On the linear independence of values of $G$-functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

On the linear independence of values of $G$-functions

Gabriel Lepetit
  • Fonction : Auteur
  • PersonId : 1042955

Résumé

We consider a $G$-function $F(z)=\sum_{k=0}^{\infty} A_k z^k \in \mathbb{K}[[z]]$, where $\mathbb{K}$ is a number field, of radius of convergence $R$ and annihilated by the $G$-operator $L \in \mathbb{K}(z)[\mathrm{d}/\mathrm{d}z]$, and a parameter $\beta \in \mathbb{Q} \setminus \mathbb{Z}_{\leqslant 0}$. We define a family of $G$-functions $F_{\beta,n}^{[s]}(z)=\sum_{k=0}^{\infty} \frac{A_k}{(k+\beta+n)^s} z^{k+n}$ indexed by the integers $s$ and $n$. Fix $\alpha \in \mathbb{K}^* \cap D(0,R)$. Let $\Phi_{\alpha,\beta,S}$ be the $\mathbb{K}$-vector space generated by the values $F_{\beta,n}^{[s]}(\alpha)$, $n \in \mathbb{N}$, $0 \leqslant s \leqslant S$. We show that there exist some positive constants $u_{\mathbb{K},F,\beta}$ and $v_{F,\beta}$ such that $u_{\mathbb{K},F,\beta} \log(S) \leqslant \dim_{\mathbb{K}} \Phi_{\alpha,\beta,S} \leqslant v_{F,\beta} S$. This generalizes a previous theorem of Fischler and Rivoal (2017), which is the case $\beta=0$. Our proof is an adaptation of their article "Linear independence of values of $G$-functions'' ([FR]), making use of the André-Chudnovsky-Katz Theorem on the structure of the $G$-operators and of the saddle point method. Moreover, we rely on Dwork and André's quantitative results on the size of $G$-operators to obtain an explicit formula for the constant $u_{\mathbb{K},F,\beta}$, which was not given in [FR] in the case $\beta=0$.
Fichier principal
Vignette du fichier
LiGfn.pdf (315.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02539626 , version 1 (10-04-2020)
hal-02539626 , version 2 (15-05-2021)

Identifiants

Citer

Gabriel Lepetit. On the linear independence of values of $G$-functions. 2020. ⟨hal-02539626v2⟩
172 Consultations
115 Téléchargements

Altmetric

Partager

More