Machine learning applications in drug development - Archive ouverte HAL
Article Dans Une Revue Computational and Structural Biotechnology Journal Année : 2020

Machine learning applications in drug development

Résumé

Due to the huge amount of biological and medical data available today, along with well-established machine learning algorithms, the design of largely automated drug development pipelines can now be envisioned. These pipelines may guide, or speed up, drug discovery; provide a better understanding of diseases and associated biological phenomena; help planning preclinical wet-lab experiments, and even future clinical trials. This automation of the drug development process might be key to the current issue of low productivity rate that pharmaceutical companies currently face. In this survey, we will particularly focus on two classes of methods: sequential learning and recommender systems, which are active biomedical fields of research.
Fichier principal
Vignette du fichier
RKD20_CSBJ.pdf (1.61 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02533303 , version 1 (07-12-2020)

Identifiants

Citer

Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez. Machine learning applications in drug development. Computational and Structural Biotechnology Journal, 2020, 18, pp.241-252. ⟨10.1016/j.csbj.2019.12.006⟩. ⟨hal-02533303⟩
314 Consultations
411 Téléchargements

Altmetric

Partager

More