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Abstract

Expectiles define the only law-invariant, coherent and elicitable risk measure apart
from the expectation. The popularity of expectile-based risk measures is steadily
growing and their properties have been studied for independent data, but further
results are needed to establish that extreme expectiles can be applied with the kind of
dependent time series models relevant to finance. In this paper we provide a basis for
inference on extreme expectiles and expectile-based marginal expected shortfall in a
general β-mixing context that encompasses ARMA and GARCH models with heavy-
tailed innovations. Our methods allow the estimation of marginal (pertaining to the
stationary distribution) and dynamic (conditional on the past) extreme expectile-
based risk measures. Simulations and applications to financial returns show that the
new estimators and confidence intervals greatly improve on existing ones when the
data are dependent.

Keywords: Asymmetric least squares estimation, Marginal expected shortfall, Mixing, Tail
copula, Weak dependence.
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1 Introduction

Quantifying the risk associated to a profit-loss variable Y ∈ R is a key problem in financial
econometrics. The best-known quantile-based risk measures have serious deficiencies: the
Value-at-Risk is not coherent (Artzner et al. 1999) and only depends on the frequency of tail
losses and not on their actual values, while the expected shortfall is not elicitable (Gneiting
2011) and thus does not benefit from the existence of a natural backtesting methodology.
The expectile (Newey & Powell 1987), which extends the mean just as a quantile extends
the median, addresses these issues. It is defined as

ξτ = argmin
θ∈R

E{ητ (Y − θ)− ητ (Y )}, with ητ (u) = |τ − 1{u ≤ 0}|u2, (1)

in which E denotes expectation, 1{·} is the indicator function, and τ ∈ (0, 1) is the level
of the expectile. This risk measure is related to the popular gain-loss ratio performance
measure (see Bellini & Di Bernardino 2017, and references therein), and it depends on
both the realisations of Y and their probabilities. Moreover, expectiles with τ ≥ 1/2

induce the only risk measure that is law-invariant, coherent and elicitable. These results
and others indicate that expectiles define sensible alternatives to the Value-at-Risk and
expected shortfall, and inference for them has recently burgeoned.

Providing an accurate picture of financial and actuarial risk generally requires the esti-
mation of risk measures at extreme levels, representing a very high level of prudentiality.
For example, compliance with the European Union Solvency II directive essentially requires
the estimation of the 99.5% quantile of financial losses over the next 12 months. A prereq-
uisite for the wide adoption of expectiles as an instrument of risk protection is therefore
a toolbox for their estimation at extreme levels, i.e., for τ ≈ 1, in models that accurately
represent actuarial and financial data. The techniques available for expectile estimation
with dependent data, such as those in Kuan et al. (2009), Xie et al. (2014) and Jiang et al.
(2021), are restricted to central expectiles, whose level stays away from 0 and 1. The only
method for the estimation of marginal extreme expectiles with dependent data of which we
are aware, due to Daouia et al. (2019), can only handle ϕ-mixing data, and as such does not
allow the consideration of typical time series in finance, such as ARMA and GARCH mod-
els. Any inference based on such results may thus provide erroneous and overly-optimistic
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results, unless one uses lower-frequency data in order to reduce dependence (as in Daouia
et al. 2018, 2020), although this makes interpreting the results more difficult.

Here we develop new tools for inference for extreme expectile-based risk measures based
on β-mixing heavy-tailed strictly stationary time series, which encompass many widely-used
models. We first consider the prediction of marginal (pertaining to the stationary distri-
bution of the series) tail expectiles, for which τn = 1 − pn → 1 at any possible rate as
the sample size n → ∞; typically npn is bounded, say pn ≤ 1/n, and then the expectile
is expected to fall in a neighbourhood of or above the largest observations available. We
then expand our statistical model to bivariate β-mixing time series {(Xt, Yt), t = 1, 2, . . .}

and establish estimation results for the marginal expected shortfall, which is important
in assessing systemic risk (Acharya et al. 2017, Brownlees & Engle 2017). Our results
apply to both the expectile- and quantile-based forms of the extreme marginal expected
shortfall. We discuss the construction of confidence intervals for extreme expectile-based
risk measures based on our theory and we show that they properly capture the amount of
uncertainty in typical financial applications, unlike existing methods. Our last contribution
is to discuss conditional or dynamic extreme expectile estimation in heteroskedastic regres-
sion models whose errors form a strictly stationary but dependent sequence. Our setup
encompasses misspecified regression models, as well as popular financial time series models
and in particular the celebrated GARCH-EVT framework of McNeil & Frey (2000). The
asymptotic theory of marginal extreme expectile inference is shown to extend to this con-
text when extreme conditional or dynamic expectiles are estimated based on the residuals
of a regression model that are sufficiently close to the unobserved errors.

Our methods form part of the R package ExtremeRisks available on CRAN. The on-
line Supplementary Material contains technical results, proofs and further numerical work.
Section 2 of the paper explains our statistical context. Section 3 considers extreme expec-
tile estimation. Section 4 introduces a general bivariate time series context within which
general MES estimators at extreme levels are investigated. Section 5 provides a finite-
sample procedure for constructing confidence intervals and discusses the selection of the
expectile level in practice. Section 6 focuses on conditional extreme expectile estimation in
heteroskedastic time series models. The methods are applied to simulated data in Section 7
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and to real financial data in Section 8. Section 9 draws conclusions.

2 Statistical model and time series framework

Let (Yt, t = 1, 2, . . .) be a strictly stationary time series whose continuous marginal distri-
bution F has survival function F = 1 − F and tail quantile function U : s 7→ inf{y ∈ R :

1/F (y) ≥ s}. Throughout the paper Y should be seen as the negative of a generic financial
position, so large positive values of Y represent extreme losses. We focus on heavy-tailed
distributions and therefore assume that, for any y > 0, F (sy)/F (s) → y−1/γ as s → ∞,
or equivalently U(sy)/U(s) → yγ. The tail index γ > 0 specifies the tail weight of F .
Together with the condition E|Y−| < ∞, where Y− = min(Y, 0), the assumption γ < 1

ensures that E|Y | < ∞, and then the expectile ξτ is well-defined by (1) for any τ .
We assume that the time series is β-mixing. For any m ≥ 1, let F1,m = σ(Y1, . . . , Ym)

and Fm,∞ = σ(Ym, Ym+1, . . .) denote the past and future σ-fields generated by (Yt). Then
(Yt) is β-mixing if the coefficients β(l) = supm≥1 βm(l) satisfy β(l) → 0 as l → ∞, where

βm(l) = E[sup{|P(B | F1,m)− P(B)| : B ∈ Fm+l,∞}], l = 1, 2, . . . .

Doukhan (1994, Section 2.4) shows that many Markov processes are geometrically β-mixing:
under mild conditions there exists a ∈ (0, 1) such that β(l) ≤ al for large enough l. This
motivates the following basic assumption.

Condition A. The time series (Yt, t = 1, 2 . . .) is strictly stationary and β-mixing and its
one-dimensional marginal distribution function F is continuous and heavy-tailed.

Our first goal is to estimate an unconditional marginal extreme expectile ξτ ′n of Y = Y1,
where τ ′n → 1 as n → ∞, given data Y1, . . . , Yn from a time series satisfying Condition A.

3 Expectile estimation in time series

3.1 At intermediate levels

Let τn represent a sequence of probabilities such that τn → 1 and n(1 − τn) → ∞ as
n → ∞. A natural estimator of the expectile ξτn of the marginal distribution F is the em-
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pirical counterpart of (1), i.e., the least asymmetrically weighted squares (LAWS) estimator
ξ̃τn = argminθ∈R

∑n
t=1 ητn(Yt−θ). This is readily computed using iterative reweighted least

squares. Another estimator exploits an asymptotic proportionality relationship between
the high expectile ξτ and the corresponding quantile qτ : following Bellini et al. (2014),

lim
τ→1

ξτ
qτ

= (γ−1 − 1)−γ, when γ < 1. (2)

Thus a quantile-based estimator of ξτn is ξ̂τn = (γ̂−1
n − 1)−γ̂n q̂τn , where q̂τn = Yn−⌊n(1−τn)⌋,n

is the empirical counterpart of qτn , Y1,n ≤ · · · ≤ Yn,n denote ascending order statistics, and
γ̂n is a consistent estimator of γ. Here bxc is the largest integer smaller than or equal to
x. We focus on two simple estimators. The first, due to Hill (1975),

γ̂H
n =

1

bn(1− τn)c

⌊n(1−τn)⌋∑
i=1

log

(
Yn−i+1,n

Yn−⌊n(1−τn)⌋,n

)
,

is the maximum likelihood estimator in a Pareto model. The second arises on taking
τ = τn → 1 and estimating F (ξτ ) by F̂ n(ξ̃τn), where F̂ n(u) = n−1

∑n
t=1 1{Yt > u} is

the empirical survival function, yielding the expectile-based (EB) estimator γ̂E
n = (1 +

F̂ n(ξ̃τn)/(1− τn))
−1.

Our first main results rely on the following conditions concerning dependence within
the time series (Yt) and the gap between the right tail of F and a purely Pareto tail.

Condition B. The time series (Yt, t = 1, 2, . . .) has the following properties:

(i) there exist sequences of integers (ln) and (rn) such that ln → ∞, rn → ∞, ln/rn → 0,
rn/n → 0 and nβ(ln)/rn → 0 as n → ∞;

(ii) for any t = 1, 2, . . . there exists a function Rt on E2 = [0,∞]2 \ {(∞,∞)} such that

lim
s→∞

sP
{
F (Y1) ≤

x

s
, F (Yt+1) ≤

y

s

}
= Rt(x, y), (x, y) ∈ E2;

(iii) there exist D ≥ 0 and nonnegative ρ(t) satisfying
∑∞

t=1 ρ(t) < ∞ and such that for s
large enough, any t = 1, 2, . . ., and all u, u′, v, v′ ∈ [0, 1] such that u′ < u and v′ < v,

sP
{
u′

s
< F (Y1) ≤

u

s
,
v′

s
< F (Yt+1) ≤

v

s

}
≤ ρ(t)

√
(u− u′)(v − v′)

+
D

s
(u− u′)(v − v′).
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Conditions B(i) and B(ii) have been employed previously in extreme value analysis with
mixing conditions (e.g., Drees 2003, Drees & Rootzén 2010). The sequences (ln) and (rn)

in Condition B(i) are small-block and big-block sequences used for standard arguments in
the literature on mixing time series. Condition B(iii) is slightly more precise than condition
(C3) in Drees (2003). Condition B is discussed further in the Supplementary Material.

Condition C. There exist ρ ≤ 0 and a measurable function A(·) having constant sign and
converging to zero at infinity such that

lim
s→∞

1

A{1/F (s)}

{
F (sy)

F (s)
− y−1/γ

}
= y−1/γ y

ρ/γ − 1

γρ
, y > 0;

when ρ = 0, the right-hand side should be read as γ−2y−1/γ log y.

We start with a general result on the LAWS estimator ξ̃τn .

Theorem 3.1. Assume that Conditions A and B are satisfied and that there exists some
δ > 0 such that E|Y−|2+δ < ∞, 0 < γ < 1/(2 + δ) and

∑
l≥1[β(l)]

δ/(2+δ) < ∞. Let τn ↑ 1 be
such that n(1− τn) → ∞, rn(1− τn) → 0 and rn(rn/

√
n(1− τn))

δ → 0 as n → ∞. Then

√
n(1− τn)

(
ξ̃τn
ξτn

− 1

)
d−→ N

(
0,

2γ3

1− 2γ
{1 + σ2(γ,R)}

)
, n → ∞,

with σ2(γ,R) =
(1− γ)(1− 2γ)

γ2

∫∫
[1,∞)2

∞∑
t=1

Rt(x
−1/γ, y−1/γ) dx dy.

The proof uses rather delicate arguments involving a tailored dependent central limit
theory for tail array sums. The family of functions R = (Rt, t = 1, 2, . . .) specifies the
extremal dependence within the time series between different time points; when Rt ≡ 0 for
all t ≥ 1 (e.g., when (Yt) is i.i.d.), the asymptotic variance is 2γ3/(1 − 2γ). The quantity
σ2(γ,R) represents the proportion of increase of this asymptotic variance due to the mixing
setting. The conditions E|Y−|2+δ < ∞ and 0 < γ < 1/(2+δ) essentially amount to assuming
that the time series Yt has a finite variance. Our assumptions are very mild when β(l)

converges to 0 geometrically fast as l → ∞. In that case, condition
∑

l≥1[β(l)]
δ/(2+δ) < ∞ is

satisfied for any δ > 0, and one may choose ln = bC log nc, rn = blog2(n)c and τn = 1−n−τ ,
for any τ ∈ (0, 1) and sufficiently large C. As mentioned in Section 2, geometrically strong
β-mixing covers many widely-used financial time series models, including ARMA processes,
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ARCH/GARCH processes and solutions of stochastic difference equations (see Doukhan
1994, Drees 2000, 2003, Francq & Zakoïan 2006, Boussama et al. 2011). More generally,
assumptions such as Conditions A and B are typically satisfied by classical linear time
series and heteroskedastic time series; see Section 4 in Drees (2000), Section 3 in Drees
(2003) and Section 5 in de Haan et al. (2016), which also provide expressions for the Rt.
The following corollary provides a rigorous statement in the geometrically mixing case.

Corollary 3.2. Suppose that Conditions A and B(ii)-(iii) are satisfied, and that β(l) =

O(al) for some a ∈ (0, 1). Suppose also that there exists δ > 0 such that E|Y |2+δ < ∞. Let
τn = 1− n−τ , for some τ ∈ (0, 1). Then, with the notation of Theorem 3.1,

√
n(1− τn)

(
ξ̃τn
ξτn

− 1

)
d−→ N

(
0,

2γ3

1− 2γ
{1 + σ2(γ,R)}

)
, n → ∞.

Theorem 3.1 and Corollary 3.2 represent a substantial step in the risk management
literature, for they allow one to handle many important financial examples.

We now consider the estimators ξ̂τn based on γ̂H
n and γ̂E

n . In this case the crucial
result, which is of interest in its own right, provides a joint Gaussian approximation of
the tail empirical quantile process and its logarithm, s 7→ q̂1−(1−τn)s = Yn−⌊n(1−τn)s⌋,n and
s 7→ log q̂1−(1−τn)s, in our mixing framework. See Theorem 2.4.8 in de Haan & Ferreira
(2006) for a result restricted to the i.i.d. case, as well as Proposition A.1 in de Haan et al.
(2016) and Proposition 1 in Chavez-Demoulin & Guillou (2018), for related but different
statements that do not apply in our setup.

Theorem 3.3. Suppose that Conditions A, B and C are satisfied, and that τn ↑ 1, n(1 −
τn) → ∞, rn(1 − τn) → 0, rn log

2(n(1 − τn))/
√
n(1− τn) → 0 and

√
n(1− τn)A((1 −

τn)
−1) = O(1) as n → ∞. Suppose also that n(1−τn) is a sequence of integers and pick s0 >

0. Then there exist versions of the process s 7→ q̂1−(1−τn)s and a continuous, centred Gaussian
process W having covariance function r(x, y) = min(x, y) +

∑∞
t=1 Rt(x, y) + Rt(y, x) such

that, for any ε > 0 sufficiently small, we have as n → ∞, uniformly in s ∈ (0, s0],

q̂1−(1−τn)s

qτn
= s−γ

(
1 +

γs−1W (s)√
n(1− τn)

+
s−ρ − 1

ρ
A((1− τn)

−1) + oP

(
s−1/2−ε√
n(1− τn)

))
,

log
q̂1−(1−τn)s

qτn
= −γ log s+

γs−1W (s)√
n(1− τn)

+
s−ρ − 1

ρ
A((1− τn)

−1) + oP

(
s−1/2−ε√
n(1− τn)

)
.
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Condition B is used in Theorem 3.3 for consistency with our framework; an inspection of
the proof shows that Condition B(iii) can be replaced by its version with (u, v) = (u′, v′).
A consequence of Theorem 3.3 is that one may determine the asymptotic behaviour of
the pair (γ̂H

n , q̂τn), which we then use in the following corollary to establish the limiting
distribution of the estimator ξ̂τn constructed using γ̂H

n as the tail index estimator.

Corollary 3.4. Assume that Conditions A, B and C are satisfied, with E|Y−| < ∞ and
0 < γ < 1. Let τn ↑ 1 be such that n(1 − τn) → ∞, rn(1 − τn) → 0, rn log

2(n(1 −

τn))/
√

n(1− τn) → 0,
√

n(1− τn)A((1 − τn)
−1) → λ1 ∈ R and

√
n(1− τn)q

−1
τn → λ2 ∈ R

as n → ∞. Then, for γ̂n = γ̂H
n in the estimator ξ̂τn, one has√

n(1− τn)

(
ξ̂τn
ξτn

− 1

)
d−→ N

(
m(γ)

1− ρ
λ1 − λ, γ2 vH(γ,R)

)
, n → ∞,

where m(γ) = (1− γ)−1 − log(γ−1 − 1),

λ =

(
(γ−1 − 1)−ρ

1− γ − ρ
+

(γ−1 − 1)−ρ − 1

ρ

)
λ1 + γ(γ−1 − 1)γE(Y )λ2,

and

vH(γ,R) = (1 + [m(γ)]2)

(
1 + 2

∞∑
t=1

Rt(1, 1)

)

+ 2m(γ)

∫ 1

0

∞∑
t=1

[
Rt(s, 1) +Rt(1, s)

s
− 2Rt(1, 1)

]
ds.

To the best of our knowledge, Corollary 3.4 is the first result on the estimator ξ̂τn at
intermediate levels under weak dependence assumptions (i.e., in the β-mixing framework).
The asymptotic properties of ξ̂τn using the estimator γ̂E

n are given in Theorem C.5 in the
Supplementary Material; owing to asymptotic variance considerations, γ̂E

n tends to be less
variable than the Hill estimator (in the i.i.d. case, when γ < 0.38). This may make it
valuable in constructing confidence intervals that require an estimate of γ, as we illustrate
in Sections B.1 and B.2 of the Supplementary Material when constructing such intervals
for intermediate expectiles.

3.2 At extreme levels

We now consider estimating extreme expectiles ξτ ′n whose level τ ′n → 1 satisfies n(1−τ ′n) →

c ∈ [0,∞) as n → ∞. A typical choice in applications is τ ′n = 1 − pn for an exceedance
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probability pn not greater than 1/n (e.g., Cai et al. 2015). Our semiparametric approach
is motivated by combining the heavy-tailed assumption and condition (2) and defines an
extreme expectile estimator through a Weissman (1978)-type construction, whereby

ξτ ′n
ξτn

≈
qτ ′n
qτn

=
U((1− τ ′n)

−1)

U((1− τn)−1)
≈
(
1− τ ′n
1− τn

)−γ

, (3)

for n large. This suggests the following class of plug-in estimators of ξτ ′n ,

ξ
⋆

τ ′n
≡ ξ

⋆

τ ′n
(τn) =

(
1− τ ′n
1− τn

)−γ̂n

ξτn ,

where γ̂n and ξτn are consistent estimators of γ and of the expectile ξτn . We call ξ⋆τ ′n the
extrapolating LAWS estimator when ξτn = ξ̃τn , then denoting it by ξ̃⋆τ ′n , and call it the
extrapolating quantile-based (QB) estimator when ξτn = ξ̂τn , then denoting it by ξ̂⋆τ ′n . We
can then prove the following result.

Theorem 3.5. Suppose that E|Y−| < ∞ and that Conditions A, B and C are satisfied
with 0 < γ < 1 and ρ < 0. Let τn, τ

′
n ↑ 1 with n(1 − τn) → ∞, n(1 − τ ′n) → c ∈ [0,∞)

and
√

n(1− τn)/ log{(1 − τn)/(1 − τ ′n)} → ∞ as n → ∞. Assume also that rn(1 −

τn) → 0, rn log
2{n(1 − τn)}/

√
n(1− τn) → 0,

√
n(1− τn)A{(1 − τn)

−1} → λ1 ∈ R and√
n(1− τn)q

−1
τn → λ2 ∈ R as n → ∞. Then, for γ̂n = γ̂H

n and as n → ∞, the weak
convergence √

n(1− τn)

log{(1− τn)/(1− τ ′n)}

(
ξ
⋆

τ ′n

ξτ ′n
− 1

)
d−→ N

[
λ1

1− ρ
, γ2

{
1 + 2

∞∑
t=1

Rt(1, 1)

}]

holds when

• ξ
⋆

τn = ξ̃⋆τ ′n, provided there exists some δ > 0 such that E|Y−|2+δ < ∞, 0 < γ < 1/(2+δ),∑
l≥1[β(l)]

δ/(2+δ) < ∞ and rn{rn/
√

n(1− τn)}δ → 0 as n → ∞,

• ξ
⋆

τn = ξ̂⋆τ ′n, without further assumptions.

Theorem 3.5 enables the construction of confidence intervals for extreme expectiles.
The quantity 2

∑∞
t=1 Rt(1, 1) represents the relative increase in the asymptotic variance

due to the temporal dependence. When Rt ≡ 0 for all t ≥ 1, the asymptotic variance is γ2.
An analogous result holds for the estimator γ̂E

n .
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4 Marginal expected shortfall estimation

It is important to assess overall, or systemic, risk when working with actuarial and financial
data, for instance by simultaneously considering several lines of business of an insurance
company or several stock market indices. A prominent way to measure such risk is via
the marginal expected shortfall, defined as the propensity of a financial institution to be
undercapitalised when the financial system as a whole is undercapitalised (Acharya et al.
2017, Brownlees & Engle 2017). The contribution that an individual firm with loss return
X makes to systemic risk, represented by a loss Y in the aggregated return of the market,
can be measured by the quantile-based marginal expected shortfall

QMESX,τ = E(X | Y > qY,τ ), τ ∈ (0, 1), (4)

where qY,τ is the τ quantile of Y . A systemic crisis typically corresponds to a situation in
which τ is close to or exceeds 1− 1/n, where n is the historical sample size. An alternative
to (4) is the expectile-based marginal expected shortfall,

XMESX,τ = E(X | Y > ξY,τ ), τ ∈ (0, 1), (5)

with ξY,τ the τ expectile of Y . Estimation of QMESX,τ and XMESX,τ at extreme levels is
considered by Cai et al. (2015) and Daouia et al. (2018), but only for i.i.d. data.

We now extend the results of Section 3 to inference for these definitions of marginal
expected shortfall at extreme levels in our weakly-dependent setting. Suppose that the data
come from a strictly stationary bivariate time series {(Xt, Yt), t = 1, 2, . . .}; for instance,
Xt and Yt could be the daily loss returns on a specific stock and on a market index.
For any m ≥ 1, let F1,m = σ(X1, Y1, . . . , Xm, Ym) and Fm,∞ = σ(Xm, Ym, Xm+1, Ym+1, . . .)

denote the past and future σ-fields generated by (Xt, Yt). Then the corresponding β-mixing
coefficients can be defined as b(l) = supm≥1 bm(l), where

bm(l) = E[sup{|P(B | F1,m)− P(B)| : B ∈ Fm+l,∞}], l = 1, 2 . . . .

The sequence {(Xt, Yt), t = 1, 2, . . .} is then said to be β-mixing if b(l) → 0 as l → ∞. If it
is β-mixing, then (Yt, t = 1, 2, . . .) is also β-mixing in the sense of Section 2. Our condition
below similarly extends Conditions A and B in a natural way.
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Condition D. (i) The time series {(Xt, Yt), t = 1, 2, . . .} is strictly stationary, β-mixing
and the one-dimensional marginal distribution functions FX and FY of (Xt, t =

1, 2, . . .) and (Yt, t = 1, 2, . . .) are continuous and heavy-tailed with respective tail
indices γX and γY ;

(ii) there exist sequences of integers (ln) and (rn) such that ln → ∞, rn → ∞, ln/rn → 0,
rn/n → 0 and n b(ln)/rn → 0 as n → ∞;

(iii) for any t = 1, 2, . . . there exists a function rt on E4 = [0,∞]4 \ {(∞,∞,∞,∞)} such
that

lim
s→∞

sP
{
FX(X1) ≤

x1

s
, FX(Xt+1) ≤

xt+1

s
, F Y (Y1) ≤

y1
s
, F Y (Yt+1) ≤

yt+1

s

}
equals rt(x1, xt+1, y1, yt+1) for any (x1, xt+1, y1, yt+1) ∈ E4; and

(iv) there exist D ≥ 0 and a nonnegative sequence ρ(t) satisfying
∑∞

t=1 ρ(t) < ∞ such that
if s is large enough, for any t = 1, 2, . . ., all x1, xt+1 ∈ [0,∞], and all u, u′, v, v′ ∈ [0, 1]

with u′ < u and v′ < v,

sP
{
FX(X1) ≤

x1

s
, FX(Xt+1) ≤

xt+1

s
,
u′

s
< F Y (Y1) ≤

u

s
,
v′

s
< F Y (Yt+1) ≤

v

s

}
≤ ρ(t)

√
min(x1, u− u′)min(xt+1, v − v′) +

D

s
min(x1, u− u′)min(xt+1, v − v′).

If {(Xt, Yt), t = 1, 2, . . .} satisfies Condition D, then the univariate time series (Yt, t =

1, 2, . . .) automatically satisfies Conditions A and B, since if we set x1 = xt+1 = ∞ then
the function Rt ≡ RY,t is given by RY,t(y1, yt+1) = rt(∞,∞, y1, yt+1).

We now embed (4) and (5) in a more general marginal expected shortfall framework.
Define MESX,τ = E(X | Y > zY,τ ) for τ ∈ (0, 1), where zY,τ is a risk measure on Y such
that F (zY,τ )/(1− τ) → z = z(γY ) ∈ (0,∞) as τ ↑ 1. If a

√
n(1− τn)-relatively consistent

estimator zY,τn of zY,τn is available at the intermediate level τn, then an extrapolation
relationship similar to (3) suggests estimating MESX,τ ′n = E(X | Y > zY,τ ′n) by

MES⋆

X,τ ′n
≡ MES⋆

X,τ ′n
(τn) =

(
1− τ ′n
1− τn

)−γ̂X,n
∑n

t=1Xt 1{Xt > 0, Yt > zY,τn}∑n
t=1 1{Yt > zY,τn}

.

Replacing zY,τn by q̂Y,τn ≡ q̂τn , ξ̃Y,τn ≡ ξ̃τn or ξ̂Y,τn = (γ̂−1
Y,n − 1)−γ̂Y,n q̂Y,τn ≡ ξ̂τn yields

estimators Q̂MES
⋆

X,τ ′n
, X̃MES

⋆

X,τ ′n
or X̂MES

⋆

X,τ ′n
of (4) or (5). The following second-order

condition is needed to quantify the bias incurred in constructing these estimators.

11



Condition E. Under Conditions D(i) and D(iii), suppose that there exist β > γX and
κ < 0 such that R(X,Y )(x, y) = r1(x,∞, y,∞) satisfies R(X,Y )(1, 1) > 0 and

sup
x∈(0,∞)

∣∣∣∣∣sP{FX(X1) ≤ x/s, F Y (Y1) ≤ y/s} −R(X,Y )(x, y)

min(xβ, 1)

∣∣∣∣∣ = O(sκ)

locally uniformly in y ∈ (0,∞) as s → ∞.

The following theorem gives the asymptotic distribution of MES⋆

X,τ ′n
.

Theorem 4.1. Suppose that X = X1 and Y = Y1 satisfy Condition C with respective
parameters (γX , ρX , AX) and (γY , ρY , AY ), and that Conditions D and E hold. Suppose
also that ρX < 0, that there exists δ > 0 such that 0 < γX < 1/(2 + δ), and that

(i) τn, τ ′n ↑ 1, with n(1 − τn) → ∞, n(1 − τ ′n) → c < ∞ and
√

n(1− τn)/ log{(1 −

τn)/(1− τ ′n)} → ∞ as n → ∞;

(ii) rn(1− τn) → 0 and rn{rn/
√

n(1− τn)}δ → 0 as n → ∞;

(iii) there exists ε > 0 such that
√
n(1− τn)|AX{(1− τn)

−1}|γX/(1−ρX)−ε → 0, and n(1−

τn)
1−2κ → 0 as n → ∞;

(iv) E(|X−|1/γX ) < ∞ and n(1− τn)× (1− τ ′n)
−2κ(1−γX) → 0 as n → ∞;

(v) the following bias conditions hold, as n → ∞:

√
n(1− τn)

{
F Y (zY,τn)

1− τn
− z

}
= o(1),

√
n(1− τn)

{
F Y (zY,τ ′n)

1− τ ′n
− z

}
= o(1);

(vi) the weak convergence
√

n(1− τn)(γ̂X,n−γX)
d−→ Γ holds, where Γ is a nondegenerate

random variable, and √
n(1− τn)

(
zY,τn
zY,τn

− 1

)
= OP(1).

If also
√

n(1− τn)AY {(1− τn)
−1} → 0 as n → ∞, then√

n(1− τn)

log{(1− τn)/(1− τ ′n)}

(
MES

⋆

X,τ ′n

MESX,τ ′n

− 1

)
d−→ Γ, n → ∞.

Condition (iv) is unnecessary if X > 0 with probability one.

12



Condition (i) was used in Theorem 3.5. Condition (ii) is used to deal with serial
dependence. Condition (iii) is slightly weaker than condition (d) of Cai et al. (2015), and
Condition (iv) is taken from Theorem 2 therein. Condition (v) is used to control the
error made in using the extrapolation relationship, and Condition (vi) ensures that all
quantities used in the construction of the estimators converge at the appropriate rates. In
this condition, Γ is typically a normal distribution, as is for instance the case when γ̂X,n is
a Hill estimator. Theorem 4.1 has the following important corollary.

Corollary 4.2. Under the conditions of Theorem 4.1 (apart from (v) and (vi)), assume also
that rn log2(n(1−τn))/

√
n(1− τn) → 0 as n → ∞ and let γ̂X,n = γ̂H

X,n. Let RX,t(x1, xt+1) =

rt(x1, xt+1,∞,∞). Then, as n → ∞, the weak convergence√
n(1− τn)

log{(1− τn)/(1− τ ′n)}

(
MES

⋆

X,τ ′n

MESX,τ ′n

− 1

)
d−→ N

(
0, γ2

X

{
1 + 2

∞∑
t=1

RX,t(1, 1)

})

holds for

• MES
⋆

X,τ ′n
= Q̂MES

⋆

X,τ ′n
, without further assumptions,

• MES
⋆

X,τ ′n
= X̃MES

⋆

X,τ ′n
, assuming with the notation of Theorem 4.1 that E|Y−|2+δ <

∞, 0 < γY < 1/(2 + δ),
∑

l≥1[b(l)]
δ/(2+δ) < ∞ and

√
n(1− τn)q

−1
Y,τn

→ 0 as n → ∞,

• MES
⋆

X,τ ′n
= X̂MES

⋆

X,τ ′n
, assuming with the notation of Theorem 4.1 that E|Y−| < ∞,

0 < γY < 1, and
√

n(1− τn)q
−1
Y,τn

→ 0 and
√

n(1− τn)(γ̂Y,n−γY ) = OP(1) as n → ∞.

5 Finite-sample inference and expectile level selection

The theory in Sections 3 and 4 allows us to obtain confidence intervals for extreme ex-
pectiles and the expectile-based marginal expected shortfall, provided we can estimate the
asymptotic variance w(γ,R) = γ2{1+2

∑∞
t=1Rt(1, 1)} in Theorem 3.5. As F is continuous,

1{F (Y1) > τn} = 1{F (Y1) ≥ τn} with probability 1, and we can apply Proposition 2.1 in
Drees (2003) to obtain that, when n(1− τn) → ∞, rn → ∞ and rn(1− τn) → 0,

lim
n→∞

1

rn(1− τn)
Var

[
rn∑
i=1

1{F (Yi) ≥ τn}

]
= 1 + 2

∞∑
t=1

Rt(1, 1).

13



We split the data into big blocks of length rn separated by small blocks of length ln and
define Ẑj =

∑rn+jℓn
t=1+jℓn

1{F̂n(Yt) ≥ τn} for j = 0, 1, . . . ,mn − 1, where mn = bn/ℓnc, ℓn =

rn + ln, and F̂n is the empirical distribution function of all the data. We then compute the
sample variance Σn of Ẑ0, . . . , Ẑmn−1 and obtain an estimator

ŵn(γ,R) =
(γ̂H

n )2

rn(1− τn)
Σn

of w(γ,R) (for consistency of ŵn(γ,R), see Section D of the Supplementary Material). As
n → ∞, Theorem 3.5 yields the weak convergence√

n(1− τn)

log{(1− τn)/(1− τ ′n)}
log

ξ
⋆

τ ′n

ξτ ′n

d−→ N
(

λ1

1− ρ
, w(γ,R)

)
.

Thus a (1 − α)-equi-tailed confidence interval for ξτ ′n , called LAWS-D-ADJ in the sequel,
has limits

ξ
⋆

τ ′n

(
1− τn
1− τ ′n

)−b̂n±z1−α/2

√
ŵn(γ,R)/{n(1−τn)}

, (6)

where ξ
⋆

τ ′n
is the LAWS or quantile-based extrapolating estimator, the bias λ1/(1 − ρ)

is estimated by b̂n = γ̂H
n β̂n(1 − τn)

−ρ̂n/(1 − ρ̂n), with β̂n and ρ̂n computed using the R

package evt0 (Manjunath & Caeiro 2013), and zp is the p-quantile of the standard normal
distribution. A simpler interval, which we call LAWS-D, sets b̂n = 0 and thus ignores the
bias. The asymptotic variance in the i.i.d. case, γ2, is estimated by (γ̂H

n )2, resulting in
so-called LAWS-IID intervals. The analogous intervals using the quantile-based estimator
in place of the LAWS estimator are called QB-D-ADJ, QB-D and QB-IID below. Similar
confidence intervals can be constructed for (5) by replacing Yt by Xt in the Ẑj and the Hill
estimators, and by replacing ξ

⋆

τ ′n
either by X̃MES

⋆

X,τ ′n
or by X̂MES

⋆

X,τ ′n
.

The choice of the prudentiality level τ ′n is crucial. If expectiles are considered for their
financial interpretation in terms of the gain-loss ratio, then τ ′n should be selected to achieve a
certain gain-loss value; otherwise, it seems reasonable to select τ ′n so that ξτ ′n ≡ qαn for some
suitable αn. In our context this level τ ′n = τ ′n(αn) satisfies {1−τ ′n(αn)}/(1−αn) → γ/(1−γ)

as n → ∞, and one can define a natural estimator of τ ′n(αn), i.e.,

τ̂ ′n(αn) = 1− (1− αn)
γ̂H
n

1− γ̂H
n

. (7)

Using this estimator in place of τ ′n in the extrapolating LAWS and quantile-based estimators
yields composite estimators of ξτ ′n(αn) ≡ qαn . If one uses the same τn in the extrapolation
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step and in the calculation of τ̂ ′n(αn), the composite extrapolating LAWS estimator is

ξ̃⋆τ̂ ′n(αn) =

(
1− τ̂ ′n(αn)

1− τn

)−γ̂H
n

ξ̃τn = {(γ̂H
n )−1 − 1}γ̂H

n ξ̃⋆αn
;

put another way, ξ̃⋆τ̂ ′n(αn)
can be constructed by inserting the estimator γ̂H

n and the ex-
trapolating LAWS estimator at level αn into the right-hand side of the approximation
qαn ≡ ξτ ′n(αn) ≈ (γ−1−1)γξαn obtained from (2). So far as we know, this has not previously
been noticed. Combined with our marginal expected shortfall estimators, this gives two
estimators of QMESX,αn

whose asymptotic properties we now establish.

Theorem 5.1. Suppose the conditions of Theorem 3.5 hold with αn in place of τ ′n. Then,
if γ̂n = γ̂H

n and ξ
⋆ is either ξ̂⋆ or ξ̃⋆, we have, as n → ∞,√

n(1− τn)

log{(1− τn)/(1− αn)}

(
ξ
⋆

τ̂ ′n(αn)

qαn

− 1

)
d−→ N

(
λ1

1− ρ
, γ2

{
1 + 2

∞∑
t=1

Rt(1, 1)

})
.

An analogous asymptotic normality result holds for the composite estimators X̃MES
⋆

X,τ̂ ′n(αn)

and X̂MES
⋆

X,τ̂ ′n(αn) of QMESX,αn
.

Theorem 5.2. Suppose the conditions of Corollary 4.2 hold with αn in place of τ ′n. Then,
if γ̂X,n = γ̂H

X,n and XMES
⋆
= X̃MES

⋆

(resp. XMES
⋆
= X̂MES

⋆
), then, as n → ∞,√

n(1− τn)

log{(1− τn)/(1− αn)}

(
XMES

⋆

X,τ̂ ′n(αn)

QMESX,αn

− 1

)
d−→ N

(
0, γ2

X

{
1 + 2

∞∑
t=1

RX,t(1, 1)

})
.

6 Conditional or dynamic extreme expectile estima-

tion in heteroskedastic time series

More informative and/or reactive risk measure estimates for many applications are obtained
when auxiliary information provided by covariates and/or the past of the time series is in-
corporated, but it is then necessary to estimate conditional or dynamic extreme expectiles.
We tackle this within heteroskedastic regression models of the form Yt = g(Xt) + σ(Xt)εt,
where g and σ > 0 are measurable and unknown and the series (Xt), possibly partially
or even totally unobserved, is independent of the strictly stationary series of heavy-tailed
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innovations (εt). This covers classical regression models, possibly misspecified due to tem-
poral dependence within the series (εt), as well as standard time series such as ARMA and
GARCH models. In this context, the location equivariance and positive homogeneity of
expectiles implies that

ξτ (Yt | Xt) = g(Xt) + σ(Xt)ξτ (ε), with ε
d
= ε1.

If the errors εt were available, we could estimate ξτn(ε) directly using the LAWS estima-
tor. We replace the unobserved εt by residuals ε̂

(n)
t , resulting in the residual-based LAWS

estimator ξ̃τn(ε) = argminθ∈R
∑n

t=1 ητn(ε̂
(n)
t − θ). This should be a

√
n(1− τn)-(relatively)

asymptotically normal estimator of ξτn(ε) for intermediate τn when the residuals and un-
observable errors are similar, and we ensure this through the following condition.

Condition F. As n → ∞, the array of random variables (ε̂
(n)
t , 1 ≤ t ≤ n), satisfies

√
n(1− τn) max

1≤t≤n

|ε̂(n)t − εt|
1 + |εt|

P−→ 0.

Under this condition the following result shows that the estimator ξ̃τn(ε) has the same
asymptotic properties as its unobtainable counterpart resulting from asymmetric least
squares estimation based on the innovations εt.

Theorem 6.1. Suppose that the sequence of innovations (εt, t = 1, 2, . . .), rather than the
time series (Yt, t = 1, 2, . . .), satisfies Conditions A and B, and that Condition F holds.
Suppose further that there exists δ > 0 such that E|ε−|2+δ < ∞, 0 < γ < 1/(2 + δ) and∑

l≥1[β(l)]
δ/(2+δ) < ∞. Let τn ↑ 1 be such that n(1 − τn) → ∞, rn(1 − τn) → 0 and

rn(rn/
√

n(1− τn))
δ → 0 as n → ∞. Then,

√
n(1− τn)

(
ξ̃τn(ε)

ξτn(ε)
− 1

)
d−→ N

(
0,

2γ3

1− 2γ
{1 + σ2(γ,R)}

)
, n → ∞,

with σ2(γ,R) =
(1− γ)(1− 2γ)

γ2

∫∫
[1,∞)2

∞∑
t=1

Rt(x
−1/γ, y−1/γ) dx dy.

An alternative, quantile-based estimator of ξτn(ε) is ξ̂τn(ε) = (γ̂−1
n (ε) − 1)−γ̂n(ε)q̂τn(ε),

where q̂τn(ε) = ε̂
(n)
n−⌊n(1−τn)⌋,n and γ̂n(ε) is any residual-based estimator of the tail index of ε.

For the asymptotic analysis of such an estimator, an analogue of Theorem 3.3 is required;
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again, under Condition F, the residual-based tail empirical process has the same behaviour
as its counterpart based on the unobservable innovations. A rigorous result follows.

Theorem 6.2. Suppose that the sequence of innovations (εt, t = 1, 2, . . .), rather than the
time series (Yt, t = 1, 2, . . .), satisfies Conditions A, B and C, and that Condition F holds.
Suppose also that τn ↑ 1, n(1−τn) → ∞, rn(1−τn) → 0, rn log2(n(1−τn))/

√
n(1− τn) → 0

and
√

n(1− τn)A((1 − τn)
−1) = O(1) as n → ∞. Suppose finally that n(1 − τn) is

a sequence of integers and pick s0 > 0. Then there exist versions of the process s 7→

ε̂n−⌊n(1−τn)s⌋,n and a continuous, centred Gaussian process W having covariance function
r(x, y) = min(x, y) +

∑∞
t=1Rt(x, y) + Rt(y, x) such that, for any δ > 0 sufficiently small,

we have as n → ∞, uniformly in s ∈ (0, s0],

ε̂n−⌊n(1−τn)s⌋,n

qτn(ε)
= s−γ

(
1 +

γs−1W (s)√
n(1− τn)

+
s−ρ − 1

ρ
A((1− τn)

−1) + oP

(
s−1/2−δ√
n(1− τn)

))
,

log
ε̂n−⌊n(1−τn)s⌋,n

qτn(ε)
= −γ log s+

γs−1W (s)√
n(1− τn)

+
s−ρ − 1

ρ
A((1− τn)

−1) + oP

(
s−1/2−δ√
n(1− τn)

)
.

We can then prove the following corollary on the asymptotic behaviour of the quantile-
based estimator ξτn(ε) when

γ̂n(ε) = γ̂H
n (ε) =

1

n(1− τn)

n(1−τn)∑
i=1

log

(
ε̂
(n)
n−i+1,n

ε̂
(n)
n−n(1−τn),n

)

is the residual-based version of the Hill estimator.

Corollary 6.3. Suppose that the conditions of Theorem 6.2 hold with E|ε−| < ∞, 0 < γ < 1

and E(ε) = 0, as well as
√

n(1− τn)q
−1
τn (ε) = O(1) and

√
n(1− τn)A((1− τn)

−1) → λ ∈ R

as n → ∞. If γ̂n(ε) = γ̂H
n (ε) then, as n → ∞,

√
n(1− τn)

(
ξ̂τn(ε)

ξτn(ε)
− 1

)
d−→ N

(
λ

[
m(γ)

1− ρ
− b(γ, ρ)

]
, γ2 vH(γ,R)

)
,

√
n(1− τn)(γ̂n(ε)− γ)

d−→ N

(
λ

1− ρ
, γ2

{
1 + 2

∞∑
t=1

Rt(1, 1)

})
,
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with b(γ, ρ) = (γ−1 − 1)−ρ/(1− γ − ρ) + {(γ−1 − 1)−ρ − 1}/ρ and

vH(γ,R) = (1 + [m(γ)]2)

(
1 + 2

∞∑
t=1

Rt(1, 1)

)

+ 2m(γ)

∫ 1

0

∞∑
t=1

[
Rt(s, 1) +Rt(1, s)

s
− 2Rt(1, 1)

]
ds.

As in the unconditional setting, we can now define classes of residual-based, plug-in
extrapolating estimators of ξτ ′n(ε) at a level τ ′n → 1 such that n(1− τ ′n) → c < ∞:

ξ
⋆

τ ′n
(ε) =

(
1− τ ′n
1− τn

)−γ̂n(ε)

ξτn(ε), where ξτn(ε) = ξ̃τn(ε) or ξ̂τn(ε).

Given estimators g(x) and σ(x) of g and σ at a value x of the covariate, this readily
yields estimators of extreme conditional or dynamic expectiles as ξ

⋆

τ ′n
(Y1 | X1 = x) =

g(x) + σ(x)ξ
⋆

τ ′n
(ε). The following asymptotic normality result then holds.

Theorem 6.4. Suppose that the conditions of Corollary 6.3 hold with ρ < 0, and that
τ ′n ↑ 1 satisfies n(1 − τ ′n) → c ∈ [0,∞) and

√
n(1− τn)/ log{(1 − τn)/(1 − τ ′n)} → ∞. If

γ̂n(ε) = γ̂H
n (ε) then the weak convergence√

n(1− τn)

log{(1− τn)/(1− τ ′n)}

(
ξ
⋆

τ ′n
(ε)

ξτ ′n(ε)
− 1

)
d−→ N

(
λ

1− ρ
, γ2

{
1 + 2

∞∑
t=1

Rt(1, 1)

})
holds as n → ∞ for

• ξτn(ε) = ξ̃τn(ε), assuming that there exists δ > 0 such that E|ε−|2+δ < ∞, 0 < γ <

1/(2 + δ),
∑

l≥1[β(l)]
δ/(2+δ) < ∞ and rn(rn/

√
n(1− τn))

δ → 0 as n → ∞,

• ξτn(ε) = ξ̂τn(ε), without further assumptions.

In the heteroskedastic regression model Yt = g(Xt) + σ(Xt)εt (with (Xt) independent of
(εt)), if, at a given point x, the estimators g(x) and σ(x) satisfy g(x)− g(x) = OP(1) and√

n(1− τn)(σ(x)−σ(x)) = OP(1), then the estimator ξ⋆τ ′n(Y1 | X1 = x) = g(x)+σ(x)ξ
⋆

τ ′n
(ε)

is such that√
n(1− τn)

log{(1− τn)/(1− τ ′n)}

(
ξ
⋆

τ ′n
(Y1 | X1 = x)

ξτ ′n(Y1 | X1 = x)
− 1

)
d−→ N

(
λ

1− ρ
, γ2

{
1 + 2

∞∑
t=1

Rt(1, 1)

})

as n → ∞, for the same choices of ξτn(ε) under the same assumptions.
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We may finally provide a residual-based version of the composite extrapolating LAWS
estimator, targeted at the (conditional) extreme quantile of fixed level αn, that is,

ξ
⋆

τ̂ ′n(αn)(Y1 | X1 = x) = g(x) + σ(x)ξ
⋆

τ ′n
(ε) with τ̂ ′n(αn) = 1− (1− αn)

γ̂H
n (ε)

1− γ̂H
n (ε)

.

Theorem 6.5. Suppose that the conditions of Theorem 6.4 hold with αn in place of τ ′n.
Then, if γ̂n(ε) = γ̂H

n (ε) and ξ
⋆
(ε) is either ξ̂⋆(ε) or ξ̃⋆(ε), we have, as n → ∞,√

n(1− τn)

log{(1− τn)/(1− αn)}

(
ξ
⋆

τ̂ ′n(αn)(ε)

qαn(ε)
− 1

)
d−→ N

(
λ1

1− ρ
, γ2

[
1 + 2

∞∑
t=1

Rt(1, 1)

])
.

Our marginal extreme expectile estimation and inference techniques therefore extend
to the estimation of conditional and/or dynamic extreme expectiles of the form ξ

⋆

τ ′n
(Yt |

Xt = x) in heteroskedastic location-scale models, provided
√
n-consistent estimators of

the location and scale functions g and σ are available. This is generally the case in linear
heteroskedastic models, single-index models and additive models with dependent errors,
and ARMA/GARCH models. In particular, our theoretical results encompass the GARCH-
EVT framework of McNeil & Frey (2000), which has become very popular due to its capacity
to estimate dynamic extreme risk measures without strong parametric specification of the
innovation distribution. A related investigation, limited to i.i.d. εt and therefore unable to
handle misspecified regression models, is performed by Girard et al. (2021a).

7 Simulation experiments

7.1 Extreme expectile estimation

Here we summarise a numerical study of the finite-sample performance of the point and
interval expectile estimators at extreme levels. More details and results of a similar study
of the estimators at the intermediate level may be found in Section B of the Supplementary
Material. We consider simulations from

(a) the AR(1) model Yt+1 = 0.8Yt + εt+1, where the innovations εt are independent and
have a t3 distribution;

(b) the ARMA(1,1) model Yt+1 = 0.95Yt + εt+1 + 0.9 εt, where the innovations εt are
independent and have a symmetric Pareto distribution with shape parameter ζ = 3;
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(c) the ARCH(1) model Yt+1 = σt+1εt+1, where σ2
t+1 = 0.4 + 0.6Y 2

t , and the εt are
independent standard Gaussian innovations; and

(d) the GARCH(1,1) model Yt+1 = σt+1εt+1, where σ2
t+1 = 0.1 + 0.4Y 2

t + 0.4σ2
t , and the

εt are independent standard Gaussian innovations.

The first two models have strong linear serial dependence, and the last two have quadratic
serial dependence leading to heteroskedasticity. Models (a) and (b) are standard linear
time series, so the marginal distribution, like the innovations, has tail index γY = 1/3. The
marginal distribution in (c) and (d) is heavy-tailed, and the tail indices, calculated using
Theorem 2.1 in Mikosch & Stărică (2000), equal γY = 0.262 and γY = 0.239 respectively.

We simulate 104 samples of size n = 2500 from each model and consider the extreme
level τ ′n = 0.9995 ≈ 1 − 1/n; values of ξτ ′n are in the top part of Table B.5 in the Supple-
mentary Material. We calculate the extrapolating LAWS and quantile-based estimators
using the intermediate level τn = 1− k/n for k ∈ {6, 8, . . . , 700} for each simulated dataset
and obtain 95% confidence intervals based on (6). The big- and small-block sequences are
chosen as rn = blog2(n)c and ln = bC log nc, where C is selected so that ln is greater than
or equal to a lag after which sample autocorrelations of the data from both (Yt) and (Y 2

t )

are smaller than 0.1. Checking whether the confidence intervals contain the true expectile
allows us to compute the empirical coverage probability.

The top row of Figure 1 shows that our confidence intervals have much better coverages
than those that assume the data to be i.i.d., and the coverages for intervals based on least
asymmetrically weighted squares outperform those for the quantile-based estimators over
a wider range of the intermediate sequence k. Coverages for the heteroskedastic models
are satisfactory for a shorter range of the intermediate sequence k and the intervals for
these models tend to be slightly permissive. The bias-corrected versions behave well in
heteroskedastic models and are slightly conservative for linear time series. Although the
procedure depends somewhat on the tuning parameters, our confidence intervals perform
very well overall for such sample sizes when using a rule of thumb to select a k lying in
[50, 200]. Similar results at level τ ′n = 0.9999 > 1 − 1/n are shown in Figure B.2 of the
Supplementary Material.
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7.2 Extreme marginal expected shortfall estimation

To assess the finite-sample performance of the extreme marginal expected shortfall estima-
tors we simulate data from four models in which the bivariate innovations are i.i.d.:

(e) Xt+1 = 0.8Xt + εX,t+1 and Yt+1 = 0.8Yt + εY,t+1. For any t, the innovation εX,t is
distributed as Z 1{Z > 0} − (−Z)1/2 1{Z < 0}, Z and εY,t have t3 distributions,
and the dependence of (εX,t, εY,t) is given by a Student-t copula with correlation
parameter ρ = 0.8 and three degrees of freedom;

(f) Xt+1 = 0.95Xt + εX,t+1 + 0.9 εX,t, and Yt+1 = 0.95Yt + εY,t+1 + 0.9 εY,t. For any t,
the innovation εX,t is distributed as Z 1{Z > 0} − (−Z)1/2 1{Z < 0}, where Z and
εY,t have symmetric Pareto distributions with shape parameter ζ = 3, and (εX,t, εY,t)

have dependence given by a Gumbel copula with parameter θ = 2;

(g) Xt+1 = σX,t+1εX,t+1 and Yt+1 = σY,t+1εY,t+1, with σ2
X,t+1 = 0.4 + 0.6X2

t and σ2
Y,t+1 =

0.4+ 0.6Y 2
t . Each εX,t has density h(z) = 0.51{−1 < z ≤ 0}+0.5 e−z

1{z > 0}, εY,t
is standard Gaussian, and the dependence of (εX,t, εY,t) is as in (e); and

(h) Xt+1 = σX,t+1εX,t+1, with σ2
X,t+1 = 0.1 + 0.4X2

t + 0.4σ2
X,t, and Yt+1 = σY,t+1εY,t+1,

with σ2
Y,t+1 = 0.1 + 0.4Y 2

t + 0.4σ2
Y,t. Each εX,t has density h(z) = 0.51{−1 < z ≤

0}+ 0.5 e−z
1{z > 0}, εY,t is standard Gaussian, and the dependence of (εX,t, εY,t) is

given by a Gumbel copula with parameter θ = 5.

The Yt components of models (e), (f), (g) and (h) are distributed according to models (a),
(b), (c) and (d) respectively, so the models considered here extend those of Section 7.1.

We simulate 104 samples of size n = 2500 for each model, and consider estimating
QMESX,αn

at levels αn such that τ ′n(αn) = 0.9995 and 0.9999, by comparing our composite
estimator X̃MES

⋆

X,τ̂ ′n(αn) with Q̂MES
⋆

X,αn
; recall that (1 − αn) ≈ (γ−1

Y − 1){1 − τ ′n(αn)},
which allows to determine accurate approximations of αn using the tail index values γY

calculated in Section 7.1, and the construction of τ̂ ′n(αn) in Section 5. The true values
of QMESX,αn

≈ XMESX,τ ′n(αn), found by simulation, are in the bottom part of Table B.5
in the Supplementary Material. Estimation at this level of αn gives us an idea of the
performance of our composite estimation method in a problem comparable in difficulty
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to that of Section 7.1, at least so far as the Y component is concerned. The confidence
intervals are constructed as in Section 7.1, applied to the Xt component. For graphical
clarity, we do not report results obtained through the quantile-based composite estimator
X̂MES

⋆

X,τ̂ ′n(αn), which were in line with those shown here.
The bottom row of Figure 1 gives results at level τ ′n(αn) = 0.9995. The intervals for the

linear time series have broadly the same properties as in the upper panels. The coverages
of our proposed confidence intervals are very good for a wide range of values of the interme-
diate sequence k and for the bias-corrected and unadjusted versions. The coverages with
the heteroskedastic models (g) and (h) are less satisfactory, with our confidence estimators
providing reasonable results for a narrower range of values of k. Nevertheless, our intervals
represent a significant improvement over those relying on the theory for i.i.d. observations
and, with the aforementioned rule of thumb (selecting k ∈ [50, 200]), they provide reliable
results overall. Results at the level τ ′n(αn) = 0.9999 may be found in Figure B.3 of the
Supplementary Material.

8 Financial data analyses

8.1 Dow Jones and S&P 500 stock market index data

The rightmost panels of the top two rows in Figure 2 show n = 8,785 daily negative log-
returns of the S&P 500 and Dow Jones Industrial Average indices from 29 January 1985 to
12 December 2019. The data illustrate stylised facts such as the heteroskedasticity and fat
tails of financial time series (Embrechts et al. 1997). For these two series, the Hill, maximum
likelihood and moment-based estimators of the tail index (e.g., de Haan & Ferreira 2006,
Chapter 3) are fairly stable for k ∈ [100, 300] and suggest that these series have heavy right
tails with γ ≈ 0.35 (see top panels of Figure B.4 in the Supplementary Material). Below
we use the Hill estimator to construct our estimates and confidence intervals. We provide
marginal estimates and dynamic predictions of the future given past observations.

Estimation of marginal risk measures The analysis of tail risk of loss returns is
typically based on estimated Value-at-Risk at the 99.9% level (e.g., Drees 2003, de Haan
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et al. 2016) or at some level αn = 1 − pn, for pn ≤ 1/n. Bellini & Di Bernardino (2017)
showed that such estimates yield capital requirements similar to expectile-based forecasts,
if the level τ ′n of the expectile is chosen carefully, at a higher level than that of the Value-
at-Risk. Here we fix pn = 1/n and αn = 1 − pn = 0.9998862, and we estimate τ ′n(αn) by
τ̂ ′n(αn). Then we estimate the expectile at the extreme level τ̂ ′n(αn) using the composite
extrapolating LAWS estimator ξ̃⋆τ ′n and the corresponding quantile-based estimator ξ̂⋆τ ′n for
τ ′n = τ̂ ′n(αn). This produces estimators of ξτ ′n(αn), which is also the Value-at-Risk qαn =

q1−1/n. The leftmost panels in Figure 2 plot τ̂ ′n(αn) against k for k ≤ 700, where τn = 1−k/n

as before. These estimates fluctuate initially, then stabilise around a common value, and
finally drift away due to the inclusion of data from the centre of the distribution; taking
k = 200 seems reasonable. We check this by representing the composite extrapolating
LAWS and quantile-based estimators and the confidence intervals of Section 5 at level
τ ′n = τ̂ ′n(αn) in the middle two panels of Figure 2. They appear to be fairly stable when k

is not too small, and k = 200 again seems sensible. As expected, the confidence intervals
that allow for dependence are wider than those that do not. With k = 200, we find
τ̂ ′n(αn) ≈ 0.9999423 for the S&P 500 data, and 0.9999402 for the Dow Jones data, both
rather higher than the original αn = 1− pn = 0.9998862.

Figure 2 also compares our extrapolating LAWS and quantile-based estimators with
the Weissman extreme quantile estimator at level αn, i.e.,

q̂⋆αn
=

(
1− αn

1− τn

)−γ̂H
n

q̂τn =

(
1− αn

1− τn

)−γ̂H
n

Yn−⌊n(1−τn)⌋,n. (8)

Confidence intervals for the extreme quantile qαn can also be constructed using this esti-
mator; here we use a method of Drees (2003) for the estimation of the variance component
w(γ,R) in Section 5, and label this approach WEISS-D-ADJ. Unlike our estimator, this
method does not rely on a big-block/small-block argument; see formula (33) of Drees
(2003). The estimates and 95% confidence intervals are reported in Table 1 and are shown
in the rightmost panels of Figure 2. The point estimates are reassuringly similar, but the
third and fourth panels suggest that the confidence intervals based on q̂⋆αn

are generally
much more volatile than the LAWS interval; moreover, in a neighbourhood of k ≈ 200,
they are very close to the intervals based on i.i.d. observations. For our selected k = 200,
the fourth column of Figure 2 shows that these intervals do not contain the largest sample
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value, despite estimating qαn = q1−1/n, whereas the LAWS intervals contain the sample
maximum.

Dynamic prediction of extreme risk Here we focus on the Dow Jones data. Starting
on 29 January 1985, we fitted GARCH(1, 1) models using a Student−t likelihood on rolling
windows (Yj, . . . , Yj+T−1) of size T = 1,000, corresponding to approximately four years of
trading data. The choice of model was based on the AIC after fitting several classical
heteroskedastic models to the last T data points in the series (from 15 December 2015
to 12 December 2019). The model was checked using the correlograms of the residuals
and their squares, and the weighted Ljung–Box and Li–Mak tests of Fisher & Gallagher
(2012) (calculations were performed using the R package rugarch, see Galanos & Kley
2022). All tests suggested that the residuals may be considered to be independent. This
is supported by the calculation (on the last T days of data) of asymptotic confidence
intervals for extreme expectiles and quantiles based on the dependence assumption, which
tend to be very close to those based on i.i.d. theory; see the top row of Figure 4. The
inference method of Drees (2003) provides unreasonably wide confidence intervals. The data
(Yj, . . . , Yj+T−1) are then filtered using the estimated GARCH(1, 1) structure, resulting in
residuals (ε̂(j)1 , . . . , ε̂

(j)
T ) that can be used to perform extreme-value predictions for Yj+T given

its past, following the ideas of Section 6. We took k = 100 based on a graphical analysis of
the residual-based Hill estimator. These predictions, based on extreme expectile estimates
and quantile estimates at the level τ ′n = 0.999, are shown in the top row of Figure 4 from
16 January 1989 to 12 December 2019.

The predicted expectiles, which seem broadly correct and mirror the volatility bursts in
the data, are substantially lower than the predicted quantiles. We checked estimation accu-
racy by counting the number of exceedances above our predictions: 10 (resp. 5) exceedances
are observed above the LAWS (resp. quantile-based) expectile prediction, while only one
exceedance is observed above the predicted quantile, although (n−1,000)× (1−0.999) ≈ 8

exceedances above the 0.999-quantile are expected. For expectiles, the benchmark is harder
to establish; the residual-based Hill estimator over the last T days of data was approxi-
mately 0.4, meaning that, by inverting (7), a rough estimate of the quantile level corre-
sponding to the 0.999-expectile level is 1−(1−0.999)×(1−0.4)/0.4 ≈ 0.9985. This suggests
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that we should expect approximately (n − 1,000) × (1 − 0.9985) ≈ 12 exceedances above
the dynamic 0.999-expectile, with our LAWS estimate achieving a number of exceedances
close to this target. In this application the LAWS method seems to give better results than
those for quantile-based estimation, perhaps because it tends to be more accurate than the
latter when applied to zero-mean distributions, cf. Daouia et al. (2018).

8.2 Systemic risk measure estimation using financial returns

We now analyse the financial returns of Goldman Sachs and Morgan Stanley in the context
of systemic risk. We consider the daily negative log-returns (Xt) on their equity prices from
3 July 2000 to 30 June 2010, alongside daily loss returns (Yt) of a value-weighted market
index aggregating the New York Stock Exchange, the American Express Stock Exchange
and the National Association of Securities Dealers Automated Quotation system for the
same period. The corresponding tail index estimates again indicate heavy right tails (see
bottom panels of Figure B.4 in the Supplementary Material, we have represented the same
type of estimates for the (Yt) series in Figure B.5 of the Supplementary Material). The
leftmost panels of Figure 3 display values of τ̂ ′n(αn) against k with again αn = 1 − 1/n =

0.9996021 and τn = 1− k/n.
These estimates initially fluctuate slightly, then stabilise, and finally drift away due to

the inclusion of data from the centre of the distribution; taking k = 150 seems reasonable.
With the same setup, the estimates obtained with the composite extrapolating LAWS
estimator and the extrapolating QMES estimator of QMESX,αn

, and the various confidence
intervals at level τ ′n = τ̂ ′n(αn) are reported in the middle two panels of Figure 3. The
estimates and confidence intervals are more stable for Goldman Sachs than for Morgan
Stanley and for the least asymmetric squares method than for the quantile-based method.
According to these results, taking k = 150 seems reasonable, and we then find τ̂ ′n(αn) ≈

0.9997239 for Goldman Sachs and 0.9996626 for Morgan Stanley. All estimates are reported
in Table 2 and the LAWS estimates are shown in the rightmost panels of Figure 3; they
lead to conclusions similar to those in Section 8.1. For k = 150 they give similar results for
Goldman Sachs and somewhat shorter confidence intervals for Morgan Stanley. As with
the stock market index data, the confidence intervals constructed for QMESX,αn

with the
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method of Drees (2003) are more volatile than ours.

8.3 Individual stock prediction given a market index

We finally consider a data set comprising the excess daily log-returns on General Electric
and on the S&P 500 index, from 1 November 1993 to 31 March 2003; see the data frame
capm in the R package HRW (Harezlak et al. 2021). Excess daily log-returns are obtained
by subtracting the risk-free interest rate from raw daily log-returns (Harezlak et al. 2018,
p.194). We denote by Xt (resp. Yt) the negative excess daily log-return of the S&P 500
index (resp. General Electric). We focus on estimating the extreme conditional risk on
General Electric given a value x of the (negative excess) return on the total market for the
same day. A scatterplot of the data can be found in the bottom row of Figure 4.

An approximately linear relationship appears to link Yt to Xt, though the presence
or not of heteroskedasticity is less clear. Following the general procedure described in
Section 6, we first estimate a linear regression model linking Yt to Xt by ordinary least
squares, leading to the estimated regression line ĝ(x) = â + b̂x = −0.000297 + 1.244x.
We then estimate the conditional variance of Yt given Xt = x by a residual-based local
polynomial estimator, that is, σ̂2(x) = ĉ0 = ĉ0(x) where

(ĉ0, ĉ1) = argmin
(c0,c1)∈R2

n∑
t=1

(η̂2t − c0 − c1(Xt − x))2K

(
Xt − x

h

)
.

Here η̂t = Yt − (â + b̂Xt) are the raw residuals from the regression model, K denotes
the Gaussian kernel and h ≈ 0.00420 is a bandwidth parameter, selected using the dpill

function from the R package KernSmooth (Wand et al. 2021) with default settings. This
estimate, shown in the first panel of the bottom row of Figure 4, leads to standardized
residuals ε̂t = η̂t/σ̂(Xt) shown in the the second panel and which appear to remain some-
what temporally dependent. Since the conditional variance estimator is nonparametric,
it will tend to be inaccurate where data are sparse, so our extreme value analysis uses
only those ε̂t whose corresponding Xt lie in [−0.02, 0.02]. We finally estimate an extreme
expectile of level τ ′n = 1− 1/n ≈ 0.9995768 with k = 150, using the residual-based LAWS
estimator ξ̃τ ′n(ε), resulting in an estimate ξ̃τ ′n(Y | X = x) = −0.000297+1.244x+σ̂(x)ξ̃τ ′n(ε)

of the target extreme conditional expectile. These estimates and the corresponding 95%
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confidence intervals are shown in the third and fourth panels of the bottom row of Figure 4.
The intervals based on our theory for dependent data are appreciably wider than those

that presuppose independence, reflecting the temporal dependence in the data that the
linear regression model did not eliminate. Moreover, and as expected, larger losses in the
market lead to potentially larger extreme losses, although the relationship does not appear
to be monotonic or linear due to the nonlinear profile of the conditional variance in the
heteroskedastic model. An analogous analysis in which the regression of Y on X was
estimated using local linear regression, rather than ordinary least squares, produced the
same results. This suggests that only a broadly correct estimate of the regression function
is required, with an accurate estimation of the variance component and extreme behaviour
of the residuals being more important.

9 Conclusion

We discussed extreme risk inference via expectiles in heavy-tailed time series, from the
marginal and conditional or dynamic prediction perspectives. The proposed inferential
framework relies on β-mixing assumptions and large-sample theory and provides confidence
intervals whose coverage is reasonably close to nominal, and which greatly improves on those
based on independence.

We defer to future work the consideration of yet more general dependence frameworks,
such as strong mixing. Another important topic is bias correction: Girard et al. (2021b)
showed that bespoke bias reduction methods for extreme expectile estimation can greatly
improve results when tail heaviness is moderate. It will be interesting to investigate the
performance of bias correction methods with time series data.
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Table 1: Estimates and 95% confidence intervals for the daily log-returns for the S&P 500
and Dow Jones data with k = 200 and αn = 1− 1/n = 0.9998862.

Estimate S&P 500 Dow Jones

γ̂H
n 0.336 [0.220, 0.453] 0.344 [0.222, 0.467]

ξ̃⋆τ̂ ′n(αn)
0.136 [0.064, 0.259] 0.136 [0.061, 0.263]

ξ̂⋆τ̂ ′n(αn)
0.140 [0.064, 0.258] 0.139 [0.061, 0.260]

q̂⋆αn
0.140 [0.112, 0.174] 0.139 [0.103, 0.190]

Table 2: Estimates and 95% confidence intervals for the loss returns for Goldman Sachs
and Morgan Stanley data with k = 150 and αn = 1− 1/n = 0.9996021.

Estimate Goldman Sachs Morgan Stanley

γ̂H
X,n 0.410 [0.172, 0.648] 0.459 [0.279, 0.639]

X̃MES
⋆

X,τ̂ ′n(αn) 0.342 [0.079, 1.046] 0.590 [0.185, 1.303]

Q̂MES
⋆

X,αn
(CI via Section 5) 0.345 [0.080, 1.055] 0.603 [0.189, 1.332]

Q̂MES
⋆

X,αn
(CI via Drees (2003)) 0.345 [0.216, 0.551] 0.603 [0.294, 1.236]
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