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We consider a G-function F (z) = ∞ k=0 A k z k ∈ K z , where K is a number field, of radius of convergence R and annihilated by the G-operator L ∈ K(z)[d/dz], and a pa-

 in the case β = 0.

Introduction

A G-function is a power series f (z) = ∞ k=0 a k z k ∈ Q z satisfying the three following assumptions: a) f is solution of a nonzero linear differential equation with coefficients in Q(z); b) There exists C 1 > 0 such that ∀k ∈ N, a k C k+1 1 , where a k is the house of a k , i.e. the maximum of the absolute values of the Galois conjugates of a k ; c) There exists C 2 > 0 such that ∀k ∈ N, den(a 0 , . . . , a k ) C k+1 2 , where den(a 0 , . . . , a k ) is the denominator of a 0 , . . . , a k , i.e. the smallest integer d ∈ N * such that d a 0 , . . . , d a k are algebraic integers. This family of special functions has been studied together with the family of E -functions, which are the functions f (z) = ∞ k=0 a k k! z k satisfying a) and such that the a k satisfy the conditions b) and c), since Siegel defined them in 1929 [START_REF] Siegel | Über einige Anwendungen diophantischer Approximationen[END_REF]. The most basic example of G-function, which gives it its name, is the geometric series

f (z) = - ∞ k=0 z k = 1/(1 -z). Other examples in- clude log(1 -z) = ∞ k=1 z k k , Li s (z) = ∞ k=1 z k k s , arctan(z) = ∞ k=0 (-1) k z 2k+1 2k + 1
and the family of hypergeometric functions with rational parameters: if α = (α 1 , . . . , α ν ) ∈ Q ν and β = (β 1 , . . . ,

β ν-1 ) ∈ (Q \ Z 0 ) ν-1 , ν F ν-1 (α; β; z) := ∞ k=0 (α 1 ) k . . . (α ν ) k (β 1 ) k . . . (β ν-1 ) k k! z k , 1 INTRODUCTION 2 
where for x ∈ C and k 1, (x) k := x(x + 1)(x + 2) . . . (x + k -1), (x) 0 = 1, is the Pochhammer symbol.

In this paper, we are going to rely on the theory of G-functions developed by André, Bombieri, Chudnovsky, Katz and others. Its main result can be synthetised as follows: the minimal nonzero linear differential equation on Q(z) associated with a G-function belong to a specific class of differential operators, called G-operators. Every G-operator of order µ is Fuchsian and admits a basis of solutions around every point a of P 1 (Q) of the form ( f 1 (za), . . . , f µ (za))(za) C u , where the f i (u) are G-functions and C u ∈ M µ (Q). See [START_REF] André | G-Functions and Geometry : A Publication of the Max-Planck-Institut für Mathematik[END_REF] or [START_REF] Dwork | Introduction to G-functions[END_REF] for an extensive review of the theory of G-functions.

Our goal is to study the following problem, first considered in a special case (i.e., β = 0) by Fischler and Rivoal ([6]), involving G-functions and G-operators. Let K a number field and

F (z) = ∞ k=0 A k z k ∈ K z a non polynomial G-function. Let L ∈ Q [z, d/
dz] \ {0} be an operator such that L(F (z)) = 0 and of minimal order µ for F . Take a parameter β ∈ Q \ Z 0 , that will remain fixed in the rest of the paper. For n ∈ N * and s ∈ N, we define the G-functions F [s] β,n (z)

= ∞ k=0 A k (k + β + n) s z k+n .
These are related to iterated primitives of F (z). The aim of this article is to find upper and lower bounds of the dimension of Φ α,β,S := Span K F [s] β,n (α), n ∈ N * , 0 s S when S is a large enough integer and α ∈ K, 0 < |α| < R with R the radius of convergence of F . Note that it is not obvious that Φ α,β,S has finite dimension. Precisely, we want to prove the following theorem.

Theorem 1

Assume that F is not a polynomial. Then for S large enough, the following inequality holds:

1 + o(1) [K : Q]C (F, β) log(S) dim K Φ α,β,S 0 (β)S + µ.
Here, if δ = deg z (L) and ω is the order of 0 as a singularity of L, 0 (β) is defined as the maximum of := δω and the numbers f -β when f runs through the exponents of L at infinity such that f -β ∈ N, and C (F, β) is a positive constant depending only on F and β, and not α.

If F (z) ∈ K[z], then F [s] β,n (z) ∈ K[z]
as well and Φ α,β,S ⊂ K. In [START_REF] Fischler | Linear independance of values of G-functions[END_REF], Fischler and Rivoal proved this theorem with β = 0. Their goal was to generalize previous results of Rivoal ([12], for α ∈ Q) and Marcovecchio [START_REF] Marcovecchio | Linear independence of linear forms in polylogarithms[END_REF] on the dimension of the Kvector space spanned by Li s (α), 0 s S, for α ∈ K, 0 < |α| < 1, where Li s (z) := ∞ k=1 z k k s is the s-th polylogarithm function. Indeed, if we set A k = 1 for every positive integer k, the family of functions F [s] 0,n (z)

n,s
is the family of the polylogarithms Li s (z) up to an additive polynomial term. Using a different method based on a generalization of Shidlovskii's lemma, Fischler and Rivoal later proved in [START_REF] Fischler | Linear independance of values of G-functions, II. Outside the disk of convergence[END_REF] that Theorem 1 was also true for β = 0 and α in a domain that is star-shaped at 0 in which the open disc of convergence of F is strictly contained. We don't know if this also holds for any rational β, and it seems to be a difficult task. We are going to adapt their approach in [START_REF] Fischler | Linear independance of values of G-functions[END_REF] to the more general case we are interested in. In a first part, we rely on the properties of G-function of F to find a recurrence relation between the functions F [s] β,n (z), which will prove the upper bound of the theorem. In a second part, we will study the asymptotic behavior as n → +∞ of a power series T S,r,n (z), which is a linear form in the F [s] β,n (z), in order to use a linear independence criterion à la Nesterenko due to Fischler and Rivoal, leading to the lower bound of Theorem 1. The key tool for this will be the saddle point method.

In Section 4, we will give an original explicit expression of the constant C (F, β). To this end, we recall in Section 3 results of Dwork [START_REF] Dwork | Introduction to G-functions[END_REF], André [START_REF] André | G-Functions and Geometry : A Publication of the Max-Planck-Institut für Mathematik[END_REF] and of the author [START_REF] Lepetit | Quantitative problems on the size of G-operators[END_REF] on the notion of size of a G-operator, encoding a condition of moderate growth on some denominators, the Galochkin condition. In particular, an explicit version of Chudnovsky's Theorem gives a relation between the size of a G-function, encoding the conditions b) and c) of the definition above, and the size of its minimal operator.

After simplification, the estimation of C (F, β) we obtain ultimately depends on β (in fact, on its denominator), on arithmetic and analytic invariants of the minimal operator L of F and on the size of F itself.

In order to compute C (F, β), it is possible and more convenient to rewrite L in the form

L = z ω-µ u j =0 z j Q j (θ + j ) , θ = z d dz (1) 
with

ω ∈ N * , Q j (X ) ∈ O K [X ]
and u ∈ N * . We notice that if = 0, then the only power series solutions of L(y(z)) = 0 are polynomials (see the remark after Equation ( 22), Section 4). We will prove the following theorem:

Theorem 2

Assume that F is not a polynomial. We denote by D the denominator of β. Then the integer defined in (1) below is 1 and a suitable constant C (F, β) in Theorem 1 is

C (F, β) = log(2eC 1 (F )C 2 (F, β)) (2) with C 1 (F ) := max 1, γ 0 /γ , Φ 0 (L) max(1, -1) (3) 
and

C 2 (F, β) := den 1/γ 0 3 den(e, β) 6µ exp 3 max(1, -1)[K : Q]Λ 0 (L, β) + 3(µ + 1)den(f, β) , ( 4 
)
where the polynomials

Q 0 (X ) = γ 0 µ i =1 (X -e i ) and Q (X ) = γ µ i =1 (X + f i -) are defined in (1). 
The numbers e i (resp. f j ) are congruent modulo Z to the exponents of L at 0 (resp. ∞) and are therefore rational numbers by Katz's Theorem ([5, p. 98]), since L annihilates the G-function F . The numbers Λ 0 (L, β) and Φ 0 (L) will be defined respectively in formulas (31) and (37) of Section 4. This theorem provides a constant C (F, β) that eventually only depends on F and the denominator D of β.

The terms C 1 (F ) and C 2 (F, β) making up the constant C (F, β) arise from very different computations: C 1 can be seen as the "analytic" part of C whereas C 2 is related to arithmetic invariants of F , L and β.

In Section 5, we will end the paper by making explicit the results of Theorems 1 and 2 in the cases of classical examples, including polylogarithms, hypergeometric functions, and the generating function of the Apéry numbers.

Acknowledgements: I thank T. Rivoal for carefully reading this paper and for his useful comments and remarks that improved it substantially. I also thank the anonymous referee for pointing out some imprecisions and mistakes in the manuscript.

2 Proof of the main result 2.1 A recurrence relation between the F [s] β,n (z)

As F is a G-function, the nonzero minimal operator L of F is a G-operator by Chudnovsky's Theorem (see [5, p. 267]). In particular, the André-Chudnovsky-Katz Theorem (cf [2, p.719]) mentioned in Section 1 states that L is a Fuchsian operator with rational exponents at every point of P 1 (Q). Relying on this property, we are going to obtain a recurrence relation between the series F [s] β,n (z), when s ∈ N and n ∈ N * (Proposition 2 below). Here, and in all that follows, N (resp. N * ) denotes the set of non-negative (resp. positive) integers.

This algebraic method will be the key argument to obtain the upper bound in Theorem 1 and will also be useful in Subsection 2.2, where we will prove the lower bound.

By [START_REF] Fischler | Linear independance of values of G-functions[END_REF]Lemma 1,p. 11], there exist some polynomials

Q j (X ) ∈ O K [X ] and u ∈ N * such that uz µ-ω L = j =0 z j Q j (θ + j ), (5) 
with θ = zd/dz, µ the order of L, ω the multiplicity of 0 as a singularity of L and = δω where δ is the degree in z of L.

Lemma 1

Define, for j ∈ {0, . . . , }, Q j ,β (X ) = D µ Q j (X -β), where D = den(β). The operator

L β = j =0 z j Q j ,β (θ + j ) is an operator in Q [z, d/dz] \ {0} of minimal order for z β F (z).
Before proving Lemma 1, we mention the following consequence of Chudnovsky's Theorem stated by Dwork ([5, Corollary 4.2, p. 299]).

Proposition 1

Let L be an operator in Q(z) [d/dz] such that the differential equation L(y(z)) = 0 has a basis of solutions around 0 of the form ( f 1 (z), . . . , f µ (z))z A , where the f i (z) are G-functions and the matrix A ∈ M µ (Q) has rational eigenvalues. Then L is a G-operator.

We recall that z

A is defined in a simply connected open subset Ω of C * , as z A := exp(A log(z)) = ∞ k=0 log(z) k A k /k! for z ∈ Ω,
where log is a determination of the complex logarithm on Ω.

Proposition 1 implies that L β is a G-operator. Indeed, if we set a basis of solutions of L(y(z)) = 0 around 0 of the form ( f 1 (z), . . . , f µ (z))z C , where C ∈ M µ (Q) has eigenvalues in Q, a basis of solutions of L β (y(z)) = 0 around 0 is ( f 1 (z), . . . , f µ (z))z C +βI µ .

Proof of Lemma 1.

We begin by the following observation: for all m, j ∈ N,

(θ -β + j ) m (z β F (z)) = z β (θ + j ) m (F (z)).
It is enough to prove it for F (z) = z k . In that case, for m = 1,

(θ -β + j )(z β z k ) = (β + k)z β+k + ( j -β)z β+k = z β (k + j )z k = z β (θ + j )z k
and the result follows by induction on m.

Now, with Q j = d j m=0 ρ j ,m X m , we have L β (z β F (z)) = D µ j =0 d j m=0 z j ρ j ,m (θ -β + j ) m (z β F (z)) = D µ z β j =0 d j m=0 z j ρ j ,m (θ + j ) m (F (z)) = D µ z β j =0 z j Q j (θ + j )(F (z)) = 0.
We note that L β has the same order as L. Let us now prove that this order is the minimal one for z β F (z). Let L be an operator of minimal order for F (z) := z β F (z). Then F (z) = z -β F (z), so L -β (F ) = 0. Thus ord (L) ord ( L -β ) = ord ( L), since L is minimal for F . On the other hand, L β ( F ) = 0, so that the minimality of L yields ord ( L) ord (L). Finally, L has the same order as L and L β , so L β is indeed minimal.

In a similar way as in [6, Lemma 3, p. 17], we obtain the following key lemma:

Lemma 2

For any fixed s ∈ N * , the sequence of functions (F [s] β,n (z)) n 1 satisfies the following inhomogeneous recurrence relation:

∀n 1, j =0 Q j ,β (-n)F [s] β,n+ j (z) = j =0 s-1 t =1 γ j ,n,t ,s,β F [t ] β,n+ j (z) + j =0 z n+ j B j ,n,s,β (θ)F (z)
where γ j ,n,t ,s,β ∈ O K and each polynomial B j ,n,s,β (X ) ∈ O K [X ] has degree at most d js.

Proof.

Let us proceed by induction on s 1.

• For s = 1, let us remark that for u ∈ N, [1] β,u+1 (z).

z 0 x β+u F (x)dx = ∞ k=0 A k z 0 x β+u+k dx = ∞ k=0 A k β + u + k + 1 z β+u+k+1 = z β F
Hence, if we set L 1 = uz µ-ω L as in (5) above, we have

0 = z 0 x β+n-1 L 1 (F (x))dx = j =0 d j m=0 ρ j ,m m p=0 m p j m-p z 0 x β+n+ j -1 θ p F (x)dx.
Successive integrations by parts give

z 0 x β+n+ j -1 θ p F (x)dx = z β+n+ j p-1 q=0 (-1) p-q-1 (β + n + j ) p-q-1 θ q F (z)
+ (-1) p (β + n + j ) p z β F [1] β,n+ j (z). ( 6)

Therefore, diving both sides of the equality by z β and using the equality

d j m=0 ρ j ,m m p=0 m p (-1) p (β + n + j ) p j m-p = Q j (-n -β), we obtain j =0 Q j (-n -β)F [1] β,n+ j (z) = j =0 z n+ j B j ,n,1,β (θ)F (z) with B j ,n,1,β = d j -1 q=0 b j ,n,1,q,β X q , b j ,n,1,q,β = d j m=0 ρ j ,m m p=q+1 m p j m-p (β + n + j ) p-q-1 (-1) p-q-1 .
Multiplying both sides of the equality by D µ , we see that the coefficients of D µ B j ,n,1,β (X ) are algebraic integers which are also polynomials in n with coefficients in O K of degree at most d jq -1. This is the desired conclusion.

• Let s ∈ N * . We assume that the result holds for s. We saw in the first point that

z 0 x β-1 F [s] β,n+ j (x)dx = z β F [s+1] β,n+ j (z).
So, by induction hypothesis,

j =0 Q j ,β (-n)F [s+1] β,n+ j (z) = 1 z β z 0 j =0 Q j ,β (-n)x β-1 F [s] β,n+ j (x)dx = 1 z β j =0 s-1 t =1 γ j ,n,t ,s,β z 0 x β-1 F [t ] β,n+ j (x)dx + 1 z β j =0 z 0 x β+n+ j -1 B j ,n,s,β (θ)F (x)dx = j =0 s-1 t =1 γ j ,n,t ,s,β F [t +1] β,n+ j (z) + j =0 d j -s q=0 b j ,n,s,q,β 1 
z β z 0 x β+n+ j -1 θ q F (x)dx.
Finally, Equation (6) yields

j =0 Q j (-n -β)F [s+1] β,n+ j (z) = j =0 s t =1 γ j ,n,t ,s+1,β F [t ] β,n+ j (z) + j =0 z n+ j B j ,n,s+1,β (θ)F (z)
where

γ j ,n,t ,s+1,β =      γ j ,n,t -1,s,β , 2 t s + 1 i =0 d j -s q=0 
(-1) q (β + n + i ) q b i ,n,s,q,β , t = 1 and

B j ,n,s+1,β (X ) = d j -s q=0 b j ,n,s,q,β q-1 p=0 (-1) q-p-1 (β + n + j ) q-p-1 X p ∈ O K [X ]
has degree at most d js -1.

Lemma 2 implies the following proposition, which is the main result of this subsection. It provides an inhomogeneous recurrence relation satisfied by the sequence of G-functions F [s] β,n (z)

n∈N * , 0 s S

. The important fact in [START_REF] Fischler | Linear independance of values of G-functions, II. Outside the disk of convergence[END_REF] is that the length of the summations over j does not depend on n.

Proposition 2

Let m ∈ N * be such that m > f --β for every exponent f of L at ∞ satisfying f -β ∈ N. Then for any s, n 1, a) There exist some algebraic numbers κ j ,t ,s,n,β ∈ K and polynomials K j ,s,n,β (z) ∈ K[z] of degree at most n + s( -1) such that

F [s] β,n (z) = s t =1 +m-1 j =1 κ j ,t ,s,n,β F [t ] β, j (z) + µ-1 j =0 K j ,s,n,β (z)(θ j F )(z). (7) 
b) There exists a constant C 1 (F, β) > 0 such that the numbers κ j ,t ,s,n,β (1 j +m -1, 1 t s), and the houses of the coefficients of the polynomials K j ,s,n,β (z), 0 j µ -1 are bounded by H (F, β, s, n), with

∀n ∈ N * , ∀1 s S, H (F, β, s, n) 1/n C 1 (F, β) S .
c) Let D(F, β, s, n) denote the least common denominator of the algebraic numbers κ j ,t ,s,n ,β (1 j + m -1, 1 t s, n n) and of the coefficients of the polynomials K j ,s,n ,β (z) (0 j µ -1, n n). Then there exists a constant C 2 (F, β) > 0 such that

∀n ∈ N * , ∀1 s S, D(F, β, s, n) 1/n C 2 (F, β) S .
The proof of this proposition is, mutatis mutandis, the same as the proof of [6, Proposition 1, p. 16]. Indeed, Proposition 1 implies that

L β = j =0 z j Q j ,β (θ + j ) is a G-operator, which
enables us to use [6, Lemma 2, p. 12] in order to deduce Proposition 2 from Lemma 2 above.

However, we will present in Section 4 a precise way to compute the constants C 1 (F, β) and C 2 (F, β) which was not given in [START_REF] Fischler | Linear independance of values of G-functions[END_REF]. In particular, we will see that the constant C 1 (F, β) can be chosen independent of β.

In the next two subsections and in Section 4, the index β relative to κ j ,t ,s,n,β and K j ,s,n,β will be omitted as there is no ambiguity.

Remark. Denote by E (β) the set of exponents f of L at ∞ such that f -β ∈ N. Then the best possible value for m is m = max {1} ∪ { f + 1 --β, f ∈ E (β)} = 0 (β) -+ 1 where 0 (β) := max { } ∪ { f -β, f ∈ E (β)} . (8) 
Katz's Theorem (see [5, Theorem 6.1, p. 98]) ensures that the exponents of L at ∞ are all rational numbers. Assume that one of them, denoted by f , is nonzero, and set, for all k ∈ N,

β k := sign( f ) -kden( f ) | f |. Then we have f -β k = kden( f )| f | ∈ N, so that for all k, 0 (β k ) den( f )| f |k -----→ k→+∞ +∞.
Likewise, if 0 is the only exponent of L at ∞, then

β k = -k -satisfies 0 (β k ) = k + → +∞.

Study of an auxiliary series

As in [6, p. 24], we define an auxiliary series T S,r,n (z), which depends on β and turns out to be a linear form with polynomial coefficients in the F [s] β,u (z) (Proposition 3). For S ∈ N and r ∈ N such that r S, let

T S,r,n (z) = n! S-r ∞ k=0 (k -r n + 1) r n (k + 1 + β) S n+1 A k z -k . This series converges for |z| > R -1 .
The goal of this part is to obtain various estimates on T S,r,n (z) in order to be able to apply a generalization of Nesterenko's linear independence criterion ([6, Section 3]). This will provide the lower bound on the dimension of Φ α,β,S in Theorem 1. The control of the size and the denominator of coefficients appearing in the relation between T S,r,n (z) and the F [s] β,u [z) (Lemmas 3 and 4) will play a central role, but the most tedious part in the original paper of Fischler and Rivoal consisted in the use of the saddle point method in order to obtain an asymptotic expansion of T S,r,n (1/α) as n → +∞ for 0 < |α| < R. Fortunately, we can adapt their proof with only a few minor changes (Lemma 6).

Proposition 3

For n 0 (β), there exist some polynomials C u,s,n (z) ∈ K[z] and Cu,n (z) ∈ K[z] of respective degrees at most n + 1 and n + 1 + S( -1) such that

T S,r,n (z) = 0 (β) u=1 S s=1 C u,s,n (z)F [s] β,u 1 z + µ-1 u=0 C u,n (z)z -S( -1) (θ u F ) 1 z .

Proof.

Let us write the partial fraction expansion of

R n (X ) := n! S-r X (X -1) . . . (X -r n + 1) (X + β + 1) S . . . (X + β + n + 1) S = n+1 j =1 S s=1 c j ,s,n (X + β + j ) s , c j ,s,n ∈ Q, (9) 
so that

T S,r,n (z) = n+1 j =1 S s=1 c j ,s,n z j F [s] β, j 1 z .
Then [6, Lemma 4, p. 24], Equation ( 9) and Proposition 2 altogether yield

T S,r,n (z) = 0 (β) u=1 S s=1 C u,s,n (z)F [s] β,u 1 z + µ-1 u=0 Cu,n (z)z -S( -1) (θ u F ) 1 z ,
where

C u,s,n (z) = c u,s,n z u + n+1 j = 0 (β)+1 S σ=s z j c j ,σ,n κ u,s,σ, j ,
and

C u,n (z) = n+1 j = 0 (β)+1 S s=1 c j ,s,n z j +S( -1) K u,s, j 1 z .
We begin by computing an upper bound on the house of the coefficients of the polynomials C u,s,n (z) and Cu,n (z) appearing in Proposition 3.

Lemma 3

For any z ∈ Q, we have

lim sup n→+∞ max u,s C u,s,n (z) 1/n C 1 (F, β) S r r 2 S+r +1 max(1, z ) and lim sup n→+∞ max u,s C u,s,n (z) 1/n C 1 (F, β) S r r 2 S+r +1 max(1, z ).

Proof.

We are going to draw inspiration from the proof given in [12, pp. 6-7]. Let n ∈ N * , j 0 ∈ {1, . . . , n + 1} and s 0 ∈ {1, . . . , S}. The residue theorem yields

c j 0 ,s 0 ,n = 1 2i π |z+β+ j 0 |=1/2 R n (z)(z + β + j 0 ) s 0 -1 dz
where R n (z) has been defined in [START_REF] Hille | Ordinary differential equations in the complex domain[END_REF].

If |z + β + j 0 | = 1 2 , we have |(z -r n + 1) r n | = r n-1 k=0 |z -r n + 1 + k| = r n-1 k=0 z + β + j 0 -r n -1 -k + β + j 0 r n-1 k=0 1 2 + r n -(k + 1) + |β| + j 0 r n-1 k=0 r n -k + |β| + j 0 = (|β| + j 0 + 1) r n ( β + j 0 + 2) r n = ( β + j 0 + r n + 1)! ( β + j 0 + 1)! ,
with β := |β| , where • denotes the integer part function. Moreover,

(z + β + 1) n+1 = n k=0 |z + β + k + 1| = n k=0 z + β + j 0 -( j 0 -k -1) n k=0 | j 0 -k -1| - 1 2 = j 0 -3 k=0 j 0 -k -1 - 1 2 × 1 2 3 × n k= j 0 +1 k + 1 -j 0 - 1 2 1 8 ( j 0 -2)!(n -j 0 )! .
Therefore,

|R n (z)| n! S-r ( β + j 0 + r n + 1)! ( β + j 0 + 1)!( j 0 -2)! S (n -j 0 )! S 8 S = β + j 0 + r n + 1 β + j 0 + 1 × (r n)! ( j 0 -2)! S (n -j 0 )! S 8 S n! S-r = β + j 0 + r n + 1 β + j 0 + 1 × (r n)! n! r × n -2 j 0 -2 S × n S (n -1) S × 8 S .
Hence

|c j 0 ,s,n | 2 β+ j 0 +r n+1 r r n 2 S(n-2) (n(n -1)) S 8 S 1 2 S 2 β+(r +1)n+1 r r n 2 S(n-2) (n(n -1)) S 8 S 1 2
S so that, since the last bound is independent of j 0 , we get lim sup

n→+∞ max 1 j n+1 |c j ,s,n | 1/n r r 2 S+r +1 .
The desired result follows from this inequality and from point b) of Proposition 2.

The following lemma then provides an upper bound on the denominator of the coefficients of C u,s,n (z) and Cu,n (z). We recall that D is the denominator of β.

Lemma 4

Let z ∈ K and q ∈ N * be such that q z ∈ O K . Then there exists a sequence (∆ n ) n 1 of positive natural integers such that, for any u, s:

∆ n C u,s,n (z) ∈ O K , ∆ n C u,n (z) ∈ O K , and lim n→+∞ ∆ 1/n n = qC 2 (F, β) S D 2r e S .

Proof of Lemma 4.

We are going to follow the proof given by Rivoal in [12, pp. 7-8]. For practical reasons, we will work with

R n (t ) = R n (t -1) = n! S-r (t -r n) r n (t + β) S n+1
, rather than with R n (t ). For any j 0 ∈ {0, . . . , n}, we have

∀1 s S , c j 0 +1,s,n = D S-s R n (t )(t + β + j 0 ) S |t =-β-j 0 , (10) 
with

D λ = 1 λ! d λ
dt λ . Consider the following decomposition:

R n (t )(t + β + j 0 ) S = r =1 F (t ) H (t ) S-r
with, for 1 r ,

F (t ) = (t -n ) n (t + β) n+1 (t + β + j 0 ) , and 
H (t ) = n! (t + β) n+1 (t + β + j 0 ).
We obtain

F (t ) = 1 + n p=0 p = j 0 j 0 -p t + β + p f p, ,n , f p, ,n = (-1) n-p n p β + p + n n
and

H (t ) = n p=0 p = j 0 ( j 0 -p)h p,n t + β + p , h p,n = (-1) p n p . Note that h p,n ∈ N * . Hence, if λ ∈ N, D λ (F (t )) |t =-β-j 0 = δ 0,λ + n p=0 p = j 0 (-1) λ ( j 0 -p) f p, ,n (p -j 0 ) λ+1 = δ 0,λ - n p=0 p = j 0 f p, ,n ( j 0 -p) λ ,
where δ 0,λ = 1 if λ = 0 and 0 else, and

D λ (H (t )) |t =-β-j 0 = - n p=0 h p,n ( j 0 -p) λ .
Thus, for all 1 r and all λ ∈ N, we have

d λ n ∆ (1) n D λ (F (t )) |t =-β-j 0 ∈ Z and d λ n D λ (H (t )) |t =-β-j 0 ∈ Z with d n = lcm(1, 2, . . . , n) and ∆ (1)
n ∈ N * a common denominator of the f p, ,n for all p, . Lemma 10 b) of Subsection 4.2 ensures that the integers ∆ (1) n = D 2n are suitable ones. Moreover, Leibniz's formula yields

D S-s R n (t )(t + β + j 0 ) S = µ D µ 1 (F 1 (t )) . . . D µ r (F r (t ))D µ r +1 (H (t )) . . . D µ S (H (t )) ,
where the sum is on the µ = (µ 1 , . . . , µ S ) ∈ N S such that µ 1 + • • • + µ S = Ss. Finally, using [START_REF] Lepetit | Quantitative problems on the size of G-operators[END_REF], we see that ∀0 j n, ∀1 s S , d S-s n D 2r n c j +1,s,n ∈ Z. The Prime Number Theorem gives d n e n+o(n) so that the desired conclusion follows from point c) of Proposition 2.

Let us now explain briefly how the approach of Fischler and Rivoal in [START_REF] Fischler | Linear independance of values of G-functions[END_REF] to estimate T S,r,n (1/α) as n → +∞ for 0 < |α| < R with the saddle point method can be adapted in our case.

In [START_REF] Fischler | Linear independance of values of G-functions[END_REF], a family of functions B 1 (z), . . . , B p (z) analytic in some half plane Re(z

) > u such that A(z) = p j =1
B j (z) satisfies A(k) = A k for all large enough integers k has been constructed.

Here, u is a positive real number such that

|F (z)| = O (|z| u ) when z → ∞ in C \ (L 0 ∪ • • • ∪ L p ),
where the L i are half-lines (see [6, p. 28]). The theory of singular regular points (see [9, chapter 9]) ensures that u exists. Moreover, [6, Lemma 8, p. 29] gives, for every j ∈ {1, . . . , p}, the following asymptotic expansion of B j (t n), when n tends to infinity:

B j (t n) = κ j log(n) s j (t n) b j ξ t n j 1 + O 1 log(n) ,
where

s j ∈ N, b j ∈ Q, κ j ∈ C * ,
and ξ 1 , . . . , ξ p are the finite singularities of F (z). Furthermore, the implicit constant is uniform in any half-plane Re(t ) d , d > 0.

We define

B S,r,n, j (α) = c+i ∞ c-i ∞ B j (t n) n! S-r Γ((r -t )n)Γ(t n + β + 1) S Γ(t n + 1) Γ((t + 1)n + β + 2) S (-α) t n dt , for 1 j p, where 0 < c < r .
Adapting the computations done in [6, p. 31], based on the residue formula, we obtain the following result:

Lemma 5

If 0 < |α| < R and r > u then for n large enough, we have

T S,r,n 1 α = p j =1 (-1) r n n 2i π B S,r,n, j (α).
It is now a matter of studying the asymptotic behavior of B S,r,n, j (α) when n tends to infinity; this is a sensitive step using the saddle point method.

Stirling's formula provides the following asymptotic expansion of B S,r,n, j (α):

B S,r,n, j (α) = (2π) (S-r +2)/2 κ j log(n) s j n (S+r )/2+b j c+i ∞ c-i ∞ g j ,β (t )e nϕ(-α/ξ j ,t ) 1 + O 1 log(n) dt
as n → ∞, where the constant in O is uniform in t and

g j ,β (t ) = t (S+1)/2+Sβ-b j (r -t ) -1/2 (t + 1) -S(2β+3)/2 and ϕ(z, t ) = t log(z) + (S + 1)t log(t ) + (r -t ) log(r -t ) -S(t + 1) log(t + 1).
Note that ϕ is the same function as in [START_REF] Fischler | Linear independance of values of G-functions[END_REF]. Thus, the application of the saddle point method will not change much in this case because β appears only in g j ,β (t ). We will have to check that g j ,β (t ) is defined and takes a nonzero value at the saddle point.

Lemma 6

For z such that 0 < |z| < 1 and -π < arg(z) π, let τ S,r (z) be the unique t such that Re(t ) > 0 and ϕ (z, t ) = 0, where ϕ (z, t ) = ∂ϕ ∂t (z, t ).

Assume that r = r (S) is an increasing function of S such that r = o(S) and Se -S/(r +1) = o(1) as S tends to infinity. Then if S is large enough (with respect to the choice of the function S → r (S)), the following asymptotic estimate holds for any j ∈ {1, . . . , p}:

B S,r,n, j (α) = (2π) (S-r +3)/2 κ j γ j ,β -ψ j log(n) s j e ϕ j n n (S+r +1)/2+β j (1 + o(1)), n → +∞,
where τ j = τ S,r (-α/ξ j ), ϕ j = ϕ(-α/ξ j , τ j ), ψ j = ϕ (-α/ξ j , τ j ) γ j ,β = g j ,β (τ j ). Moreover, for any j ∈ {1, . . . , p}, we have κ j γ j ,β ψ j = 0.

Note that ϕ j , ψ j , τ j are the same quantities as in [START_REF] Fischler | Linear independance of values of G-functions[END_REF]. The condition on r is in particular satisfied by r = S/(log(S)) 2 .

Proof.

Only the fourth step of the proof in [START_REF] Fischler | Linear independance of values of G-functions[END_REF] has to be adapted to this case in order to apply the saddle point method.

We have g j ,β (t ) = t (S+1)/2+Sβ-b j (rt ) -1/2 (t + 1) -S(2β+3)/2 . Hence, denoting τ = τ S,r (z),

g j ,β (τ) = τ (S+1)/2+Sβ τ b j (r -τ) 1/2 (τ + 1) S(2β+3)/2 .
But as mentioned in [6, Step 1, p. 33], we have zτ S+1 -(r -τ)(τ+1) S = 0, so that r -τ = zτ S+1 (τ + 1) S , hence

g j ,β (τ) = τ Sβ-(S+1)/2 τ b j z 1/2 (τ + 1) S(β+1) = 0 because Re(z) > 0.
We then deduce from the result above the following proposition, which is the adaptation of [6, Lemma 7, p. 26]. The key point, that is proved in [6, p. 41], is that the numbers e ϕ j are pairwise distinct if we make the additional assumption that r ω e -S/(r +1) = o(1) for any ω > 0. It is satisfied by r = S/(log(S)) 2 .

Proposition 4

Let α ∈ C be such that 0 < |α| < R. Assume that S is sufficiently large (with respect to F and α), and that r is the integer part of S/(log S) 2 . Then there exist some integers Q 1 and λ 0, real numbers a and κ, nonzero complex numbers c 1,β ,. . . , c Q,β , and pairwise distinct complex numbers ζ 1 , . . . , ζ Q , such that |ζ q | = 1 for any q and

T S,r,n (1/α) = a n n κ log(n) λ Q q=1 c q,β ζ n q + o(1) as n → ∞, and 
0 < a 1 r S-r .
The proof of this result is, mutatis mutandis the same as in [6, pp. 41-42] but we give a sketch of it for the reader's convenience.

Proof (sketch).

By Lemma 5, we have

T S,r,n 1 α = p j =1 (-1) r n n 2i π B S,r,n, j (α).
The asymptotic expansion of B S,r,n, j (α) provided by Lemma 6 then implies that

T S,r,n 1 α = (-1) r n 2i π (2π) (S-r +3)/2 n (S+r -1)/2 p j =1 κ j γ j ,β -ψ j n -β j log(n) s j e ϕ j n (1 + o(1)), n → +∞.
We consider J = { j 1 , . . . , j Q } the set of the j ∈ {1, . . . , p} such that (Re(ϕ j ), -β j -(S + r -1)/2, s j ) is maximal for the lexicographic order, equal to some (a, κ, λ) ∈ R 3 . Then we may neglect the other terms of the sum; precisely, we have

T S,r,n 1 α = a n n κ log(n) s Q q=1 c q,β ζ n q (1 + o(1))
where ζ q := exp i Im(ϕ j q ) and c q,β := (-1) r n 2i π (2π) (S-r +3)/2 κ j q γ j q ,β -ψ j q Finally, the difficult point is to prove that the ζ q are pairwise distinct. This comes from the fact, proved in [6, p. 42] that the ϕ j are pairwise distinct. As we mentioned it above, it is crucial for this purpose to make the assumption that r ω e -S/(r +1) = o(1) for any ω > 0.

Proof of Theorem 1

We are now going to prove the main theorem of this paper. The upper bound on the dimension of Φ α,β,S arise from the recurrence relation (7) of Proposition 2 above. On the other hand, by the estimates of Subsection 2.2, we can now apply a linear independence criterion à la Nesterenko ([6, Theorem 4, p. 8]) to obtain a lower bound.

For the sake of clarity, we reproduce here, with some adaptations, the proof of [6, pp. 26-27].

Let α be a nonzero element of Using Proposition 3, we consider

K such that |α| < R; choose q ∈ N * such that q α ∈ O K . By
τ n := ∆ n T S,r,n 1 α = 0 (β) u=1 S s=1 p u,s,n F [s] β,u (α) + µ-1 u=0 pu,n α S( -1) (θ u F )(α).
Choosing r = S/ log(S) 2 , Lemma 4 and Proposition 4 yield as n tends to infinity:

τ n = a n(1+o(1)) 0 Q q=1 c q,β ζ n q + o(1) with 0 < a 0 < qC 2 (F, β) S D 2r e S r S-r .
Let Ψ α,β,S denote the K-vector space spanned by the numbers Therefore,

F [s] β,u (α) and (θ v F )(α), 1 u 0 (β), 1 s S, 0 v µ -1. By [6, Corollary 2, p. 9], we get dim K (Ψ α,β,S ) 1 [K : Q] 1 - log(a 0 ) log(b) .
dim K (Ψ α,S ) 1 + o(1) [K : Q] log(2eC 1 (F, β)C 2 (F, β)) log(S) as S → +∞. ( 12 
)
Point a) of Proposition 2 with m = 0 (β) -+ 1 and z = α shows that Φ α,β,S , which is the K-vector space spanned by the numbers F [s] β,u (α) for u 1 and 0 s S, is a K-subspace of Ψ α,β,S . In particular, for any S 0,

dim K (Φ α,β,S ) dim K (Ψ α,β,S ) 0 (β)S + µ ,
which proves the right-hand side of the inequality in Theorem 1. On the other hand, we also have dim K (Ψ α,β,S ) dim K (Φ α,β,S ) + µ so that the lower bound ( 12) holds as well with Φ α,β,S instead of Ψ α,β,S because µ is independent from S. This proves the left hand side of the inequality in Theorem 1 with

C (F, β) := log(2eC 1 (F, β)C 2 (F, β)). ( 13 
)
The rest of the paper is devoted to the computation of C (F, β).

Quantitative results on the size of a differential system

In this section, we explain the notion of size of a differential system and give several quantitative results about it. This will be useful to give an explicit expression of the constant C (F, β) of Theorem 1 in Section 4. G-operators constitute a class of differential operators which contain the minimal operators of the G-functions. They satisfy a condition of moderate growth on certain denominators, called the Galochkin condition (Definition 1 below). Following André's notations ([1, Section IV.4]), we can attach to any G-operator L a quantity σ(L), called size of L, encoding this condition.

Size of a differential system

Let K be a number field, µ ∈ N * and G ∈ M µ (K(z)). In this subsection, we introduce and give some basic properties of the size σ(G) of G.

For s ∈ N, we define G s as the matrix such that, if y is a vector satisfying y = G y, then y (s) = G s y. In particular, G 0 is the identity matrix. The matrices G s satisfy the recurrence relation

∀s ∈ N, G s+1 = G s G +G s ,
where G s is the derivative of the matrix G s .

Definition 1 (Galochkin, [8])

The system y = G y is said to satisfy the Galochkin condition if there exists

T (z) ∈ K[z] such that T (z)G(z) ∈ M µ (K[z]) and ∃C > 0 : ∀s ∈ N, q s C s+1 . ( 14 
)
where, for s ∈ N, q s 1 is defined as the least common denominator of all coefficients of the entries of the matrices T (z) m G m (z) m! , when m ∈ {1, . . . , s}.

Actually, if y = G y satisfies the Galochkin condition, every polynomial T (z) with coefficients in K such that T (z)G(z) ∈ M µ (K[z]) satisfies the condition [START_REF] Siegel | Über einige Anwendungen diophantischer Approximationen[END_REF] (see Proposition 5 b) below).

Chudnovsky's Theorem (proved in [START_REF] Chudnovsky | Applications of Padé approximations to diophantine inequalities in values of G-functions[END_REF]) states that if G is the companion matrix of the minimal nonzero differential operator L associated to a G-function, then the system y = G y satisfies the Galochkin condition. That is why we say that L is a G-operator (see [2, pp. 717 -719] for a review of the properties of G-operators). Following [5, chapter VII], we are now going to rephrase this condition in p-adic terms.

If p is a prime ideal of O K , | • | p is the p-adic absolute value defined on K, with the choice of normalisations given in [5, p. 223]. We recall that the Gauss absolute value associated with | • | p is the non-archimedean absolute value

| • | p,Gauss : K(z) -→ R N i =0 a i z i M j =0 b j z j -→ max 0 i N |a i | p max 0 j M |b j | p .
The This denominator need not be the smallest common multiple of the α i in the classical sense, as the example of α = (1+i )/2 in K = Q(i ) shows: it satisfies den(α) = 2 and den (α

Let G ∈ M µ (K(z)). The size of G is σ(G) := lim sup s→+∞ 1 s p∈Spec(O K ) h(s, p) where ∀s ∈ N, h(s, p) = sup m s log + G m m! p,Gauss , with log + : x → log (max(1, x)) . The size of Y = ∞ k=0 Y k z k , Y k ∈ M µ,ν (K) is σ(Y ) := lim sup s→+∞ 1 s p∈Spec(O K ) sup k s log + |Y k | p . If α 1 , . . . , α n ∈ K are such that (α i ) =
) = 4, since (1 + i ) is a prime ideal of Z[i ] = O K . However, we have den(α 1 , . . . , α n ) den (α 1 , . . . , α n ) (den(α 1 , . . . , α n )) [K:Q] . ( 15 
)
This alternative notion of denominator turns out to be more useful than the usual one in our context because, as proved in [5, p. 225],

∀α 1 , . . . , α n ∈ K, p∈Spec(O K ) sup 1 i n log + |α i | p = 1 [K : Q] log den (α 1 , . . . , α n ) . ( 16 
)
Remark. If u(z) = ∞ n=0
u n z n , we have

σ(u) = 1 [K : Q] lim sup s→+∞ 1 s log(den (u 0 , . . . , u s )) 1 [K : Q] lim sup s→+∞ 1 s log(den(u 0 , . . . , u s )), so that lim sup s→+∞ den(u 0 , . . . , u s ) 1/s e [K:Q]σ(u) .
We first prove the following proposition which provides the link between Galochkin's condition and the size σ(G). Proposition 5

Let T (z) ∈ K[z] be such that T (z)G(z) ∈ M µ (K[z]
). Define, for s ∈ N, q s (resp. q s ), the denominator (resp. the den ) of the coefficients of the entries of the matrices T G, T 2 G 2 2 , . . . , T s G s s! . Then a) For all integer s, 1 s log(q s ) 1

s log(q s ) [K : Q] 1 s log(q s ). b) Set h -(T ) = p∈Spec(O K ) log -|T | p,Gauss and h + (T ) = p∈Spec(O K ) log + |T | p,Gauss
with log -: x → log (min(1, x)). Then

[K : Q]σ(G) + h -(T ) lim sup s→+∞ 1 s log(q s ) [K : Q]σ(G) + h + (T ).
c) The differential system y = G y satisfies the Galochkin condition if and only if σ(G) < +∞ ([5, p. 228]).

Proof.

Point a) is a direct consequence of the inequality (15). It implies immediately c). b) Equation ( 16) yields 

log q s = [K : Q] p∈Spec(O K ) sup m s log + T m G m m! p,
log + T m G m m! p,Gauss .
We obtain the desired result by dividing by s and taking the superior limit.

Remark. A convenient situation happens when G ∈ M µ (Q(z)) and T (z) ∈ Z[z] has at least one coefficient equal to 1. In that case, Proposition 5 summarises into the equality

σ(G) = lim sup s→+∞ 1 s log(q s ).
The following technical lemmas show that the size of a differential system or a differential operator is invariant by change of variable u = z -1 and by equivalence of differential systems. We begin by studying the effect of the change of variable u = z -1 on differential systems and differential operators. where

∀s ∈ N * , ∀1 k s, c s,k = s -1 s -k s! k! ∈ Z. (18) b) Let L = P µ (z) d dz µ + P µ-1 (z) d dz µ-1 + • • • + P 0 (z) ∈ K(z) d dz , we consider L ∞ ∈ K(u) [d/du] such that for all f , L( f (z)) = 0 ⇔ L ∞ (g (u)) = 0, where g (u) = f (u -1
). Then the differential systems y = (A L ) ∞ y and y = A L ∞ y are equivalent over Q(z).

c) We have

L ∞ = P µ,∞ (u) d du µ + P µ-1,∞ (u) d du µ-1 + • • • + P 0,∞ (u),
where ∀s ∈ {1, . . . , µ}, P s,∞ (u) = µ s=k (-1) s c s,k u s+k P s 1 u and P 0,∞ (u) = P 0 1 u .

Lemma 7 implies that the size is invariant by change of variable u = z -1 , as stated in the following lemma.

Lemma 8

We keep the same notations as in Lemma 7.

a) For all

G ∈ M n (K(z)), we have σ(G ∞ ) = σ(G). b) If G ∈ M n (K(z)
) and P ∈ GL n (K(z)), let P [G] := PGP -1 + P P -1 be a matrix defining a differential system y

= P [G]y that is equivalent to y = G y over Q(z). Then σ(G) = σ(P [G]) ([1, Lemma 1, p. 71]). c) For all M ∈ Q(z) [d/dz], we have σ(M ∞ ) = σ(M ).
Proof of Lemma 7. a) We are going to show (17) by induction on s. Moreover, we will prove that c 1,1 = 1 and

∀s ∈ N * , ∀1 k s + 1, c s+1,k =        (s + 1)c s,1 si k = 1 c s,k-1 + (s + k)c s,k if 2 k s c s,s if k = s + 1 . ( 19 
)
In particular, we will have c s,k ∈ Z for all s, k.

For s = 1, it is the definition of G ∞ . Assume that (17) is satisfied by s ∈ N * ; then, since G s+1 = G s G +G s , G ∞,s+1 (u) = G ∞,s (u)G ∞ (u) +G ∞,s (u) = - 1 u 2 G ∞,s (u)G 1 u +G ∞,s (u) = (-1) s+1 s k=1 c s,k u s+k+2 G k 1 u G 1 u + (-1) s+1 s k=1 c s,k u s+k+2 G k 1 u + (-1) s+1 s k=1 (s + k)c s,k u s+k+1 G k 1 u = (-1) s+1 s k=1 c s,k u s+k+2 G k 1 u G 1 u +G k 1 u + (-1) s+1 s k=1 (s + k)c s,k u s+k+1 G k 1 u = (-1) s+1 s k=1 c s,k u s+k+2 G k+1 1 u + (-1) s+1 s k=1 (s + k)c s,k u s+k+1 G k 1 u = (-1) s+1 s+1 k=1 c s+1,k u s+1+k G k 1 u
where the coefficients c s+1,k satisfy (19). This ends the proof of (17).

It remains to prove the explicit formula (18) for the coefficients c s,k . Setting c s,k = s- 

(s + s -k) c s,s-k + c s,s-(k+1) = (2s -k) s -1 k s! (s -k)! + s -1 k + 1 s! (s -k -1)! Pascal's triangle = (2s -k) s k + 1 s! (s -k)! + s -1 k + 1 s! (s -k -1)! -(2s -k) s! (s -k)! = (2s -k) s k + 1 s! (s -k)! - s -1 k + 1 s s! (s -k)! = s! (s -k)! (2s -k) s k + 1 - s! (k + 1)!(s -k -2)! = s! (k + 1)! s! (s -k)! 2s -k (s -k -1)! - 1 (s -k -2)! = s! (k + 1)! s! (s -k)! s + 1 (s -k -1)! = s + 1 k + 1 (s + 1)! (s + 1 -(k + 1))! = c s+1,s+1-(k+1)
Moreover, c s+1,1 = (s + 1)! = (s + 1) c s,1 and c s+1,s+1 = 1 = c s,s . Therefore, c s,h s∈N * 0 h s satisfies the recurrence relation ( 19), which proves (18).

b)

We have for all f , L( f (z)) = 0 ⇔ L ∞ (g (u)) = 0 where g (u) = f (u -1 ). Denote G = A L the companion matrix of L. We set, for every f satisfying L( f (z)) = 0, y(z) := t f (z), f (z), . . . , f (µ-1) (z) and w(u) := t g (u), g (u), . . . , g (µ-1) (u) , as well as y(u) := y(u -1 ). The solutions of h = G ∞ h (resp. h = A L ∞ h) are the vectors y(u) (resp. w(u)) when L( f (z)) = 0.

Equation ( 17) above yields for all s ∈ N *

y (s) (u) = G ∞,s (u) y(u) = (-1) s s k=1 c s,k u s+k G k 1 u y 1 u = (-1) s s k=1 c s,k u s+k y (k) 1 u (20)
so that by taking the first component of the vectors on each side of the equality, we obtain

∀s ∈ N * , g (s) (u) = (-1) s s k=1 c s,k u s+k f (k) 1 u .
Hence w(u) = P (u) y(u) where P (u) is a lower triangular matrix whose diagonal has only nonzero terms. Thus, P ∈ GL n (Q(u)) and y → P y is the bijection from the solution set of h = G ∞ h to the solution set of h = A L ∞ (u)h. These two differential systems are therefore equivalent on Q(z). c) Since (G ∞ ) ∞ = G, we may exchange the roles of y and y in (20) in order to obtain

y (s) (z) = G s (z)y(u)(-1) s s k=1 c s,k z s+k y (k) 1 z . ( 21 
)
Taking likewise the first component of the vectors on each side of the equality (21), we get

∀s ∈ N * , f (s) (z) = (-1) s s k=1 c s,k z s+k g (k) 1 z .
Hence

L( f (z)) = 0 ⇔ µ s=1 P s (z) s k=1 c s,k z s+k g (k) 1 z + P 0 (z)g 1 z = 0 ⇔ µ k=1 µ s=k (-1) s c s,k z s+k P s (z) g (k) 1 z + P 0 (z)g 1 z = 0 ⇔ P µ,∞ (u)g (µ) (u) + • • • + P 0,∞ (u)g (u) = 0,
where the P ,∞ (u) are as defined in the statement of the lemma.

Proof of Lemma 8. a) By Lemma 7 a), we have for

s ∈ N * , G ∞,s (u) = (-1) s s k=1 c s,k u s+k G k 1 u , where c s,k = s -1 s -k s! k! ∈ N * , 1 k s. If p ∈ Spec (O K ), then s -1 s -k p 1, so that G ∞,s s! p,Gauss max 1 k s G k (u -1 ) k! p,Gauss = max 1 k s G k (u) k! p,Gauss because if h(z) ∈ K(z), then |h(z -1 )| p,Gauss = |h(z)| p,Gauss . Therefore, max 1 k s G ∞,k (u) k! p,Gauss max 1 k s G k (u) k! p,Gauss , whence σ(G ∞ ) σ(G). Since (G ∞ ) ∞ = G, we finally have σ(G) = σ(G ∞ ).
b) The proof of this statement can be found in [ 

A quantitative form of a generalization of Chudnovsky's Theorem

The goal of this subsection is to state and generalize results from the book of Dwork ([5, chapters VII and VIII]) formulating a relation between the size of σ(G) and the size of the G-functions that are solutions of the differential system y = G y. This will be a key point of the method of Section 4. Recall that if ζ ∈ K, the absolute logarithmic size of ζ is

h(ζ) = τ:K →C |ζ| τ + p∈Spec(O K ) |ζ| p
with, for any embedding τ : K → C,

|ζ| τ = |τ(ζ)| 1/[K:Q] if τ(K) ⊂ R |τ(ζ)| 2/[K:Q] else.
The following theorem is a combination of Theorem 2.1, p. 228, Theorem 3.3, p. 238 and Theorem 4.3, p. 243 in [START_REF] Dwork | Introduction to G-functions[END_REF]chapter VII].

Theorem 3 ([5])

If G ∈ M µ (K(z)) satisfies the Galochkin condition σ(G) < +∞, then there exists a fundamental matrix of solutions of the system y = G y of the form Y (z)z C , where

C ∈ M µ (Q) is a matrix with eigenvalues in Q and Y (z) ∈ M µ (K z ). Moreover, σ(Y ) Λ(G) := µ 2 σ(G) + µ 2 + µ -1 + µ(µ -1)H (N C ) + (µ 2 + 1) ζ =0,∞ h(ζ)
where the sum is over the non apparent singularities ζ of the system y = G y, N C is the common denominator of the eigenvalues of C and

H (N ) := N ϕ(N ) ( j ,N )=1 1 j
, where ϕ denotes Euler's totient function.

Remarks.

• In the case where G is a companion matrix A L associated with a differential operator L ∈ K(z) [d/dz], N C is the common denominator of the exponents of L at 0. • For simplicity, we set Λ(L) := Λ(A L ) in that case.

We may be interested in finding a simple upper bound on the size σ(G) appearing in the expression of Λ(G) in Theorem 3 above. It is a constant that can be hard to compute, whereas it might be easier to study the behavior of a particular solution of y = G y. That is the interest of the following quantitative version of Chudnovsky's Theorem.

Theorem 4 ([5], p. 299)

Let y(z) ∈ K z µ be a vector of G-functions and G ∈ M µ (K(z)) a matrix such that y = G y.

Let T (z) ∈ K[z] be such that T (z)G(z) ∈ M µ (K[z]), and t := 1 + max(deg(T G), deg(T )). Then, if µ 2, σ(G) (5µ 2 t -1 -(µ -1)t )σ(y)
where σ(y) = σ(y) + lim sup

s→+∞ 1 s τ:K →C sup m s log + |y m | τ . If µ = 1, we have σ(G) (6t -1)σ(y).
Remarks.

• In particular, if G is the companion matrix of a minimal differential operator L of order µ 2 of a G-function F (z), Theorem 4 can be reformulated as

σ(L) (5µ 2 (δ + 1) -1 -(µ -1)(δ + 1))σ(F ), δ = deg z (L), or if µ = 1, σ(L) (6(δ + 1) -1)σ(F ).
• In order to estimate the analytic term of σ(y) in practice, we use the Hadamard-Cauchy formula. Denoting by R τ the radius of convergence of m 0 τ(y m )z m for every embed-

ding τ : K → C, we obtain lim sup s→+∞ 1 s τ:K →C max m s log + |y m | τ 1 [K : Q] τ:K →C ε τ max 0, -log(R τ ) with ε τ = 1 if τ(K) ⊂ R and 2 else.
André proved in [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF] an analogue of Chudnovsky's Theorem for Nilsson-Gevrey series of arithmetic type of order 0. We proved in [START_REF] Lepetit | Quantitative problems on the size of G-operators[END_REF] the following theorem, which is a quantitative version of this result, and thus a generalization for Nilsson-Gevrey series of arithmetic type of Theorem 4. It relies on previous work by André ([1, Section IV.4]) on the size of differential modules. The "qualitative" part a) is due to André, and it is "quantified" in b), which is the main result of [START_REF] Lepetit | Quantitative problems on the size of G-operators[END_REF]. Its proof can be found in this paper.

Theorem 5

Let S ⊂ Q × N × N a finite set, (c α,k,r ) (α,k,r )∈S ∈ (C * ) S and ( f α,k,r (z)) (α,k,r )∈S a family of nonzero G-functions. We consider

f (z) = (α,k,r )∈S c α,k,r z α log(z) k f α,k,r (z)
a Nilsson-Gevrey series of arithmetic type of order 0. Then: a) The function f (z) is solution of a nonzero linear differential equation with coefficients in Q(z) and the minimal operator

L of f (z) over Q(z) is a G-operator.([2, p. 720]) b) For every (α, k, r ) ∈ S, let L α,k,r = 0 denote a nonzero minimal operator of the G- function f α,k,r (z) over Q(z). We set κ the maximum of the integers k such that (α, k, r ) ∈ S for some (α, r ) ∈ Q × N and A := {α ∈ Q : ∃(k, r ) ∈ N 2 , (α, k, r ) ∈ S}. Then we have σ(L) max 1 + log(κ + 2), 2 1 + log(κ + 2) log max α∈A den(α) , max (α,k,r )∈S (1 + log(k + 2))σ(L α,k,r ) .
Thus, the combination of Theorem 5 and of Chudnovsky's Theorem (Theorem 4) provides, with the notations of Theorem 5, a relation between σ(L) and the σ( f α,k,r ), for (α, k, r ) ∈ S.

Computation of the constants C 1 and C 2

The goal of this section is to prove Theorem 2 stated in the Introduction. The results of Section 3 will be heavily used.

To this end, we recall that if C 1 (F, β) and C 2 (F, β) satisfy Proposition 2 b) and c), then (2) in Subsection 2.3 implies that C (F, β) = log(2eC 1 (F, β)C 2 (F, β)) is a suitable constant in Theorem 1

In [START_REF] Fischler | Linear independance of values of G-functions[END_REF], the existence of constants C 1 (F, β) and C 2 (F, β) for β = 0 of Proposition 2 was proved but no formula nor algorithm was given to compute them explicitly. We want to give an explicit expression of these constants.

Let us first explain how C 1 (F, β) and C 2 (F, β) constants are defined. We take m such that for all n m, Q (-n -β) = 0 and Q 0 (-n -β) = 0. A suitable m is the smallest positive integer such that m > -e -β and m > f --β for every exponent e of L at 0 such that e + β ∈ Z and every exponent f of L at infinity such that f -β ∈ N.

Let (u 1,β (n)) n m , . . . (u ,β (n)) n m be a basis of solution of the homogeneous linear recurrence associated with the operator L β,∞ obtained from L β by a change a variable u = 1/z:

∀n m , j =0 Q j (-n -β)u(n + j ) = 0. ( 22 
)
Remark. If = 0, the only solution of ( 22) is the sequence that is null from the index m. Hence the only power series y(z) ∈ K z solutions of L β,∞ (y(z)) = 0 are polynomials with coefficients in K.

The converse is true : if L is an operator admitting at least one power series solutions around 0 and such that the only y(z) ∈ Q z satisfying L(y(z)) = 0 are polynomials, then = 0.

We now assume that 1. Define

W β (n) = u 1,β (n + -1) • • • u ,β (n + -1) u 1,β (n + -2) • • • u ,β (n + -2) . . . . . . . . . u 1,β (n) • • • u ,β (n) 
the wronskian determinant associated with the basis (u 1,β , . . . , u ,β ) and

D j ,β (n) = (-1) j u 1,β (n + -2) • • • u j -1,β (n + -2) u j +1,β (n + -2) • • • u ,β (n + -2) . . . . . . . . . . . . . . . . . . u 1,β (n) • • • u j -1,β (n) u j +1,β (n) • • • u ,β (n) (23) 
one of its minors of order j .

The same argument as in [6, p. 20] shows that the constant C 2 (F, β) (resp. C 1 (F, β)) can be taken as any upper bound on lim sup n→+∞ δ 3/n n (resp. lim sup n→+∞ M 1/n n ), where δ n (resp. M n ) is a common denominator (resp. the maximum of the absolute value) of the numbers 1

W β (k) , D j ,β (k) Q (1 -k -β) , u j ,β (k), k ∈ {m, . . . , n}, j ∈ {1, . . . , }.
The next four subsections are devoted to the computation of suitables constants C 1 (F, β) and C 2 (F, β). This will prove Theorem 2. In particular, we will see that C 1 (F, β) ultimately only depends on F and not on β.

Preliminary remark. The method we are going to present to compute C 2 (F, β) can be refined when = 1. In this case, there exists a much simpler and more direct way of proceeding.

Indeed, if = 1, then (22) implies that

∀n m, u(n + 1) = Q 0 (-n -β) Q 1 (-n -β) u(n) so that, denoting Q 0 (X ) = γ 0 µ i =1 (X -e i ) and Q (X ) = γ µ i =1 (X + f i -), we obtain u(n) = (-1) γ γ 0 n-m µ i =1 m -f i + + β n-m m + e i -β n-m .
The same computation as in Subsection 4.2 below then shows that

lim sup δ 3/n n den(1/γ 0 ) 3 den(1/γ ) 3 den(e, β) 6µ den(f, β) 6µ exp 3(µ + 1)den(f, β) + 3µden(e, β) := C 2 (F, β). ( 24 
)
The constant C 2 (F, β) thus defined is a suitable one in Proposition 2 in the case = 1.

In everything that follows, we now assume that 2. Note that Theorem 2 is still true (but of lesser interest) if = 1.

Estimate of the denominator of the u j ,β (n)

In this subsection, we will rely on results of Section 3 about the size of the G-operators in order to estimate the denominator of u j ,β (n) for j ∈ {1, . . . , } as n tends to infinity. Here is how we will proceed.

We can show as in [6, p. 13], that if

(u n ) n m is a solution of (22) (in particular, (u j ,β (n)) n m is in that case), then U (z -1 ) = ∞ n=m u n z -n is a solution of L β (U (z)) = 0, with L β = d dz z m-1 L β , (25) 
i.e. U (z) is a solution of the operator L β,∞ obtained by the change of variable u = z -1 . The goal of this subsection is to prove the following proposition and to compute the constant Λ 0 (L, β) appearing in it in terms of the parameter β, the function F and its minimal operator L. Proposition 6

Denote, for 0 j ,Q j (X ) = µ k=0 q j ,k X k . Then we have lim sup n→+∞ den u j ,β (k), 1 j , m k n 1/n exp [K : Q]Λ 0 (L, β) . ( 26 
)
where

Λ 0 (L, β) = (µ + ) 2 + 1 + log(2) max 1, 2 log(D), σ(L) + (µ + ) 2 + µ + -1 + (µ + )(µ + -1)H den( f 1 , . . . , f )D + (µ + ) 2 + 1 ζ =0,∞ h (1/ζ) (27)
where the last sum is on the roots ζ of χ L (z) := j =0 q j ,µ z j .

The following simple lemma will be useful for the proof of Proposition 6, since it allows us to find the singularities of L β,∞ in terms of the singularities of L β . We give a proof for the reader's convenience.

Lemma 9

Let M ∈ Q(z) [d/dz]. Then the singularities ξ ∈ C * of M ∞ are the ζ -1 , when ζ is a finite nonzero singularity of M .

Proof of Lemma 9.

We set

M = P µ (z) d dz µ + P µ-1 (z) d dz µ-1 + • • • + P 0 (z).
Then, by Lemma 7 c), we have

M ∞ = P µ,∞ (u) d du µ + P µ-1,∞ (u) d du µ-1 + • • • + P 0,∞ (u),
where

∀ 1, P ,∞ (u) = µ k= (-1) k k -1 k - k! ! u +k P k 1 u and P 0,∞ (u) = P 0 1 u . ( 28 
)
The singularities of M ∞ are the ξ's such that there exists ∈ {0, . . . , µ-1} such that P ,∞ /P µ,∞ has a pole at ξ.

We write for all k

P k (z) = α k u e k d k i =1 (z -r i ,k ) τ i ,k . (29) 
If ζ = 0, ∞ is not a singularity of M , then for all k, ζ is not a pole of P k /P µ . In particular, even in the case when ζ is a zero of P µ (z), it is a zero of higher order of P k for all k ∈ {0, . . . , µ -1} Observing that if r ∈ C * , 1

u -r = - 1 r u u - 1 r ,
the expression (29) implies the existence of γ k ∈ C and f k ∈ Z such that

P k (1/u) P µ (1/u) = γ k u f k Q k (u),
where ζ -1 is not a pole of Q k (u) ∈ Q(u). Finally, since P µ,∞ (u) = (-1) µ u 2µ P µ (u -1 ), Equation (28) shows that for all ∈ {0, . . . , µ -1}, P ,∞ (u)/P µ,∞ (u) doesn't have a pole at ζ -1 . In other words, ζ -1 is an ordinary point of M ∞ . Since (M ∞ ) ∞ is equal to M up to multiplication by an element of Q(z), we obtain by symmetry that the ordinary points ξ = 0, ∞ of M ∞ are the ζ -1 , when ζ = 0, ∞ is an ordinary point of M . Therefore, by definition, the singularities of M ∞ are the ζ -1 , when ζ = 0, ∞ is a singularity of M .

Proof of Proposition 6.

As mentioned at the beginning of this subsection, if 1 j , then U (z) = ∞ n=m u j ,β (n)z n is a solution of L β,∞ (y(z)) = 0, where L β,∞ is defined by Equation (25). Thus, by Theorem 3 and the remark after Equation (16), we have lim sup

n→+∞ den u j ,β (k), 1 j , m k n 1/n exp [K : Q]Λ L β,∞ . (30) 
The proof consists now essentially in bounding the constant Λ( L β,∞ ) of Theorem 3 in terms of β, L and F .

• Since L β has order µ, the order of L β,∞ is µ + .

• The set of the exponents of L β,∞ at 0 is the set of the exponents of L β at ∞, which is the union of the set of the exponents of L β at ∞ and of the set of the exponents of (d/dz) z m-1 at ∞, that are all integers. Therefore the constant N C in Theorem 3 is in that case den( f 1 + β, . . . , f + β), which divides den( f 1 , . . . , f )D.

• Lemma 9 ensures that the singular points ξ = 0, ∞ of L β,∞ are exactly the ζ -1 , when ζ is a finite nonzero singularity of L β .

But L β = (d/dz) z m-1 L β , so Leibniz's formula shows that if

L β = µ k=0 P k,β (z) d dz k , with P k,β (z) ∈ K[z],
then L β = z m-1 P µ,β (z) (d/dz) µ+ + M , where M is a differential operator of order less than µ + . Hence the nonzero finite singularities of L β are among the roots of P µ,β (z).

Moreover, we can write

αz µ-ω L = j =0 z j Q j (θ + j ) = j =0 z j µ k=0 q j ,k (θ + j ) k = j =0 z j µ k=0 q j ,k k s=0 k s j k-s θ s = µ s=0 j =0 z j µ k=s q j ,k j k-s θ s and likewise 1 D µ L β = j =0 z j Q j (θ + j -β) = µ s=0 j =0 z j µ k=s q j ,k ( j -β) k-s θ s .
The coefficient in front of θ µ happens to be the same for L and L β ; it is equal to χ L (z) := j =0 q j ,µ z j and it is independent of β. Therefore, since

θ µ = z µ d dz µ + µ-1 k=1 a k z k d dz k , a k ∈ C, we have L β = z µ χ L (z)(d/dz) µ + M β ,
where M β has order less than µ.

So finally, P µ,β (z) = z µ χ L (z) and the nonzero finite singularities of L β are among the roots of χ L (z) which does not depend on β. It may happen that the set of singularities of L β varies with β inside the set of roots of χ L , but this is not important for us.

• We have σ( L β,∞ ) = σ( L β ) by Lemma 8 c).

• Let L 0 = (d/dz) . Then we have

σ( L β ) + 2σ(L 0 ) + σ(L β ) since σ(z m-1 L β ) = σ(L β ).
Here we use the fact (see [START_REF] Lepetit | Quantitative problems on the size of G-operators[END_REF]Theorem 3,p. 16]) that

∀L 1 , L 2 ∈ Q(z) d dz , σ(L 1 L 2 ) ord (L 1 ) + 2σ(L 1 ) + σ(L 2 ).
Moreover, a basis of solutions of the equation L 0 (y(z)) = 0 is (1, z, . . . , z -1 ), so that a fundamental matrix of solution of the system y = A L 0 y is the wronskian matrix All this gives, by Theorem 3:

Y =      1 z . . . z -1 0 1 ( - 
Λ( L β,∞ ) (µ + ) 2 + (1 + log(2)) max 1, 2 log(D), σ(L) + (µ + ) 2 + µ + -1 + (µ + )(µ + -1)H den( f 1 , . . . , f )D + ((µ + ) 2 + 1) ζ =0,∞ h (1/ζ) := Λ 0 (L, β), ( 31 
)
where the last sum is on the roots of χ L (z) = j =0 q j ,µ z j , which doesn't depend on β.

Remark. Since σ(L) 6µ 2 (δ + 1) -1 -(µ -1)(δ + 1) σ(F ) by Theorem 4 above, we also have

σ( L β ) + 1 + log(2) max 1, 2 log(D), 6µ 2 (δ + 1) -1 -(µ -1)(δ + 1) σ(F ) .
This enables us to compute an upper bound on Λ 0 (L, β) in terms of σ(F ) rather than σ(L).

Estimate of the denominator of 1/W β (n)

In order to estimate the denominator of 1/W β (n), we are going to rely on a recurrence relation of order one satisfied by (W β (n)) n m which enables us to express this sequence with Pochhammer symbols. This is why we are going to need the following lemma. It provides estimates for the denominator of a quotient of Pochhammer symbols. It is also necessary for the proof of Lemma 4 in Subsection 2. Let us now use this lemma to bound the denominator of

W β (n) -1 . We know that Q 0 (X ) = γ 0 µ i =1 (X -e i ) and Q (X ) = γ µ i =1
(X + f i -), with γ 0 , γ ∈ O K . Thus, we find with the same computation as in [6, pp. 13-14] that

∀n m , Q (-n -β)W β (n + 1) = (-1) Q 0 (-n -β)W β (n)
and therefore that

∀n m , W β (n) = W β (m) (-1) γ 0 γ n-m µ i =1 (m + e i + β) n-m (m -f i + + β) n-m . (34) 
Hence, by Lemma 10, lim sup n→+∞ den 1

W β (m) , 1 W β (m + 1) , . . . , 1 W β (n) 1/n
den(1/γ 0 )den(e, β) 2µ exp µden(f, β) , (35) where den(e, β) := den(e 1 , . . . , e µ , β) and den(f, β) := den( f 1 , . . . , f µ , β).

Estimate of the denominator of the

D j ,β (n)/Q (1 -n -β)
We consider D n := den u j ,β (k), 1 j , m k n . Then by the determinant formula (23), we have

∀m k n , D -1 n+ -2 D j ,β (k) ∈ O K . Moreover, 1 Q (1 -n -β) = 1 γ µ i =1 1 1 -(n + ) + f i -β = den(f, β) µ γ µ i =1 1 den(f, β)(1 -(n + )) + ν i with ν i = den(f, β)( f i -β). For n m, we have ∀k n, ∀1 i µ, den(f, β)(1 -(k + ) + ν i den(f, β)(n + -1) + ν 0 ,
where Recall that δ n is defined as the common denominator of the 1/W β (k), D j ,β (k)/Q (1k -β) and u j ,β (k), when k ∈ {m, . . . , n} and j ∈ {1, . . . , }. Equations ( 26), ( 35) and (36) yield

ν 0 = max |ν i |. Thus, ∀n m, ∀m k n, d µ den(f,β)(n+ -1)+ν 0 den 1/γ 1 Q (1 -k -β) ∈ O K , with d s = lcm(1, 2, . . . , s). Finally, ∀m k n , D -1 n+ -2 d µ den(f,β)(n+ -1)+ν 0 den 1/γ D j ,β (n) Q (1 -n -β) ∈ O K . ( 36 
lim sup n→+∞ δ 1/n n exp max(1, -1)[K : Q]Λ 0 (L, β) exp den(f, β) den 1/γ 0 × den(e, β) 2µ exp µden(f, β) den 1/γ 0 den(e, β) 2µ exp max(1, -1)[K : Q]Λ 0 (L, β) + (µ + 1)den(f, β) , so that C 2 (F, β) := den 1/γ 0 3 den(e, β) 6µ exp 3 max(1, -1)[K : Q]Λ 0 (L, β) + 3(µ + 1)den(f, β)
is an upper bound on lim sup δ 3/n n . As mentioned in the introduction, we observe that C 2 (F, β) only depends on F and on the denominator D of β.

Computation of C 1 (F )

In this part, we are going to find a suitable explicit constant C 1 (F, β) satisfying Proposition 2 b). It will turn out not to depend on β.

• Since any hypergeometric series of the form 

, when ζ = 0 is a root of χ L (z). So R min χ L (ζ)=0 |ζ| -1 , whence lim sup n→+∞ |u n | 1/n Φ 0 (L), with Φ 0 (L) := max χ L (ζ)=0 |ζ| , where χ L (z) = j =0 q j ,µ z j is independent of β. ( 37 
)
We recall that for all j ∈ {0, . . . , }, Q j (X ) = µ k=0 q j ,k X j .

• The determinant formula (23) then implies that lim sup

n→+∞ D j ,β (n) Q (1 -n -β) 1/n Φ 0 (L) -1 . Finally, C 1 (F ) := max 1, γ 0 /γ , Φ 0 (L) max(1, -1) satisfies max m+1 k n max |u j ,β (k)|, 1 |W β (k)| , |D j ,β (k)| |Q (1 -k -β)| C 1 (F ) n(1+o(1)) ,
as claimed. This completes the proof of Theorem 2. Note that C 1 (F ) does not depend on β.

Examples

We now apply Theorem 1 to some classical examples of G-functions, and compute explicitly C (F, β) for them. The only real difficulty is to find an upper bound on σ(L) where L is the minimal operator of the G-function F (z), but it can often be computed from the knowledge of the arithmetic behavior of the coefficients of F (z). We are going to use the results of Section 3 to this end. We have implemented on Sage programs computing C (F, β) assuming that we have a bound on σ(L).

As mentioned in the preliminary remark of Section 4, the cases = 1 and 2 use different formulas -the second case being much simpler. This is why the following examples are separated into these categories. It satisfies = δ = 1 and 0 (0) = 1 (see [START_REF] Galochkin | Estimates from below of polynomials in the values of analytic functions of a certain class[END_REF]). For any n ∈ N * and 0 s S, the G-function F [s] n,0 (z) is equal to

F [s] n,0 (z) = ∞ k=0 z k+n (k + n) s = Li s (z) - n-1 k=1 z k k s , ( 38 
)
so that the vector space spanned by the F [s] n,0 (α), n ∈ N * , 0 s S is equal to Span 1, Li s (α), 0 s S . For α ∈ Q, 0 < |α| < 1, Marcovecchio ( [START_REF] Marcovecchio | Linear independence of linear forms in polylogarithms[END_REF]) proved that dim Span Q(α) 1, Li s (α), 0 s S 1 + o [START_REF] André | G-Functions and Geometry : A Publication of the Max-Planck-Institut für Mathematik[END_REF] [Q(α) : Q] 1 + log( 2) log(S), thus obtaining a suitable constant C (F, β) = 1 + log(2) 1.693 for Theorem (1) in that case.

With our method, since = 1, we can use a refinement of (24) allowed by Lemma 10 b) and we find that C (F, β) = 4 + log(2) 4.693. Thus, our method does not improve here the constant already known in the lower bound of Theorem 1.

Remark. This operator L is an example of "trivial case" for our estimates of Section 4, since = 1 and moreover

L 0 = (1 -z) d dz 2 -2 d dz .
satisfies σ( L 0 ) = 0. Indeed, let A be the companion matrix of L 0 ; then one can show by induction that A s = (-1) s s! (z -1) s 0 1z 0 s + 1 .

If β is an arbitrary positive rational number, the study of the sequence F [s] n,β (z)

n,s provides a statement about the linear independence of the values of Lerch's functions, also quoted in [12, p. 2]. They are defined for Re(s) > 1, β ∈ Q 0 by

Φ s (z, β) = ∞ k=0 z k (k + β) s , |z| < 1.
Indeed, if α ∈ Q and 0 < |α| < 1, the same reasoning as in (38) leads to Span K (F [s] n,β (α), n ∈ N, 0 s S) = Span K (1, Φ s (α, β), 0 s S).

For example, if β = 1/2, we numerically compute C (F, β) 28.01 so that at least 1 + o(1)

log(S)

of the values Φ s (α, 1/2) for 0 s S are linearly independent over Q when S → +∞. z k (7k + 1) s , 0 s S are linearly independent when S tends to infinity. This provides a refinement of [6, Corollary 1, p. 4] in that case, where the constant was not given.

Examples for which 2

• We first consider the following G-function which is algebraic of Q(z): For β = 0, we compute 0 (0) = 2 and C (F, 0) 570.

F (z) = 1 1 -6z + z 2
• We finally consider the example of the generating series of the Apéry numbers, introduced by Apéry in [START_REF] Apéry | Irrationalité de ζ(2) et ζ(3)[END_REF] in order to prove the irrationality of ζ(3):

F (z) = ∞ k=0 k j =0 k + j j 2 k j 2 z k ∈ Z z
It is a G-function of radius of convergence ( 2 -1) 4 1 and its coefficients are integers so σ(F ) -4 log( 2 -1). The minimal nonzero differential operator of F (z) over Q(z) is For β = 0, we find 0 (0) = 2 and C (F, 0) 209533.

Lemmas 3 and 4 ,

 4 p u,s,n := ∆ n C u,s,n (1/α) and pu,n := ∆ n C u,n (1/α) belong to O K and for any u, s, lim sup n→+∞ max u,s ( p u,s,n 1/n , pu,n 1/n ) b := qC 1 (F, β) S C 2 (F, β) S D 2r e S r r 2 S+r +1 max(1, 1/α ).

  Now, as S tends to infinity, log(b) = log(2eC 1 (F, β)C 2 (F, β))S + o(S) and log(a 0 ) -S log(S) + o(S log S). (11) Indeed, log(b) = S log(2eC 1 (F, β)C 2 (F, β)) + r log(r ) + log(2) + 2 log (D) + log 2q max(1, 1/α ) and we have r = o(S) and r log(r ) = S log(S) 2 log S log(S) 2 (1 + o(1)) o(1)) = o(S). On the other hand, log(a 0 ) -(Sr ) log r + S log(C 2 (F, β)e) + 2r log (D) + log(q) and -(Sr ) log(r ) = -(Sr ) log S log(S) 2 + o(1) = -S log(S) -2S log log(S) + o(S log(S)) -S log(S) + o(S log(S)), which proves the second part of (11), since r = o(S) = o(S log(S)).

  absolute value | • | p,Gauss naturally induces an eponymous norm on M µ,ν (K(z)), defined for all H = (h i , j ) i , j ∈ M µ,ν (K(z)) as |H | p,Gauss = max i , j |h i , j | p,Gauss . It is called the Gauss norm. If µ = ν, M µ (K(z)) endowed with | • | p,Gauss is a normed algebra. We now use this notation to define the notion of size of a matrix: Definition 2 ([5], p. 227)

  a i b i where a i and b i are coprime ideals of O K , we define den (α 1 , . . . , α n ) as the norm N K/Q (b) of the the smallest common multiple b of b 1 , . . . , b n in the sense of the Dedekind rings.

Lemma 7 a)

 7 Let G ∈ M µ (K(z)) and G ∞ (u) := -u -2 G(u -1 ) be the matrix such that y = G y ⇔ y = G ∞ y, where y(u) = y(u -1 ). Then we have ∀s ∈ N * , G ∞,s (u) = (-1)

1 ,

 1 Lemma 1, p. 71]. c) If G = A M is the companion matrix of M and G ∞ is defined as in the point a), then σ(G) = σ(G ∞ ). But Lemma 7 b) implies that the differential systems y = A M ∞ y and y = G ∞ y are equivalent over Q(u), hence, by point b), σ(M ∞ ) = σ(M ).

  Y (s) = 0 for s large enough. Hence (A L 0 ) s = Y s Y -1 = 0 for s large enough and σ(L 0 ) = 0.• By applying Theorem 5 of Subsection 3.2 to the Nilsson-Gevrey series z β F (z), we obtainσ(L β ) (1 + log(2)) max 1, 2 log(D), σ(L) .Finally, we have σ( L β ) + (1 + log(2)) max 1, 2 log(D), σ(L) .

2 above. Lemma 10

 10 Let α, β ∈ Q \ Z 0 . Then a) In the case where β = 1, for n ∈ N * , the binomial coefficient α + n -We give a proof for the reader's convenience. It is inspired by an argument of Siegel in [13, pp. 56-57]. Note that (33) saves a factor of e from (32).

  Write α = a/b, β = c/d and assume that a and b (resp. c and d ) are coprime. Let u n = b 2n d n (α) n (β) n = b n a(a + b) . . . (a + (n -1)b) c(c + d ) . . . (c + (n -1)d ) . If p is a prime factor of c(c + d ) . . . (c + (n -1)d ), then since (c, d ) = 1, p does not divide d . If ∈ N * , then among p consecutive integers of the form c + νd , ν ∈ {0, . . . , n -1}, only one is divisible by p . Thus at least n/p and at most n/p +1 of the c +νd are divisible par p . This proves that C n,p =1 n p + 1 v p (c(c + d ) . . . (c + (n -1)d )) C n,p =1 n p = v p (n!), with C n,p = log(n)/ log(p) . Moreover, assuming that p does not divide b, we get likewise a(a + b) . . . (a + (n -1)b)) v p (u n ) -C n,p . Notice that if β = 1, we have c = d = 1 and v p (c(c+d ) . . . (c+(n-1)d )) = v p (n!) = C n,p =1 n/p , so that v p (u n ) 0, whence den(α) 2n (α) n n! ∈ Z. This proves b). We come back to the general case β = 1. On the other hand, if p divides b, then v p (b n a(a + b) . . . (a + (n -1)b)) nv p (b) n, and v p (c(c + d ) . . . (c + (n -1)d )) v p (n!) +C n,p n +C n,p so v p (u n ) -C n,p . Therefore, ∆ n := p c+(n-1)d p C n,p is a common denominator of u 0 , . . . , u n , so that b 2n ∆ n is a multiple of den (α) 0 /(β) 0 , . . . , (α) n /(β) n . And log ∆ n = p c+(n-1)d log(p) log(n) log(p) π(c + (n -1)d ) log(n), where π is the prime-counting function. The Prime Number Theorem then implies that π(c + (n -1)d ) ∼ c + (n -1)d log(c + (n -1)d ) ∼ d n log(n) , so that log ∆ n d n + o(n). Since b = den(α) and d = den(β), we thus obtain a).

) 4 . 4 2 4. 4 . 1
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sup n→+∞ 1 W•

 1 1 ) k . . . (a (p) ) k (b (1 ) k . . . (b (p) ) k z k has a radius of convergence 1, using formula (34), we have lim Let j ∈ {1, . . . , }. We have seen in the proof of Proposition 6 that if u n = u j ,β (n) and U (z) = ∞ n=m u n z n , then L β,∞ (U (z)) = 0. By Frobenius' Theorem (see [9, Theorem 3.5.2, p. 349]), the radius of convergence of U around 0 is exactly the largest R > 0 such that the coefficients of L β,∞ are holomorphic in the punctured disc D(0, R) \ {0}. Precisely, R is the equal to the minimum of |ξ|, when ξ is a nonapparent finite nonzero singularity of L β,∞ . Hadamard-Cauchy formula yields lim sup n→+∞ |u n | 1/n = 1 R . Furthermore, we have seen in Subsection 4.1 that the finite nonzero singularities of L β,∞ are among the ζ -1

5. 1 1 •

 11 Examples for which = Let us first consider the simple example ofF (z) = ∞ k=0 z k = 1/(1z). The minimal operator of F over Q(z) is L = (1z) d dz -1.

•( 1 / 3 )

 13 Let ν 2, a = (a 1 , . . . , a ν ) ∈ (Q \ Z 0 ) ν and b = (b 1 , . . . , b ν-1 ) ∈(Q \ Z 0 ) ν-1 . The hypergeometric function F (z) = ν F ν-1 (a, b; z) defined in the introduction as ν F ν-1 (a, b; z) = ∞ k=0 (a 1 ) k . . . (a ν ) k k!(b 1 ) k . . . (b ν-1 ) k z k is a nonpolynomial G-function that is solution of the generalized hypergeometric equation H a,b (y(z)) = 0 where H a,b = z(θ + a 1 ) . . . (θ + a ν ) -(θ + b 1 -1) . . . (θ + b ν-1 -1)θ ∈ Q z, d dz .If for all i , j , a ib j ∈ Z, then H a,b is a minimal operator over Q(z) for F (z). It satisfies µ = ν, δ ν + 1 and ω = ν, so = 1.Hence, by Theorem 4,σ(H a,b ) 5ν 2 (ν + 2) -1 -(ν -1)(ν + 2) σ(F ) 5ν 2 (ν + 2) -1 -(ν -1)(ν + 2) 2ν log(den(a) + (ν -1)den(b)since F (z) has radius of convergence 1 and using the estimate on the denominator of a quotient of Pochhammer symbols given by Lemma 10.The exponents of H a,b at 0 are 0, 1b 1 , ..., 1b ν-1 and its exponents at ∞ are a 1 , ..., a ν .For example, for ν = 2,a 1 = 1/3, a 2 = 2/11, b 1 = 1/6, and β = 1 7 , we find numerically that, on the one hand σ H a,b 1119 and on the other hand C (F, β) 2443 so that, if α ∈ Q * and 0 < |α| < 1, at least 1 + o(1) 2443[Q(α) : Q] log(S) of the numbers ∞ k=0 k (2/11) k k!(1/6) k

3 - 2 (

 32 over Q(z) is L = (z 2 -6z + 1) d dz + z -3.The power series F (z) ∈ Z z has radius of convergence 3-2 2, hence σ(F )log(3-2 2). Furthermore, L satisfies = δ = 2, µ = 1. Its exponent at 0 (resp. ∞) is 0 (resp. 1).With β = 3/5, we obtain 0 (β) = 2 and C (F, β) 3164, so that, for every α ∈ Q * , 0 < |α| < 5k + 8) s , 0 s S.are linearly independent over Q(α) when S → +∞.For β = 0, we compute 0 (0) = 2 and C (F, 0) 3083.• Denote, for all k ∈ N * ,L k = (1z) of log(1z) k .It is an operator of order k + 1, with ω = 0 and δ = k. Its exponents at 0 (resp. ∞) are 0, 1, . . . , k (resp. 0).Using [10, Proposition 6, p. 12], we obtain that σ(L k ) (1 + log(k)).For k = 2 and β = 1/12, we have 0 (β) = 2 and we obtain a constant C (F, β) 1912.Since log(1z) 2 = 2 13) s , 0 s S1 + o(1) 1912[Q(α) : Q] log(S).

L = z 2 ( 1 -34z + z 2 ) d dz 3 + z( 3 - 2 + ( 1 -

 213321 153z + 6z 2 ) d dz 112z + 7z 2 ) d dz + z -5.It is of order 3, with δ = 4 and = 2. Using Theorem 4, we obtain, with β = 2/3, C (F, β) 209532.Moreover, 0 (β) = 2. Thus, if α ∈ Q * and 0 < |α| < 2 -14 , the dimension over Q(α) of the vector space generated by the numbers 8) s , 0 s S.is at least 1 + o(1) 209532[Q(α) : Q] log(S) when S → +∞.