y > UY (1/F Y (zn))) → R(X,Y )(x

−1/aγX , 1) as n→ ∞.

Besides, by continuity of FX and Potter bounds (see Proposition B.1.9.5 in de Haan & Ferreira 2006),

we have, for any fixed ε > 0 such that (1 + ε)aγX < 1,

1

F Y (zn)
P(X > x1/a UX(1/F Y (zn)), Y > UY (1/F Y (zn))) ≤ 1{x ≤ 1}+ FX(x

1/a UX(1/F Y (zn)))

FX(UX(1/F Y (zn)))
1{x > 1}

≤ 1{x ≤ 1}+ C x−1/aγX+ε
1{x > 1}

for n large enough, where C is an unimportant positive constant. The upper bound defines an integrable

function of x > 0, and therefore the dominated convergence theorem entails

E(Xa
1{X > 0}|Y > zn)

[UX(1/F Y (zn))]a
→
∫ ∞

0

R(X,Y )(x
−1/aγX , 1) dx as n→ ∞,

as required.
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(ii) We recall (C.48) for a = 1 and note that∣∣∣∣∫ ∞

0

1

F Y (zn)
P(X > xUX(1/F Y (zn)), Y > UY (1/F Y (zn))) dx−

∫ ∞

0

R(X,Y )(x
−1/γX , 1) dx

∣∣∣∣
≤
∫ ∞

0

|P(X > xUX(1/F Y (zn)), Y > UY (1/F Y (zn)))− P(X > UX(x
1/γX/F Y (zn)), Y > UY (1/F Y (zn)))|

F Y (zn)
dx

+

∫ ∞

0

|P(X > UX(x
1/γX/F Y (zn)), Y > UY (1/F Y (zn)))−R(X,Y )(x

−1/γX , 1)|
F Y (zn)

dx. (C.49)

We now control each of the two terms on the right-hand side of (C.49); to do so, recall the elementary

inequality

|P(Z1 > a,Z2 > c)− P(Z1 > b, Z2 > c)| ≤ min(|P(Z1 > a)− P(Z1 > b)|,P(Z2 > c)). (C.50)

Controlling the first component of the right-hand side of (C.49) requires some additional preparation.

Recall that, since X satisfies Condition C∗, for any arbitrarily small η > 0, there is s0 > 0 such that

s, sx ≥ s0 ⇒
∣∣∣∣ 1

BX(s)

(
FX(sx)

FX(s)
− x−1/γX

)
− x−1/γX

xρX/γX − 1

γXρX

∣∣∣∣ ≤ x−(1−ρX)/γX max(xη, x−η)

where BX(s) is asymptotically equivalent, as s→ ∞, to AX(1/FX(s)). This is essentially a consequence

of Theorem B.2.18 in de Haan & Ferreira (2006), and is stated as Lemma 5 in Daouia et al. (2020).

Choose η so small that (1 + η)γX < 1 and

γX
1− ρX + ηγX

>
γX

1− ρX
− ε.

Split the integral defining the first term in (C.49) at un = |AX(1/F Y (zn))|γX/(1−ρX+ηγX) → 0, remark

that UX |AX |γX/(1−ρX+ηγX) is regularly varying with index γX(1 + γXη)/(1 − ρX + γXη) > 0 and thus

unUX(1/F Y (zn)) → ∞, and use the continuity of FX and inequality (C.50) to find that for n large

enough∫ ∞

0

|P(X > xUX(1/F Y (zn)), Y > UY (1/F Y (zn)))− P(X > UX(x
1/γX/F Y (zn)), Y > UY (1/F Y (zn)))|

F Y (zn)
dx

≤
∫ un

0

P(Y > UY (1/F Y (zn)))

F Y (zn)
dx+

∫ ∞

un

|P(X > xUX(1/F Y (zn)))− P(X > UX(x
1/γX/F Y (zn)))|

F Y (zn)
dx

=

∫ un

0

dx+

∫ ∞

un

∣∣∣∣FX(xUX(1/F Y (zn)))

FX(UX(1/F Y (zn)))
− x−1/γX

∣∣∣∣ dx
= O(un) + O

(
|AX(1/F Y (zn))|

∫ ∞

un

[
x−1/γX + x−(1−ρX)/γX max(xη, x−η)

]
dx

)
= O

(
un + |AX(1/F Y (zn))|u−(1−ρX)/γX+1−η

n

)
= O

(
|AX(1/F Y (zn))|γX/(1−ρX+ηγX)

)
.
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Consequently, by definition of η,∫ ∞

0

|P(X > xUX(1/F Y (zn)), Y > UY (1/F Y (zn)))− P(X > UX(x
1/γX/F Y (zn)), Y > UY (1/F Y (zn)))|

F Y (zn)
dx

= O
(
|AX(1/F Y (zn))|γX/(1−ρX)−ε

)
. (C.51)

Finally, note that by assumption the function x 7→ min(x−β/γX , 1) is integrable on (0,∞), so that the

second term in (C.49) is immediately controlled as∫ ∞

0

|P(X > UX(x
1/γX/F Y (zn)), Y > UY (1/F Y (zn)))−R(X,Y )(x

−1/γX , 1)|
F Y (zn)

dx = O
(
(F Y (zn))

−κ
)
.

(C.52)

Combine (C.48), (C.49), (C.51), and (C.52) to complete the proof.

Lemma C.9 contains a variance calculation which is crucial for the proof of Theorem 4.1∗. It is an

analogous of Lemma C.2 for the bivariate time series context.

Lemma C.9. Assume that Condition D∗ is satisfied. Let rn → ∞, τn ↑ 1 and zn → ∞ be such that

rn(1 − τn) → 0, n(1 − τn) → ∞ and F Y (zn)/(1 − τn) → z ∈ (0,∞) as n → ∞. Then, if sn → ∞ is a

sequence of integers such that sn = O(rn), we have, as n→ ∞,

Var

(
1√

sn(1− τn)

sn∑
t=1

[1{Yt > zn} − P(Y1 > zn)]

)
→ z

(
1 + 2

∞∑
t=1

RY,t(1, 1)

)
<∞.

Assume moreover that R(X,Y )(1, 1) > 0 and γX < 1/2. Then

Var

(
1√

sn(1− τn)

sn∑
t=1

Xt1{Xt > 0, Yt > zn} − E(X11{X1 > 0, Y1 > zn})
E(X11{X1 > 0}|Y1 > zn)

)

→ z

(∫∞
0
R(X,Y )(x

−1/2γX , 1) dx+ 2
∫∞
0

∫∞
0

∑∞
t=1 rt(x

−1/γX , y−1/γX , 1, 1) dx dy

[
∫∞
0
R(X,Y )(x−1/γX , 1) dx]2

)
<∞.

[Recall that, under Condition D∗, we define RY,t(y1, yt+1) = rt(∞,∞, y1, yt+1) and R(X,Y ) = r1(x,∞, y,∞).]

Proof of Lemma C.9. The proof of the first convergence is exactly that of the first convergence in

Lemma C.2, replacing ξτn by zn and γ−1 − 1 := γ−1
Y − 1 by z, so there is nothing to be proven here.

To show the second convergence, we note that by stationarity of (Xt, Yt),

Var

(
1√

sn(1− τn)

sn∑
t=1

Xt1{Xt > 0, Yt > zn} − E(X11{X1 > 0, Y1 > zn})
E(X11{X1 > 0}|Y1 > zn)

)

=
1

[E(X11{X1 > 0}|Y1 > zn)]2

[
1

1− τn
Var(X11{X1 > 0, Y1 > zn})−

sn − 1

1− τn
[E(X11{X1 > 0, Y1 > zn})]2

+
2

sn(1− τn)

sn−1∑
t=1

(sn − t)E(X1Xt+11{X1 > 0, Xt+1 > 0, Y1 > zn, Yt+1 > zn})

]
. (C.53)

42



Apply Lemma C.8(i) with a = 1 and 2, and use the convergence F Y (zn)/(1− τn) → z as n→ ∞ to get

1

[E(X11{X1 > 0}|Y1 > zn)]2

[
1

1− τn
Var(X11{X1 > 0, Y1 > zn})−

sn − 1

1− τn
[E(X11{X1 > 0, Y1 > zn})]2

]
→ z

∫∞
0
R(X,Y )(x

−1/2γX , 1) dx

[
∫∞
0
R(X,Y )(x−1/γX , 1) dx]2

as n→ ∞. (C.54)

We now concentrate on the sum in (C.53). An integration by parts and a change of variables provide

2

sn(1− τn)

sn−1∑
t=1

(sn − t)E(X1Xt+11{X1 > 0, Xt+1 > 0, Y1 > zn, Yt+1 > zn})

=
2

sn(1− τn)

sn−1∑
t=1

(sn − t)E
(∫∫

[0,∞)2
1{w1 < X1}1{wt+1 < Xt+1} dw1 dwt+1 1{Y1 > zn, Yt+1 > zn}

)

= 2 q2X,τn

sn−1∑
t=1

sn − t

sn

∫∫
[0,∞)2

P (X1 > qX,τnu,Xt+1 > qX,τnv, Y1 > zn, Yt+1 > zn)

1− τn
du dv. (C.55)

[Here qX,τn is the quantile of X1 at level τn.] By Lemma C.1 and Condition D(iii)∗ we have

sn − t

sn

1

1− τn
P (X1 > qX,τnu,Xt+1 > qX,τnv, Y1 > zn, Yt+1 > zn)1{t < sn} → rt

(
u−1/γX , v−1/γX , z, z

)
(C.56)

as n → ∞, pointwise in u, v > 0 for any t. To swap limit and sum of integrals in (C.55), we note

that, by continuity of FX and FY , Potter bounds (see Proposition B.1.9.5 in de Haan & Ferreira 2006),

Condition D(iv)∗ and the convergence F Y (zn)/(1− τn) → z as n→ ∞, we have, for any arbitrarily small

ε > 0,

sn − t

sn
× 1

1− τn
P (X1 > qX,τnu,Xt+1 > qX,τnv, Y1 > zn, Yt+1 > zn)1{t < sn}

≤ 1

1− τn
P
(
FX(X1) ≤ Cu−1/γX+2ε(1− τn), FX(Xt+1) ≤ Cv−1/γX+2ε(1− τn),

F Y (Y1) ≤ (1 + ε)z(1− τn), F Y (Yt+1) ≤ (1 + ε)z(1− τn)
)
1{t < sn}

≤ C

(
ρ(t)

√
min(u−1/γX+2ε, 1)min(v−1/γX+2ε, 1)

+ (1− τn)min(u−1/γX+2ε, 1)min(v−1/γX+2ε, 1)

)
1{t < sn} (C.57)

for n large enough, irrespective of the values of the positive integer t and u, v > 0; here C is an unimportant

positive constant whose value may change from one line to the next. Choose ε > 0 such that (1+ε)2γX <

1. We now remark that the upper bound, say C ϕn(t, u, v), satisfies

ϕn(t, u, v) → ρ(t)
√

min(u−1/γX+2ε, 1)min(v−1/γX+2ε, 1) (C.58)
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as n→ ∞, pointwise in t ≥ 1, u, v > 0. The functions u 7→
√

min(u−1/γX+2ε, 1) and u 7→ min(u−1/γX+2ε, 1)

are both integrable on [0,∞), from which it follows that
∞∑
t=1

∫∫
[0,∞)2

ϕn(t, u, v) du dv 1{t < sn}

→
∞∑
t=1

∫∫
[0,∞)2

ρ(t)
√
min(u−1/γX+2ε, 1)min(v−1/γX+2ε, 1) du dv <∞, (C.59)

as n→ ∞, by splitting the sum and since sn(1− τn) → 0. A combination of Theorem 1 in Pratt (1960)

with (C.55), (C.56), (C.57), (C.58), (C.59), the Tonelli theorem and a change of variables now yields, as

n→ ∞,

2

sn(1− τn)q2X,τn

sn−1∑
t=1

(sn − t)E(X1Xt+11{X1 > 0, Xt+1 > 0, Y1 > zn, Yt+1 > zn})

→ 2
∞∑
t=1

∫∫
[0,∞)2

rt
(
u−1/γX , v−1/γX , z, z

)
du dv

= 2 z1−2γX

∫∫
[0,∞)2

∞∑
t=1

rt(x
−1/γX , y−1/γX , 1, 1) dx dy. (C.60)

Noting that UX(1/F Y (zn)) = z−γXqX,τn(1+o(1)) (using the convergence F Y (zn)/(1− τn) → z as n→ ∞

and the regular variation property of UX) and combining Lemma C.8(i) with (C.53), (C.54) and (C.60)

completes the proof.

Proof of Theorem 4.1∗. Consider MES+
X,τ := E(X1{X > 0}|Y > zY,τ ). Write

MES
⋆

X,τ ′n

MESX,τ ′n

=
MES

⋆

X,τ ′n

MES+
X,τ ′n

×
MES+

X,τ ′n

MESX,τ ′n

. (C.61)

Note that

MESX,τ ′n

MES+
X,τ ′n

= 1 +
E(X1{X < 0}|Y > zY,τ ′n)

MES+
X,τ ′n

= 1 +
E(X1{X < 0}|Y > UY (1/F Y (zY,τ ′n)))

MES+
X,τ ′n

= 1 + O
(
[F Y (zY,τ ′n)]

−κ(1−γX)
)

(see Lemma C.8(i) and p.441 of Cai et al., 2015)

= 1 + O
(
(1− τ ′n)

−κ(1−γX)
)
= 1 + o

(
1√

n(1− τn)

)
. (C.62)

Now let

MESX,τn :=

∑n
t=1Xt1{Xt > 0, Yt > zY,τn}∑n

t=1 1{Yt > zY,τn}
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and write

log

(
MES

⋆

X,τ ′n

MES+
X,τ ′n

)
= log

(
MESX,τn

MES+
X,τn

)
+ log

(
MES+

X,τn

MES+
X,τ ′n

(
1− τ ′n
1− τn

)−γX
)

+ (γ̂X,n − γX) log

(
1− τn
1− τ ′n

)
.

Because of (C.61) and (C.62), the proof will be complete if we can show that

√
n(1− τn) log

(
MESX,τn

MES+
X,τn

)
= OP(1) (C.63)

and √
n(1− τn)

(
MES+

X,τn

MES+
X,τ ′n

(
1− τ ′n
1− τn

)−γX

− 1

)
= O(1). (C.64)

We first focus on showing (C.63) and write

log

(
MESX,τn

MES+
X,τn

)
= log

(
E(1{Y1 > zY,τn})

1
n

∑n
t=1 1{Yt > zY,τn}

)
+ log

( 1
n

∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

E(X11{X1 > 0, Y1 > zY,τn})

)
+ log

( 1
n

∑n
t=1 1{Yt > zY,τn}

1
n

∑n
t=1 1{Yt > zY,τn}

)
+ log

( 1
n

∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

1
n

∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

)
. (C.65)

Firstly, using the asymptotic proportionality relationship F Y (zY,τn)/(1− τn) → z as n→ ∞,

√
n(1− τn)

( 1
n

∑n
t=1 1{Yt > zY,τn}

E(1{Y1 > zY,τn})
− 1

)
= z−1(1+o(1))

{
1√

n(1− τn)

n∑
t=1

[
1{Yt > zY,τn} − P(Y1 > zY,τn)

]}
.

We check the assumptions of Corollary 4.2 of Rootzén et al. (1998) to control the quantity in curly

brackets. By Lemma C.9, one has, as n→ ∞,

n

rn
Var

(
1√

n(1− τn)

ln∑
t=1

[
1{Yt > zY,τn} − P(Y1 > zY,τn)

])
= O

(
ln
rn

)
→ 0,

Var

 1√
n(1− τn)

n−rn⌊n/rn⌋∑
t=1

[
1{Yt > zY,τn} − P(Y1 > zY,τn)

] = O
(rn
n

)
→ 0,

and n

rn
Var

(
1√

n(1− τn)

rn∑
t=1

[
1{Yt > zY,τn} − P(Y1 > zY,τn)

])
→ z

(
1 + 2

∞∑
t=1

RY,t(1, 1)

)
<∞

where we recall that RY,t(1, 1) = rt(∞,∞, 1, 1). Setting

Zn,1 =
1√

n(1− τn)

rn∑
t=1

[
1{Yt > zY,τn} − P(Y1 > zY,τn)

]
,

we also have, for any η > 0,

n

rn
E(Z2

n,11{|Zn,1| > η}) ≤ η−δ × n

rn
E|Zn,1|2+δ = O

rn [ rn√
n(1− τn)

]δ→ 0
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by Hölder’s inequality and the asymptotic proportionality relationship F Y (zY,τn)/(1−τn) → z as n→ ∞.

[We can in fact take δ arbitrarily large here, but the more restrictive bound above appears again later in

the proof.] Applying Corollary 4.2 in Rootzén et al. (1998) and the delta method, we find√
n(1− τn)

( 1
n

∑n
t=1 1{Yt > zY,τn}

E(1{Y1 > zY,τn})
− 1

)
= OP(1). (C.66)

Secondly, using again the asymptotic proportionality relationship F Y (zY,τn)/(1− τn) → z as n→ ∞,√
n(1− τn)

( 1
n

∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

E(X11{X1 > 0, Y1 > zY,τn})
− 1

)
= z−1(1 + o(1))

{
1√

n(1− τn)

n∑
t=1

Xt1{Xt > 0, Yt > zY,τn} − E(X11{X1 > 0, Y1 > zY,τn})
E(X11{X1 > 0}|Y1 > zY,τn)

}
.

This time, we check the assumptions of Lemma C.7 to control the quantity between curly brackets above.

By Lemma C.9, one has, as n→ ∞,

n

rn
Var

(
1√

n(1− τn)

ln∑
t=1

Xt1{Xt > 0, Yt > zY,τn} − E(X11{X1 > 0, Y1 > zY,τn})
E(X11{X1 > 0}|Y1 > zY,τn)

)
= O

(
ln
rn

)
→ 0,

Var

 1√
n(1− τn)

n−rn⌊n/rn⌋∑
t=1

Xt1{Xt > 0, Yt > zY,τn} − E(X11{X1 > 0, Y1 > zY,τn})
E(X11{X1 > 0}|Y1 > zY,τn)

 = O
(rn
n

)
→ 0

and lim
n→∞

n

rn
Var

(
1√

n(1− τn)

rn∑
t=1

Xt1{Xt > 0, Yt > zY,τn} − E(X11{X1 > 0, Y1 > zY,τn})
E(X11{X1 > 0}|Y1 > zY,τn)

)
<∞.

Setting

Zn,1 =
1√

n(1− τn)

rn∑
t=1

Xt1{Xt > 0, Yt > zY,τn} − E(X11{X1 > 0, Y1 > zY,τn})
E(X11{X1 > 0}|Y1 > zY,τn)

,

we also have, for any η > 0,

n

rn
E(Z2

n,11{|Zn,1| > η}) ≤ η−δ × n

rn
E|Zn,1|2+δ = O

rn [ rn√
n(1− τn)

]δ→ 0

as n → ∞, by Hölder’s inequality, Lemma C.8(i) with a = 2 + δ, and the asymptotic proportionality

relationship F Y (zY,τn)/(1− τn) → z. By Lemma C.7 then,√
n(1− τn)

( 1
n

∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

E(X11{X1 > 0, Y1 > zY,τn})
− 1

)
= OP(1). (C.67)

Thirdly, by assumption, zY,τn is a
√
n(1− τn)-relatively consistent estimator of zY,τn , so that for any

η > 0, we may find K > 0 such that ∣∣∣∣zY,τnzY,τn
− 1

∣∣∣∣ ≤ K√
n(1− τn)
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with probability larger than 1− η eventually. Therefore∣∣∣∣∑n
t=1 1{Yt > zY,τn}∑n
t=1 1{Yt > zY,τn}

− 1

∣∣∣∣ ≤ max

(∣∣∣∣∣
∑n

t=1 1{Yt > zY,τn(1 +K/
√
n(1− τn))}∑n

t=1 1{Yt > zY,τn}
− 1

∣∣∣∣∣ ,∣∣∣∣∣
∑n

t=1 1{Yt > zY,τn(1−K/
√
n(1− τn))}∑n

t=1 1{Yt > zY,τn}
− 1

∣∣∣∣∣
)

and likewise∣∣∣∣∑n
t=1Xt1{Xt > 0, Yt > zY,τn}∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

− 1

∣∣∣∣ ≤ max

(∣∣∣∣∣
∑n

t=1Xt1{Xt > 0, Yt > zY,τn(1 +K/
√
n(1− τn))}∑n

t=1Xt1{Xt > 0, Yt > zY,τn}
− 1

∣∣∣∣∣ ,∣∣∣∣∣
∑n

t=1Xt1{Xt > 0, Yt > zY,τn(1−K/
√
n(1− τn))}∑n

t=1Xt1{Xt > 0, Yt > zY,τn}
− 1

∣∣∣∣∣
)
.

Recall (C.66) and (C.67): thanks to Lemma C.9, direct analogues of these equations can be shown with

zY,τn(1±K/
√
n(1− τn)) instead of zY,τn , and they imply

√
n(1− τn)

(∑n
t=1 1{Yt > zY,τn(1±K/

√
n(1− τn))}∑n

t=1 1{Yt > zY,τn}
− 1

)

= OP

(
1 +

√
n(1− τn)

∣∣∣∣∣P(Y1 > zY,τn(1±K/
√
n(1− τn)))

P(Y1 > zY,τn)
− 1

∣∣∣∣∣
)

and

√
n(1− τn)

(∑n
t=1Xt1{Xt > 0, Yt > zY,τn(1±K/

√
n(1− τn))}∑n

t=1Xt1{Xt > 0, Yt > zY,τn}
− 1

)

= OP

(
1 +

√
n(1− τn)

∣∣∣∣∣E(X11{X1 > 0, Y1 > zY,τn(1±K/
√
n(1− τn))})

E(X11{X1 > 0, Y1 > zY,τn})
− 1

∣∣∣∣∣
)
.

[Note the form of the OP terms, which correct those of the proof of Theorem 4 in Daouia et al. (2018, p.14

of the Supplementary Material).] By Lemma C.8(ii) with zn = zY,τn and zn = zY,τn(1±K/
√
n(1− τn)),

local uniformity of second-order regular variation (see Theorem 2.3.9 in de Haan & Ferreira 2006), and

the convergences
√
n(1− τn)AX((1 − τn)

−1) → 0 (that follows from condition (iii) in the statement of

the Theorem, since γX < 1) and
√
n(1− τn)AY ((1− τn)

−1) → 0 as n→ ∞, we therefore obtain

√
n(1− τn)

(∑n
t=1 1{Yt > zY,τn}∑n
t=1 1{Yt > zY,τn}

− 1

)
= OP(1) (C.68)

and √
n(1− τn)

(∑n
t=1Xt1{Xt > 0, Yt > zY,τn}∑n
t=1Xt1{Xt > 0, Yt > zY,τn}

− 1

)
= OP(1). (C.69)
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Combining (C.65), (C.66), (C.67), (C.68) and (C.69) concludes the proof of (C.63).

Now, to prove (C.64), apply Lemma C.8(ii) and use the regular variation properties of |AX | and F Y to

get √
n(1− τn)

(
MES+

X,τn

UX(1/F Y (zY,τn))
−
∫ ∞

0

R(X,Y )(x
−1/γX , 1) dx

)
= o(1) (C.70)

and
√
n(1− τn)

(
MES+

X,τ ′n

UX(1/F Y (zY,τ ′n))
−
∫ ∞

0

R(X,Y )(x
−1/γX , 1) dx

)
= o(1). (C.71)

Using the assumptions√
n(1− τn)

(
F Y (zY,τn)

1− τn
− z

)
= o(1) and

√
n(1− τn)

(
F Y (zY,τ ′n)

1− τ ′n
− z

)
= o(1)

we get, by local uniformity of Condition C∗ (see Theorem 2.3.9 in de Haan & Ferreira 2006), the assump-

tion ρX < 0 and convergence
√
n(1− τn)AX((1− τn)

−1) → 0 as n→ ∞ that√
n(1− τn)

(
UX(1/F Y (zY,τn))

UX(1/F Y (zY,τ ′n))

(
1− τ ′n
1− τn

)−γX

− 1

)
= o(1). (C.72)

Combining (C.70), (C.71) and (C.72) completes the proof of (C.64) and thus the proof of the result

itself.

Proof of Theorem 5.1∗. We focus on the composite LAWS estimator, the proof being entirely similar for

the composite QB estimator. Suppose generally that
√
n(1− τn) (γ̂n − γ)

d−→ Γ where Γ is a nondegen-

erate distribution. Our first goal is to show that

1− τ̂ ′n(αn)

1− τ ′n(αn)
= 1 + OP

(
1√

n(1− τn)

)
. (C.73)

To this end, we write

1− τ̂ ′n(αn)

1− τ ′n(αn)
− 1 =

γ̂n
γ

× 1− γ

1− γ̂n
×

(1− αn)
γ

1− γ

1− τ ′n(αn)
− 1. (C.74)

The delta-method yields √
n(1− τn)

(
γ

γ̂n
× 1− γ̂n

1− γ
− 1

)
= OP(1). (C.75)

Writing E((Y − t)1{Y > t}) =
∫∞
t
F (x) dx for any t and using the heavy-tailed assumption entails, after

straightforward calculations,

(1− αn)
γ

1− γ

E
[∣∣∣∣ Yqαn

− 1

∣∣∣∣1{Y > qαn}
] − 1 = O[A(1/F (qαn))] = o(1/

√
n(1− τn)), (C.76)
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because of the continuity of F and the regular variation property of |A|. Write further

E
∣∣∣∣ Yqαn

− 1

∣∣∣∣− 1 = E
[∣∣∣∣ Yqαn

− 1

∣∣∣∣1{Y > qαn}
]
− E(Y 1{Y ≤ qαn})

qαn

− F (qαn)

= O (max (1− αn, 1/qαn)) = o(1/
√
n(1− τn)) (C.77)

where we successively used (C.75), the dominated convergence theorem, the relationship 1−αn = o(1/qαn)

valid because 0 < γ < 1, and the regular variation property of t 7→ q1−t−1 . Combining (C.74), (C.75),

(C.76) and (C.77) with the definition of τ ′n(αn) results in (C.73).

Write now

ξ̃⋆τ̂ ′n(αn) =

(
1− τ̂ ′n(αn)

1− τn

)−γ̂n

ξ̃τn =

(
1− τ̂ ′n(αn)

1− τ ′n(αn)

)−γ̂n

×

{(
1− τ ′n(αn)

1− τn

)−γ̂n

ξ̃τn

}
. (C.78)

By (C.73), the
√
n(1− τn)-convergence of γ̂n, and a Taylor expansion,(

1− τ̂ ′n(αn)

1− τ ′n(αn)

)−γ̂n

= 1 + OP

(
1√

n(1− τn)

)
. (C.79)

Furthermore (
1− τ ′n(αn)

1− τn

)−γ̂n

ξ̃τn = ξ̃⋆τ ′n(αn)

by definition of the class of estimators ξ̃⋆. From the convergence (1 − τ ′n(αn))/(1 − αn) → γ/(1 − γ) as

n→ ∞, we conclude that Proposition C.6 can be applied, and this gives√
n(1− τn)

log[(1− τn)/(1− τ ′n(αn))]

(
ξ̃⋆τ ′n(αn)

ξτ ′n(αn)

− 1

)
d−→ Γ.

Finally

log

[
1− τn

1− τ ′n(αn)

]
= log

[
1− τn
1− αn

]
+ log

[
1− αn

1− τ ′n(αn)

]
= log

[
1− τn
1− αn

]
(1 + o(1)).

Together with the equality ξτ ′n(αn) = qαn which is true by definition of τ ′n(αn), this entails√
n(1− τn)

log[(1− τn)/(1− αn)]

(
ξ̃⋆τ ′n(αn)

qαn

− 1

)
d−→ Γ. (C.80)

Combining (C.78), (C.79) and (C.80) completes the proof.

Proof of Theorem 5.2∗. This proof is similar to that of Theorem 5.1∗ and is thus omitted.
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Proof of Theorem 6.1∗. Define

χn(u) :=
1

2ξ2τn(ε)

n∑
t=1

[
ητn

(
ε̂
(n)
t − ξτn(ε)−

uξτn(ε)√
n(1− τn)

)
− ητn(ε̂

(n)
t − ξτn(ε))

]
,

ψn(u) :=
1

2ξ2τn(ε)

n∑
t=1

[
ητn

(
εt − ξτn(ε)−

uξτn(ε)√
n(1− τn)

)
− ητn(εt − ξτn(ε))

]
.

The χn and ψn define sequences of convex and everywhere finite functions on R. Moreover

√
n(1− τn)

(
ξ̃τn(ε)

ξτn(ε)
− 1

)
= argmin

u∈R
χn(u)

and as n→ ∞,

ψn(u)
d−→ −u

√√√√ 2γ

1− 2γ
+ 2(γ−1 − 1)

∫∫
[1,∞)2

∞∑
t=1

Rt(x−1/γ , y−1/γ) dx dy × Z +
u2

2γ

in the sense of finite-dimensional convergence (see the proof of Theorem 3.1∗), so by Theorem 5 in Knight

(1999), it is enough to prove that χn(u)− ψn(u)
P−→ 0 for any u ∈ R.

Define In(u) = [0, |u|ξτn(ε)/
√
n(1− τn)]. Follow the proof of Theorem 2.1 in Girard et al. (2021) to find

that it is sufficient to prove T1,n
P−→ 0 and T2,n(u)

P−→ 0, where

T1,n :=

√
1− τn

ξτn(ε)
√
n

n∑
t=1

|ε̂(n)t − εt|,

T2,n(u) :=
2

ξτn(ε)
√
n(1− τn)

n∑
t=1

sup
|s|∈In(u)

|ε̂(n)t − εt|1{εt − ξτn(ε)− s > min(εt − ε̂
(n)
t , 0)}.

Clearly, if En := max
1≤t≤n

|ε̂(n)t − εt|
1 + |εt|

, then
√
n(1− τn)En = oP(1) by Condition F∗, and

T1,n ≤

[√
n(1− τn)

ξτn(ε)
En

]
× 1

n

n∑
t=1

(1 + |εt|)

= (1 + E|ε|)

[√
n(1− τn)

ξτn(ε)
En

]
× 1

n

n∑
t=1

1 + |εt|
1 + E|ε|

.

The average on the right-hand side has unit expectation by stationarity of (εt), so the Markov inequality

applies to give

T1,n = OP

(√
n(1− τn)

ξτn(ε)
En

)
= oP(1).
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To show T2,n(u)
P−→ 0, we again follow the proof of Theorem 2.1 in Girard et al. (2021) to find that it is

sufficient to prove that

T ′
2,n :=

2

ξτn(ε)
√
n(1− τn)

n∑
t=1

|ε̂(n)t − εt|1
{
εt >

1

6
ξτn(ε)

}
P−→ 0.

Bound T ′
2,n as

T ′
2,n ≤ 2

[√
n(1− τn)

ξτn(ε)
En

]
× 1

n(1− τn)

n∑
t=1

(1 + |εt|)1
{
εt >

1

6
ξτn(ε)

}
≤ 4

E(ε1{ε > ξτn(ε)/6})
ξτn(ε)(1− τn)

[√
n(1− τn)En

]
× 1

n

n∑
t=1

εt1{εt > ξτn(ε)/6}
E(ε1{ε > ξτn(ε)/6})

for n large enough. Using the Markov inequality again, we get

T ′
2,n = OP

(
E(ε1{ε > ξτn(ε)/6})

ξτn(ε)(1− τn)

[√
n(1− τn)En

])
.

Straightforward calculations yield, for any sn → ∞, that

E(ε1{ε > sn})
snF (sn)

= 1 +
E((ε− sn)1{ε > sn})

snF (sn)
= 1 +

1

sn

∫ ∞

sn

F (x)

F (sn)
dx→ 1

1− γ
;

this follows from the heavy tail assumption on ε with γ < 1 and Proposition B.1.10 p.369 in de Haan &

Ferreira (2006). Apply this with sn = ξτn(ε)/6 and use the heavy tail assumption and the asymptotic

proportionality relationship F (ξτn(ε))/(1− τn) → γ−1− 1 (see for example Proposition 1 in Daouia et al.

(2019) with p = 2) to obtain

T ′
2,n = OP

(√
n(1− τn)En

)
= oP(1).

The proof is complete.

Lemma C.10 is key to the asymptotic analysis of residual-based extreme value estimators under general

dependence conditions.

Lemma C.10. Let the time series (εt, t = 1, 2, . . .) be stationary and ergodic, with a continuous one-

dimensional marginal distribution function F having an infinite right endpoint. Let k = k(n) → ∞ be a

sequence of integers with k/n → 0. Suppose further that the array of random variables ε̂(n)t , 1 ≤ t ≤ n,

satisfies

En := max
1≤t≤n

|ε̂(n)t − εt|
1 + |εt|

P−→ 0.

Then we have both

sup
0<s≤1

∣∣∣∣∣ ε̂
(n)
n−⌊ks⌋,n

εn−⌊ks⌋,n
− 1

∣∣∣∣∣ = OP(En) and sup
0<s≤1

∣∣∣∣∣log
(
ε̂
(n)
n−⌊ks⌋,n

εn−⌊ks⌋,n

)∣∣∣∣∣ = OP(En).
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Proof of Lemma C.10. Inspecting the proof of Lemma A.3 in Girard et al. (2021) shows that it will carry

over to the present case, and thus yield the desired result, provided εn−k,n
P−→ +∞.

Suppose not. Then there exist δ,M > 0 and a subsequence of integers n = np → ∞ such that

P(εnp−k(np),np ≤M) > δ for any p. Consequently,

1

np

np∑
i=1

1{εi ≤M} ≥ 1− k(np)

np

→ 1 as p→ ∞

with probability at least δ. However, by ergodicity of the εi,

lim
p→∞

1

np

np∑
i=1

1{εi ≤M} = P(ε ≤M) < 1

with probability 1, since the right endpoint of F is finite. This is an obvious contradiction.

Proof of Theorem 6.2∗. Adapt the proof of Theorem 2.2 in Girard et al. (2021) by applying Lemma C.10

and Theorem 3.3∗ rather than Lemma A.3 in Girard et al. (2021) and Theorem 2.4.8 in de Haan &

Ferreira (2006, p.52).

Proof of Corollary 6.3∗. Adapt the proof of Corollary 2.1 in Girard et al. (2021) by applying our Theo-

rem 6.2∗ rather than Theorem 2.2 in Girard et al. (2021).

Proof of Theorem 6.4∗. Theorem 6.1∗ gives the
√
n(1− τn)−asymptotic normality of ξ̃τn(ε), and Corol-

lary 6.3∗ gives the
√
n(1− τn)−asymptotic normality of ξ̂τn(ε) and γ̂n(ε) = γ̂Hn (ε). Apply Proposi-

tion C.6 to complete the proof of the asymptotic normality of ξ⋆τ ′n(ε) (note that the assumption that√
n(1− τn)q

−1
τn (ε) = O(1), rather than

√
n(1− τn)q

−1
τn (ε) → λ2, is sufficient because E(ε) = 0). The

proof of the asymptotic normality of ξ⋆τ ′n(Y1 | X1 = x) follows immediately by a simple calculation.

Proof of Theorem 6.5∗. The estimator γ̂Hn (ε) is
√
n(1− τn)−asymptotically normal by Corollary 6.3∗.

The proof of Theorem 5.1∗ then carries over to the present context without change.

D Consistency of the estimator ŵn(γ,R)

We here sketch the proof of the consistency of the estimator ŵn(γ,R) of the asymptotic variance w(γ,R) =

γ2{1 + 2
∑∞

t=1Rt(1, 1)}, see Section 5∗. Recall the notation

Ẑj = Ẑj,n =

rn+jℓn∑
t=1+jℓn

1{F̂n(Yt) ≥ τn}
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for j = 0, 1, . . . ,mn − 1, where mn = bn/ℓnc, ℓn = rn + ln, and F̂n is the empirical distribution function

calculated on the whole sample. Define

Zj,n =

rn+jℓn∑
t=1+jℓn

1{F (Yt) ≥ τn}

which would be the “ideal” version of the Ẑj,n that one would use instead if the distribution function F

were known. By stationarity, Zj,n
d
=
∑rn

i=1 1{F (Yi) ≥ τn}, whose variance is asymptotically equivalent

to {1 + 2
∑∞

t=1Rt(1, 1)}rn(1 − τn) by Proposition 2.1 in Drees (2003). Up to using a suitable law of

large numbers to handle the empirical variance of the Zj,n (see Lemma C.7), and since γ̂Hn is a consistent

estimator of γ as a consequence of Theorem 3.3∗, the main task in proving consistency of ŵn(γ,R) is to

show that

1

rn(1− τn)

∣∣∣∣∣∣Σn −
1

mn

mn∑
j=1

(
Zj,n −

1

mn

mn∑
i=1

Zi,n

)2
∣∣∣∣∣∣

=
1

rn(1− τn)

∣∣∣∣∣∣ 1

mn

mn∑
j=1

(
Ẑj,n −

1

mn

mn∑
i=1

Ẑi,n

)2

− 1

mn

mn∑
j=1

(
Zj,n −

1

mn

mn∑
i=1

Zi,n

)2
∣∣∣∣∣∣ P−→ 0,

that is, the empirical variances of the Zj,n and Ẑj,n are asymptotically equivalent. It is then sufficient to

show that
1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑ2
j,n − Z2

j,n|
P−→ 0

and
1

rn(1− τn)

∣∣∣∣∣∣
(

1

mn

mn∑
j=1

Ẑj,n

)2

−

(
1

mn

mn∑
j=1

Zj,n

)2
∣∣∣∣∣∣ P−→ 0.

Since, by Lemma C.7,
1

rn(1− τn)
× 1

mn

mn∑
j=1

Zj,n
P−→ 1,

straightforward algebra shows that it is in fact enough to prove that

1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑj,n − Zj,n|
P−→ 0 and 1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑ2
j,n − Z2

j,n|
P−→ 0. (D.81)

The proof of the first of these two convergences gives the idea for the proof of the second one. The key

observation is that, for any distribution function G with associated quantile function Q, the inequalities

Q(α) ≤ x and α ≤ G(x) (where α ∈ (0, 1) and x ∈ R) are equivalent. Consequently,

Ẑj,n =

rn+jℓn∑
t=1+jℓn

1{Yt ≥ q̂τn} and Zj,n =

rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn}.
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Set εn = {n(1 − τn)}−1/4 and apply Theorem 3.3∗ to find that the event An := {qτn(1 − εn) ≤ q̂τn ≤

qτn(1 + εn)} has probability converging to 1 as n → ∞, so that it suffices to work on An to prove the

required convergences in probability, which we do from now on. We get
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1 + εn)} ≤ Ẑj,n ≤
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1− εn)}. (D.82)

It follows that

1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑj,n − Zj,n|

≤ 1

mn

mn∑
j=1

(
1

rn(1− τn)

rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1− εn)} − 1{Yt ≥ qτn(1 + εn)}

)
.

Taking into account that εn → 0, and therefore that F (qτn(1±εn)) = (1−τn)(1+o(1)) by local uniformity

of the regular variation property, the expectation of the above upper bound is immediately found to be

o(1), so that
1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑj,n − Zj,n|
P−→ 0.

Then recall (D.82) to find(
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1 + εn)}

)2

≤ Ẑ2
j,n ≤

(
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1− εn)}

)2

and therefore

1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑ2
j,n − Z2

j,n|

≤ 1

mn

mn∑
j=1

1

rn(1− τn)


(

rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1− εn)}

)2

−

(
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1 + εn)}

)2
 . (D.83)

Note finally that

E

(
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1± εn)}

)2

= Var

(
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1± εn)}

)
+O({rn(1− τn)}2).

Recall that F (qτn(1 ± εn)) = (1 − τn)(1 + o(1)), so, by a straightforward extension of the first half of

Lemma C.2,

E

(
rn+jℓn∑
t=1+jℓn

1{Yt ≥ qτn(1± εn)}

)2

= rn(1− τn)

{
1 + 2

∞∑
t=1

Rt(1, 1) + o(1)

}
.
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Thus the expectation of the upper bound in (D.83) is o(1), from which we obtain

1

rn(1− τn)
× 1

mn

mn∑
j=1

|Ẑ2
j,n − Z2

j,n|
P−→ 0.

This completes the proof of (D.81) as required.
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